xref: /openbmc/linux/security/commoncap.c (revision 22246614)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
29 
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
31 {
32 	NETLINK_CB(skb).eff_cap = current->cap_effective;
33 	return 0;
34 }
35 
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
37 {
38 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39 		return -EPERM;
40 	return 0;
41 }
42 
43 EXPORT_SYMBOL(cap_netlink_recv);
44 
45 /*
46  * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47  * function.  That is, it has the reverse semantics: cap_capable()
48  * returns 0 when a task has a capability, but the kernel's capable()
49  * returns 1 for this case.
50  */
51 int cap_capable (struct task_struct *tsk, int cap)
52 {
53 	/* Derived from include/linux/sched.h:capable. */
54 	if (cap_raised(tsk->cap_effective, cap))
55 		return 0;
56 	return -EPERM;
57 }
58 
59 int cap_settime(struct timespec *ts, struct timezone *tz)
60 {
61 	if (!capable(CAP_SYS_TIME))
62 		return -EPERM;
63 	return 0;
64 }
65 
66 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
67 {
68 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
69 	if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
70 	    !__capable(parent, CAP_SYS_PTRACE))
71 		return -EPERM;
72 	return 0;
73 }
74 
75 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
76 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
77 {
78 	/* Derived from kernel/capability.c:sys_capget. */
79 	*effective = target->cap_effective;
80 	*inheritable = target->cap_inheritable;
81 	*permitted = target->cap_permitted;
82 	return 0;
83 }
84 
85 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
86 
87 static inline int cap_block_setpcap(struct task_struct *target)
88 {
89 	/*
90 	 * No support for remote process capability manipulation with
91 	 * filesystem capability support.
92 	 */
93 	return (target != current);
94 }
95 
96 static inline int cap_inh_is_capped(void)
97 {
98 	/*
99 	 * Return 1 if changes to the inheritable set are limited
100 	 * to the old permitted set. That is, if the current task
101 	 * does *not* possess the CAP_SETPCAP capability.
102 	 */
103 	return (cap_capable(current, CAP_SETPCAP) != 0);
104 }
105 
106 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
107 
108 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
109 static inline int cap_inh_is_capped(void) { return 1; }
110 
111 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
112 
113 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
114 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
115 {
116 	if (cap_block_setpcap(target)) {
117 		return -EPERM;
118 	}
119 	if (cap_inh_is_capped()
120 	    && !cap_issubset(*inheritable,
121 			     cap_combine(target->cap_inheritable,
122 					 current->cap_permitted))) {
123 		/* incapable of using this inheritable set */
124 		return -EPERM;
125 	}
126 	if (!cap_issubset(*inheritable,
127 			   cap_combine(target->cap_inheritable,
128 				       current->cap_bset))) {
129 		/* no new pI capabilities outside bounding set */
130 		return -EPERM;
131 	}
132 
133 	/* verify restrictions on target's new Permitted set */
134 	if (!cap_issubset (*permitted,
135 			   cap_combine (target->cap_permitted,
136 					current->cap_permitted))) {
137 		return -EPERM;
138 	}
139 
140 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
141 	if (!cap_issubset (*effective, *permitted)) {
142 		return -EPERM;
143 	}
144 
145 	return 0;
146 }
147 
148 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
149 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
150 {
151 	target->cap_effective = *effective;
152 	target->cap_inheritable = *inheritable;
153 	target->cap_permitted = *permitted;
