xref: /openbmc/linux/security/commoncap.c (revision 545e4006)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
29 
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
31 {
32 	NETLINK_CB(skb).eff_cap = current->cap_effective;
33 	return 0;
34 }
35 
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
37 {
38 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39 		return -EPERM;
40 	return 0;
41 }
42 
43 EXPORT_SYMBOL(cap_netlink_recv);
44 
45 /*
46  * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47  * function.  That is, it has the reverse semantics: cap_capable()
48  * returns 0 when a task has a capability, but the kernel's capable()
49  * returns 1 for this case.
50  */
51 int cap_capable (struct task_struct *tsk, int cap)
52 {
53 	/* Derived from include/linux/sched.h:capable. */
54 	if (cap_raised(tsk->cap_effective, cap))
55 		return 0;
56 	return -EPERM;
57 }
58 
59 int cap_settime(struct timespec *ts, struct timezone *tz)
60 {
61 	if (!capable(CAP_SYS_TIME))
62 		return -EPERM;
63 	return 0;
64 }
65 
66 int cap_ptrace (struct task_struct *parent, struct task_struct *child,
67 		unsigned int mode)
68 {
69 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
70 	if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
71 	    !__capable(parent, CAP_SYS_PTRACE))
72 		return -EPERM;
73 	return 0;
74 }
75 
76 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
77 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
78 {
79 	/* Derived from kernel/capability.c:sys_capget. */
80 	*effective = target->cap_effective;
81 	*inheritable = target->cap_inheritable;
82 	*permitted = target->cap_permitted;
83 	return 0;
84 }
85 
86 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
87 
88 static inline int cap_block_setpcap(struct task_struct *target)
89 {
90 	/*
91 	 * No support for remote process capability manipulation with
92 	 * filesystem capability support.
93 	 */
94 	return (target != current);
95 }
96 
97 static inline int cap_inh_is_capped(void)
98 {
99 	/*
100 	 * Return 1 if changes to the inheritable set are limited
101 	 * to the old permitted set. That is, if the current task
102 	 * does *not* possess the CAP_SETPCAP capability.
103 	 */
104 	return (cap_capable(current, CAP_SETPCAP) != 0);
105 }
106 
107 static inline int cap_limit_ptraced_target(void) { return 1; }
108 
109 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
110 
111 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
112 static inline int cap_inh_is_capped(void) { return 1; }
113 static inline int cap_limit_ptraced_target(void)
114 {
115 	return !capable(CAP_SETPCAP);
116 }
117 
118 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
119 
120 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
121 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
122 {
123 	if (cap_block_setpcap(target)) {
124 		return -EPERM;
125 	}
126 	if (cap_inh_is_capped()
127 	    && !cap_issubset(*inheritable,
128 			     cap_combine(target->cap_inheritable,
129 					 current->cap_permitted))) {
130 		/* incapable of using this inheritable set */
131 		return -EPERM;
132 	}
133 	if (!cap_issubset(*inheritable,
134 			   cap_combine(target->cap_inheritable,
135 				       current->cap_bset))) {
136 		/* no new pI capabilities outside bounding set */
137 		return -EPERM;
138 	}
139 
140 	/* verify restrictions on target's new Permitted set */
141 	if (!cap_issubset (*permitted,
142 			   cap_combine (target->cap_permitted,
143 					current->cap_permitted))) {
144 		return -EPERM;
145 	}
146 
147 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
148 	if (!cap_issubset (*effective, *permitted)) {
149 		return -EPERM;
150 	}
151 
152 	return 0;
153 }
154 
155 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
156 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
157 {
158 	target->cap_effective = *effective;
159 	target->cap_inheritable = *inheritable;
160 	target->cap_permitted = *permitted;
161 }
162 
163 static inline void bprm_clear_caps(struct linux_binprm *bprm)
164 {
165 	cap_clear(bprm->cap_post_exec_permitted);
166 	bprm->cap_effective = false;