154 }
155 
156 static inline void bprm_clear_caps(struct linux_binprm *bprm)
157 {
158 	cap_clear(bprm->cap_inheritable);
159 	cap_clear(bprm->cap_permitted);
160 	bprm->cap_effective = false;
161 }
162 
163 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
164 
165 int cap_inode_need_killpriv(struct dentry *dentry)
166 {
167 	struct inode *inode = dentry->d_inode;
168 	int error;
169 
170 	if (!inode->i_op || !inode->i_op->getxattr)
171 	       return 0;
172 
173 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
174 	if (error <= 0)
175 		return 0;
176 	return 1;
177 }
178 
179 int cap_inode_killpriv(struct dentry *dentry)
180 {
181 	struct inode *inode = dentry->d_inode;
182 
183 	if (!inode->i_op || !inode->i_op->removexattr)
184 	       return 0;
185 
186 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
187 }
188 
189 static inline int cap_from_disk(struct vfs_cap_data *caps,
190 				struct linux_binprm *bprm, unsigned size)
191 {
192 	__u32 magic_etc;
193 	unsigned tocopy, i;
194 
195 	if (size < sizeof(magic_etc))
196 		return -EINVAL;
197 
198 	magic_etc = le32_to_cpu(caps->magic_etc);
199 
200 	switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
201 	case VFS_CAP_REVISION_1:
202 		if (size != XATTR_CAPS_SZ_1)
203 			return -EINVAL;
204 		tocopy = VFS_CAP_U32_1;
205 		break;
206 	case VFS_CAP_REVISION_2:
207 		if (size != XATTR_CAPS_SZ_2)
208 			return -EINVAL;
209 		tocopy = VFS_CAP_U32_2;
210 		break;
211 	default:
212 		return -EINVAL;
213 	}
214 
215 	if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
216 		bprm->cap_effective = true;
217 	} else {
218 		bprm->cap_effective = false;
219 	}
220 
221 	for (i = 0; i < tocopy; ++i) {
222 		bprm->cap_permitted.cap[i] =
223 			le32_to_cpu(caps->data[i].permitted);
224 		bprm->cap_inheritable.cap[i] =
225 			le32_to_cpu(caps->data[i].inheritable);
226 	}
227 	while (i < VFS_CAP_U32) {
228 		bprm->cap_permitted.cap[i] = 0;
229 		bprm->cap_inheritable.cap[i] = 0;
230 		i++;
231 	}
232 
233 	return 0;
234 }
235 
236 /* Locate any VFS capabilities: */
237 static int get_file_caps(struct linux_binprm *bprm)
238 {
239 	struct dentry *dentry;
240 	int rc = 0;
241 	struct vfs_cap_data vcaps;
242 	struct inode *inode;
243 
244 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
245 		bprm_clear_caps(bprm);
246 		return 0;
247 	}
248 
249 	dentry = dget(bprm->file->f_dentry);
250 	inode = dentry->d_inode;
251 	if (!inode->i_op || !inode->i_op->getxattr)
252 		goto out;
253 
254 	rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
255 				   XATTR_CAPS_SZ);
256 	if (rc == -ENODATA || rc == -EOPNOTSUPP) {
257 		/* no data, that's ok */
258 		rc = 0;
259 		goto out;
260 	}
261 	if (rc < 0)
262 		goto out;
263 
264 	rc = cap_from_disk(&vcaps, bprm, rc);
265 	if (rc)
266 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
267 			__func__, rc, bprm->filename);
268 
269 out:
270 	dput(dentry);
271 	if (rc)
272 		bprm_clear_caps(bprm);
273 
274 	return rc;
275 }
276 
277 #else
278 int cap_inode_need_killpriv(struct dentry *dentry)
279 {
280 	return 0;
281 }
282 
283 int cap_inode_killpriv(struct dentry *dentry)
284 {
285 	return 0;
286 }
287 
288 static inline int get_file_caps(struct linux_binprm *bprm)
289 {
290 	bprm_clear_caps(bprm);
291 	return 0;
292 }
293 #endif
294 
295 int cap_bprm_set_security (struct linux_binprm *bprm)
296 {
297 	int ret;
298 
299 	ret = get_file_caps(bprm);
300 	if (ret)
301 		printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
302 			__func__, ret, bprm->filename);
303 
304 	/*  To support inheritance of root-permissions and suid-root
305 	 *  executables under compatibility mode, we raise all three
306 	 *  capability sets for the file.