167 }
168 
169 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
170 
171 int cap_inode_need_killpriv(struct dentry *dentry)
172 {
173 	struct inode *inode = dentry->d_inode;
174 	int error;
175 
176 	if (!inode->i_op || !inode->i_op->getxattr)
177 	       return 0;
178 
179 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
180 	if (error <= 0)
181 		return 0;
182 	return 1;
183 }
184 
185 int cap_inode_killpriv(struct dentry *dentry)
186 {
187 	struct inode *inode = dentry->d_inode;
188 
189 	if (!inode->i_op || !inode->i_op->removexattr)
190 	       return 0;
191 
192 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
193 }
194 
195 static inline int cap_from_disk(struct vfs_cap_data *caps,
196 				struct linux_binprm *bprm, unsigned size)
197 {
198 	__u32 magic_etc;
199 	unsigned tocopy, i;
200 	int ret;
201 
202 	if (size < sizeof(magic_etc))
203 		return -EINVAL;
204 
205 	magic_etc = le32_to_cpu(caps->magic_etc);
206 
207 	switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
208 	case VFS_CAP_REVISION_1:
209 		if (size != XATTR_CAPS_SZ_1)
210 			return -EINVAL;
211 		tocopy = VFS_CAP_U32_1;
212 		break;
213 	case VFS_CAP_REVISION_2:
214 		if (size != XATTR_CAPS_SZ_2)
215 			return -EINVAL;
216 		tocopy = VFS_CAP_U32_2;
217 		break;
218 	default:
219 		return -EINVAL;
220 	}
221 
222 	if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
223 		bprm->cap_effective = true;
224 	} else {
225 		bprm->cap_effective = false;
226 	}
227 
228 	ret = 0;
229 
230 	CAP_FOR_EACH_U32(i) {
231 		__u32 value_cpu;
232 
233 		if (i >= tocopy) {
234 			/*
235 			 * Legacy capability sets have no upper bits
236 			 */
237 			bprm->cap_post_exec_permitted.cap[i] = 0;
238 			continue;
239 		}
240 		/*
241 		 * pP' = (X & fP) | (pI & fI)
242 		 */
243 		value_cpu = le32_to_cpu(caps->data[i].permitted);
244 		bprm->cap_post_exec_permitted.cap[i] =
245 			(current->cap_bset.cap[i] & value_cpu) |
246 			(current->cap_inheritable.cap[i] &
247 				le32_to_cpu(caps->data[i].inheritable));
248 		if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) {
249 			/*
250 			 * insufficient to execute correctly
251 			 */
252 			ret = -EPERM;
253 		}
254 	}
255 
256 	/*
257 	 * For legacy apps, with no internal support for recognizing they
258 	 * do not have enough capabilities, we return an error if they are
259 	 * missing some "forced" (aka file-permitted) capabilities.
260 	 */
261 	return bprm->cap_effective ? ret : 0;
262 }
263 
264 /* Locate any VFS capabilities: */
265 static int get_file_caps(struct linux_binprm *bprm)
266 {
267 	struct dentry *dentry;
268 	int rc = 0;
269 	struct vfs_cap_data vcaps;
270 	struct inode *inode;
271 
272 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
273 		bprm_clear_caps(bprm);
274 		return 0;
275 	}
276 
277 	dentry = dget(bprm->file->f_dentry);
278 	inode = dentry->d_inode;
279 	if (!inode->i_op || !inode->i_op->getxattr)
280 		goto out;
281 
282 	rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
283 				   XATTR_CAPS_SZ);
284 	if (rc == -ENODATA || rc == -EOPNOTSUPP) {
285 		/* no data, that's ok */
286 		rc = 0;
287 		goto out;
288 	}
289 	if (rc < 0)
290 		goto out;
291 
292 	rc = cap_from_disk(&vcaps, bprm, rc);
293 	if (rc == -EINVAL)
294 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
295 		       __func__, rc, bprm->filename);
296 
297 out:
298 	dput(dentry);
299 	if (rc)
300 		bprm_clear_caps(bprm);
301 
302 	return rc;
303 }
304 
305 #else
306 int cap_inode_need_killpriv(struct dentry *dentry)
307 {
308 	return 0;
309 }
310 
311 int cap_inode_killpriv(struct dentry *dentry)
312 {
313 	return 0;
314 }
315 
316 static inline int get_file_caps(struct linux_binprm *bprm)
317 {
318 	bprm_clear_caps(bprm);
319 	return 0;
320 }
321 #endif
322 
323 int cap_bprm_set_security (struct linux_binprm *bprm)
324 {
325 	int ret;
326 
327 	ret = get_file_caps(bprm);
328 
329 	if (!issecure(SECURE_NOROOT)) {
330 		/*
331 		 * To support inheritance of root-permissions and suid-root
332 		 * executables under compatibility mode, we override the
333 		 * capability sets for the file.