307 	 *
308 	 *  If only the real uid is 0, we only raise the inheritable
309 	 *  and permitted sets of the executable file.
310 	 */
311 
312 	if (!issecure (SECURE_NOROOT)) {
313 		if (bprm->e_uid == 0 || current->uid == 0) {
314 			cap_set_full (bprm->cap_inheritable);
315 			cap_set_full (bprm->cap_permitted);
316 		}
317 		if (bprm->e_uid == 0)
318 			bprm->cap_effective = true;
319 	}
320 
321 	return ret;
322 }
323 
324 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
325 {
326 	/* Derived from fs/exec.c:compute_creds. */
327 	kernel_cap_t new_permitted, working;
328 
329 	new_permitted = cap_intersect(bprm->cap_permitted,
330 				 current->cap_bset);
331 	working = cap_intersect(bprm->cap_inheritable,
332 				 current->cap_inheritable);
333 	new_permitted = cap_combine(new_permitted, working);
334 
335 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
336 	    !cap_issubset (new_permitted, current->cap_permitted)) {
337 		set_dumpable(current->mm, suid_dumpable);
338 		current->pdeath_signal = 0;
339 
340 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
341 			if (!capable(CAP_SETUID)) {
342 				bprm->e_uid = current->uid;
343 				bprm->e_gid = current->gid;
344 			}
345 			if (!capable (CAP_SETPCAP)) {
346 				new_permitted = cap_intersect (new_permitted,
347 							current->cap_permitted);
348 			}
349 		}
350 	}
351 
352 	current->suid = current->euid = current->fsuid = bprm->e_uid;
353 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
354 
355 	/* For init, we want to retain the capabilities set
356 	 * in the init_task struct. Thus we skip the usual
357 	 * capability rules */
358 	if (!is_global_init(current)) {
359 		current->cap_permitted = new_permitted;
360 		if (bprm->cap_effective)
361 			current->cap_effective = new_permitted;
362 		else
363 			cap_clear(current->cap_effective);
364 	}
365 
366 	/* AUD: Audit candidate if current->cap_effective is set */
367 
368 	current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
369 }
370 
371 int cap_bprm_secureexec (struct linux_binprm *bprm)
372 {
373 	if (current->uid != 0) {
374 		if (bprm->cap_effective)
375 			return 1;
376 		if (!cap_isclear(bprm->cap_permitted))
377 			return 1;
378 		if (!cap_isclear(bprm->cap_inheritable))
379 			return 1;
380 	}
381 
382 	return (current->euid != current->uid ||
383 		current->egid != current->gid);
384 }
385 
386 int cap_inode_setxattr(struct dentry *dentry, const char *name,
387 		       const void *value, size_t size, int flags)
388 {
389 	if (!strcmp(name, XATTR_NAME_CAPS)) {
390 		if (!capable(CAP_SETFCAP))
391 			return -EPERM;
392 		return 0;
393 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
394 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
395 	    !capable(CAP_SYS_ADMIN))
396 		return -EPERM;
397 	return 0;
398 }
399 
400 int cap_inode_removexattr(struct dentry *dentry, const char *name)
401 {
402 	if (!strcmp(name, XATTR_NAME_CAPS)) {
403 		if (!capable(CAP_SETFCAP))
404 			return -EPERM;
405 		return 0;
406 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
407 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
408 	    !capable(CAP_SYS_ADMIN))
409 		return -EPERM;
410 	return 0;
411 }
412 
413 /* moved from kernel/sys.c. */
414 /*
415  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
416  * a process after a call to setuid, setreuid, or setresuid.
417  *
418  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
419  *  {r,e,s}uid != 0, the permitted and effective capabilities are
420  *  cleared.
421  *
422  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
423  *  capabilities of the process are cleared.
424  *
425  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
426  *  capabilities are set to the permitted capabilities.
427  *
428  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
429  *  never happen.
430  *
431  *  -astor
432  *
433  * cevans - New behaviour, Oct '99
434  * A process may, via prctl(), elect to keep its capabilities when it
435  * calls setuid() and switches away from uid==0. Both permitted and
436  * effective sets will be retained.
437  * Without this change, it was impossible for a daemon to drop only some
438  * of its privilege. The call to setuid(!=0) would drop all privileges!
439  * Keeping uid 0 is not an option because uid 0 owns too many vital
440  * files..
441  * Thanks to Olaf Kirch and Peter Benie for spotting this.
442  */
443 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
444 					int old_suid)
445 {
446 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
447 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
448 	    !issecure(SECURE_KEEP_CAPS)) {
449 		cap_clear (current->cap_permitted);
450 		cap_clear (current->cap_effective);
451 	}
452 	if (old_euid == 0 && current->euid != 0) {
453 		cap_clear (current->cap_effective);
454 	}
455 	if (old_euid != 0 && current->euid == 0) {
456 		current->cap_effective = current->cap_permitted;
457 	}
458 }
459 
460 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
461 			  int flags)
462 {
463 	switch (flags) {
464 	case LSM_SETID_RE:
465 	case LSM_SETID_ID:
466 	case LSM_SETID_RES:
467 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
468 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
469 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
470 		}
471 		break;
472 	case LSM_SETID_FS:
473 		{
474 			uid_t old_fsuid = old_ruid;
475 
476 			/* Copied from kernel/sys.c:setfsuid. */
477 
478 			/*
479 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
480 			 *          if not, we might be a bit too harsh here.
481 			 */
482 
483 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
484 				if (old_fsuid == 0 && current->fsuid != 0) {
485 					current->cap_effective =
486 						cap_drop_fs_set(
487 						    current->cap_effective);
488 				}
489 				if (old_fsuid != 0 && current->fsuid == 0) {
490 					current->cap_effective =
491 						cap_raise_fs_set(
492 						    current->cap_effective,
493 						    current->cap_permitted);
494 				}
495 			}
496 			break;
497 		}
498 	default:
499 		return -EINVAL;
500 	}
501 
502 	return 0;
503 }
504 
505 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
506 /*
507  * Rationale: code calling task_setscheduler, task_setioprio, and
508  * task_setnice, assumes that
509  *   . if capable(cap_sys_nice), then those actions should be allowed
510  *   . if not capable(cap_sys_nice), but acting on your own processes,
511  *   	then those actions should be allowed
512  * This is insufficient now since you can call code without suid, but
513  * yet with increased caps.
514  * So we check for increased caps on the target process.
515  */
516 static inline int cap_safe_nice(struct task_struct *p)
517 {
518 	if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
519 	    !__capable(current, CAP_SYS_NICE))
520 		return -EPERM;
521 	return 0;
522 }
523 
524 int cap_task_setscheduler (struct task_struct *p, int policy,
525 			   struct sched_param *lp)
526 {
527 	return cap_safe_nice(p);
528 }
529 
530 int cap_task_setioprio (struct task_struct *p, int ioprio)
531 {
532 	return cap_safe_nice(p);
533 }
534 
535 int cap_task_setnice (struct task_struct *p, int nice)
536 {
537 	return cap_safe_nice(p);
538 }
539 
540 /*
541  * called from kernel/sys.c for prctl(PR_CABSET_DROP)
542  * done without task_capability_lock() because it introduces
543  * no new races - i.e. only another task doing capget() on
544  * this task could get inconsistent info.  There can be no
545  * racing writer bc a task can only change its own caps.