334 		 *
335 		 * If only the real uid is 0, we do not set the effective
336 		 * bit.
337 		 */
338 		if (bprm->e_uid == 0 || current->uid == 0) {
339 			/* pP' = (cap_bset & ~0) | (pI & ~0) */
340 			bprm->cap_post_exec_permitted = cap_combine(
341 				current->cap_bset, current->cap_inheritable
342 				);
343 			bprm->cap_effective = (bprm->e_uid == 0);
344 			ret = 0;
345 		}
346 	}
347 
348 	return ret;
349 }
350 
351 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
352 {
353 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
354 	    !cap_issubset(bprm->cap_post_exec_permitted,
355 			  current->cap_permitted)) {
356 		set_dumpable(current->mm, suid_dumpable);
357 		current->pdeath_signal = 0;
358 
359 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
360 			if (!capable(CAP_SETUID)) {
361 				bprm->e_uid = current->uid;
362 				bprm->e_gid = current->gid;
363 			}
364 			if (cap_limit_ptraced_target()) {
365 				bprm->cap_post_exec_permitted = cap_intersect(
366 					bprm->cap_post_exec_permitted,
367 					current->cap_permitted);
368 			}
369 		}
370 	}
371 
372 	current->suid = current->euid = current->fsuid = bprm->e_uid;
373 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
374 
375 	/* For init, we want to retain the capabilities set
376 	 * in the init_task struct. Thus we skip the usual
377 	 * capability rules */
378 	if (!is_global_init(current)) {
379 		current->cap_permitted = bprm->cap_post_exec_permitted;
380 		if (bprm->cap_effective)
381 			current->cap_effective = bprm->cap_post_exec_permitted;
382 		else
383 			cap_clear(current->cap_effective);
384 	}
385 
386 	/* AUD: Audit candidate if current->cap_effective is set */
387 
388 	current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
389 }
390 
391 int cap_bprm_secureexec (struct linux_binprm *bprm)
392 {
393 	if (current->uid != 0) {
394 		if (bprm->cap_effective)
395 			return 1;
396 		if (!cap_isclear(bprm->cap_post_exec_permitted))
397 			return 1;
398 	}
399 
400 	return (current->euid != current->uid ||
401 		current->egid != current->gid);
402 }
403 
404 int cap_inode_setxattr(struct dentry *dentry, const char *name,
405 		       const void *value, size_t size, int flags)
406 {
407 	if (!strcmp(name, XATTR_NAME_CAPS)) {
408 		if (!capable(CAP_SETFCAP))
409 			return -EPERM;
410 		return 0;
411 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
412 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
413 	    !capable(CAP_SYS_ADMIN))
414 		return -EPERM;
415 	return 0;
416 }
417 
418 int cap_inode_removexattr(struct dentry *dentry, const char *name)
419 {
420 	if (!strcmp(name, XATTR_NAME_CAPS)) {
421 		if (!capable(CAP_SETFCAP))
422 			return -EPERM;
423 		return 0;
424 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
425 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
426 	    !capable(CAP_SYS_ADMIN))
427 		return -EPERM;
428 	return 0;
429 }
430 
431 /* moved from kernel/sys.c. */
432 /*
433  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
434  * a process after a call to setuid, setreuid, or setresuid.