546  */
547 static long cap_prctl_drop(unsigned long cap)
548 {
549 	if (!capable(CAP_SETPCAP))
550 		return -EPERM;
551 	if (!cap_valid(cap))
552 		return -EINVAL;
553 	cap_lower(current->cap_bset, cap);
554 	return 0;
555 }
556 
557 #else
558 int cap_task_setscheduler (struct task_struct *p, int policy,
559 			   struct sched_param *lp)
560 {
561 	return 0;
562 }
563 int cap_task_setioprio (struct task_struct *p, int ioprio)
564 {
565 	return 0;
566 }
567 int cap_task_setnice (struct task_struct *p, int nice)
568 {
569 	return 0;
570 }
571 #endif
572 
573 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
574 		   unsigned long arg4, unsigned long arg5, long *rc_p)
575 {
576 	long error = 0;
577 
578 	switch (option) {
579 	case PR_CAPBSET_READ:
580 		if (!cap_valid(arg2))
581 			error = -EINVAL;
582 		else
583 			error = !!cap_raised(current->cap_bset, arg2);
584 		break;
585 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
586 	case PR_CAPBSET_DROP:
587 		error = cap_prctl_drop(arg2);
588 		break;
589 
590 	/*
591 	 * The next four prctl's remain to assist with transitioning a
592 	 * system from legacy UID=0 based privilege (when filesystem
593 	 * capabilities are not in use) to a system using filesystem
594 	 * capabilities only - as the POSIX.1e draft intended.
595 	 *
596 	 * Note:
597 	 *
598 	 *  PR_SET_SECUREBITS =
599 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
600 	 *    | issecure_mask(SECURE_NOROOT)
601 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
602 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
603 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
604 	 *
605 	 * will ensure that the current process and all of its
606 	 * children will be locked into a pure
607 	 * capability-based-privilege environment.
608 	 */
609 	case PR_SET_SECUREBITS:
610 		if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
611 		     & (current->securebits ^ arg2))                  /*[1]*/
612 		    || ((current->securebits & SECURE_ALL_LOCKS
613 			 & ~arg2))                                    /*[2]*/
614 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
615 		    || (cap_capable(current, CAP_SETPCAP) != 0)) {    /*[4]*/
616 			/*
617 			 * [1] no changing of bits that are locked
618 			 * [2] no unlocking of locks
619 			 * [3] no setting of unsupported bits
620 			 * [4] doing anything requires privilege (go read about
621 			 *     the "sendmail capabilities bug")
622 			 */
623 			error = -EPERM;  /* cannot change a locked bit */
624 		} else {
625 			current->securebits = arg2;
626 		}
627 		break;
628 	case PR_GET_SECUREBITS:
629 		error = current->securebits;
630 		break;
631 
632 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
633 
634 	case PR_GET_KEEPCAPS:
635 		if (issecure(SECURE_KEEP_CAPS))
636 			error = 1;
637 		break;
638 	case PR_SET_KEEPCAPS:
639 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
640 			error = -EINVAL;
641 		else if (issecure(SECURE_KEEP_CAPS_LOCKED))
642 			error = -EPERM;
643 		else if (arg2)
644 			current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
645 		else
646 			current->securebits &=
647 				~issecure_mask(SECURE_KEEP_CAPS);
648 		break;
649 
650 	default:
651 		/* No functionality available - continue with default */
652 		return 0;
653 	}
654 
655 	/* Functionality provided */
656 	*rc_p = error;
657 	return 1;
658 }
659 
660 void cap_task_reparent_to_init (struct task_struct *p)
661 {
662 	cap_set_init_eff(p->cap_effective);
663 	cap_clear(p->cap_inheritable);
664 	cap_set_full(p->cap_permitted);
665 	p->securebits = SECUREBITS_DEFAULT;
666 	return;
667 }
668 
669 int cap_syslog (int type)
670 {
671 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
672 		return -EPERM;
673 	return 0;
674 }
675 
676 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
677 {
678 	int cap_sys_admin = 0;
679 
680 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
681 		cap_sys_admin = 1;
682 	return __vm_enough_memory(mm, pages, cap_sys_admin);
683 }
684 
685