435  *
436  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
437  *  {r,e,s}uid != 0, the permitted and effective capabilities are
438  *  cleared.
439  *
440  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
441  *  capabilities of the process are cleared.
442  *
443  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
444  *  capabilities are set to the permitted capabilities.
445  *
446  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
447  *  never happen.
448  *
449  *  -astor
450  *
451  * cevans - New behaviour, Oct '99
452  * A process may, via prctl(), elect to keep its capabilities when it
453  * calls setuid() and switches away from uid==0. Both permitted and
454  * effective sets will be retained.
455  * Without this change, it was impossible for a daemon to drop only some
456  * of its privilege. The call to setuid(!=0) would drop all privileges!
457  * Keeping uid 0 is not an option because uid 0 owns too many vital
458  * files..
459  * Thanks to Olaf Kirch and Peter Benie for spotting this.
460  */
461 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
462 					int old_suid)
463 {
464 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
465 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
466 	    !issecure(SECURE_KEEP_CAPS)) {
467 		cap_clear (current->cap_permitted);
468 		cap_clear (current->cap_effective);
469 	}
470 	if (old_euid == 0 && current->euid != 0) {
471 		cap_clear (current->cap_effective);
472 	}
473 	if (old_euid != 0 && current->euid == 0) {
474 		current->cap_effective = current->cap_permitted;
475 	}
476 }
477 
478 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
479 			  int flags)
480 {
481 	switch (flags) {
482 	case LSM_SETID_RE:
483 	case LSM_SETID_ID:
484 	case LSM_SETID_RES:
485 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
486 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
487 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
488 		}
489 		break;
490 	case LSM_SETID_FS:
491 		{
492 			uid_t old_fsuid = old_ruid;
493 
494 			/* Copied from kernel/sys.c:setfsuid. */
495 
496 			/*
497 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
498 			 *          if not, we might be a bit too harsh here.
499 			 */
500 
501 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
502 				if (old_fsuid == 0 && current->fsuid != 0) {
503 					current->cap_effective =
504 						cap_drop_fs_set(
505 						    current->cap_effective);
506 				}
507 				if (old_fsuid != 0 && current->fsuid == 0) {
508 					current->cap_effective =
509 						cap_raise_fs_set(
510 						    current->cap_effective,
511 						    current->cap_permitted);
512 				}
513 			}
514 			break;
515 		}
516 	default:
517 		return -EINVAL;
518 	}
519 
520 	return 0;
521 }
522 
523 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
524 /*
525  * Rationale: code calling task_setscheduler, task_setioprio, and
526  * task_setnice, assumes that
527  *   . if capable(cap_sys_nice), then those actions should be allowed
528  *   . if not capable(cap_sys_nice), but acting on your own processes,
529  *   	then those actions should be allowed
530  * This is insufficient now since you can call code without suid, but
531  * yet with increased caps.
532  * So we check for increased caps on the target process.
533  */
534 static inline int cap_safe_nice(struct task_struct *p)
535 {
536 	if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
537 	    !__capable(current, CAP_SYS_NICE))
538 		return -EPERM;
539 	return 0;
540 }
541 
542 int cap_task_setscheduler (struct task_struct *p, int policy,
543 			   struct sched_param *lp)
544 {
545 	return cap_safe_nice(p);
546 }
547 
548 int cap_task_setioprio (struct task_struct *p, int ioprio)
549 {
550 	return cap_safe_nice(p);
551 }
552 
553 int cap_task_setnice (struct task_struct *p, int nice)
554 {
555 	return cap_safe_nice(p);
556 }
557 
558 /*
559  * called from kernel/sys.c for prctl(PR_CABSET_DROP)
560  * done without task_capability_lock() because it introduces
561  * no new races - i.e. only another task doing capget() on
562  * this task could get inconsistent info.  There can be no
563  * racing writer bc a task can only change its own caps.
564  */
565 static long cap_prctl_drop(unsigned long cap)
566 {
567 	if (!capable(CAP_SETPCAP))
568 		return -EPERM;
569 	if (!cap_valid(cap))
570 		return -EINVAL;
571 	cap_lower(current->cap_bset, cap);
572 	return 0;
573 }
574 
575 #else
576 int cap_task_setscheduler (struct task_struct *p, int policy,
577 			   struct sched_param *lp)
578 {
579 	return 0;
580 }
581 int cap_task_setioprio (struct task_struct *p, int ioprio)
582 {
583 	return 0;
584 }
585 int cap_task_setnice (struct task_struct *p, int nice)
586 {
587 	return 0;
588 }
589 #endif
590 
591 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
592 		   unsigned long arg4, unsigned long arg5, long *rc_p)
593 {
594 	long error = 0;
595 
596 	switch (option) {
597 	case PR_CAPBSET_READ:
598 		if (!cap_valid(arg2))
599 			error = -EINVAL;
600 		else
601 			error = !!cap_raised(current->cap_bset, arg2);
602 		break;
603 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
604 	case PR_CAPBSET_DROP:
605 		error = cap_prctl_drop(arg2);
606 		break;
607 
608 	/*
609 	 * The next four prctl's remain to assist with transitioning a
610 	 * system from legacy UID=0 based privilege (when filesystem
611 	 * capabilities are not in use) to a system using filesystem
612 	 * capabilities only - as the POSIX.1e draft intended.
613 	 *
614 	 * Note:
615 	 *
616 	 *  PR_SET_SECUREBITS =
617 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
618 	 *    | issecure_mask(SECURE_NOROOT)
619 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
620 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
621 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
622 	 *
623 	 * will ensure that the current process and all of its
624 	 * children will be locked into a pure
625 	 * capability-based-privilege environment.
626 	 */
627 	case PR_SET_SECUREBITS:
628 		if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
629 		     & (current->securebits ^ arg2))                  /*[1]*/
630 		    || ((current->securebits & SECURE_ALL_LOCKS
631 			 & ~arg2))                                    /*[2]*/
632 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
633 		    || (cap_capable(current, CAP_SETPCAP) != 0)) {    /*[4]*/
634 			/*
635 			 * [1] no changing of bits that are locked
636 			 * [2] no unlocking of locks
637 			 * [3] no setting of unsupported bits
638 			 * [4] doing anything requires privilege (go read about
639 			 *     the "sendmail capabilities bug")
640 			 */
641 			error = -EPERM;  /* cannot change a locked bit */
642 		} else {
643 			current->securebits = arg2;
644 		}
645 		break;
646 	case PR_GET_SECUREBITS:
647 		error = current->securebits;
648 		break;
649 
650 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
651 
652 	case PR_GET_KEEPCAPS:
653 		if (issecure(SECURE_KEEP_CAPS))
654 			error = 1;
655 		break;
656 	case PR_SET_KEEPCAPS:
657 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
658 			error = -EINVAL;
659 		else if (issecure(SECURE_KEEP_CAPS_LOCKED))
660 			error = -EPERM;
661 		else if (arg2)
662 			current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
663 		else
664 			current->securebits &=
665 				~issecure_mask(SECURE_KEEP_CAPS);
666 		break;
667 
668 	default:
669 		/* No functionality available - continue with default */
670 		return 0;
671 	}
672 
673 	/* Functionality provided */
674 	*rc_p = error;
675 	return 1;
676 }
677 
678 void cap_task_reparent_to_init (struct task_struct *p)
679 {
680 	cap_set_init_eff(p->cap_effective);
681 	cap_clear(p->cap_inheritable);
682 	cap_set_full(p->cap_permitted);
683 	p->securebits = SECUREBITS_DEFAULT;
684 	return;
685 }
686 
687 int cap_syslog (int type)
688 {
689 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
690 		return -EPERM;
691 	return 0;
692 }
693 
694 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
695 {
696 	int cap_sys_admin = 0;
697 
698 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
699 		cap_sys_admin = 1;
700 	return __vm_enough_memory(mm, pages, cap_sys_admin);
701 }
702 
703