xref: /openbmc/linux/security/Kconfig.hardening (revision ee65728e)
1# SPDX-License-Identifier: GPL-2.0-only
2menu "Kernel hardening options"
3
4config GCC_PLUGIN_STRUCTLEAK
5	bool
6	help
7	  While the kernel is built with warnings enabled for any missed
8	  stack variable initializations, this warning is silenced for
9	  anything passed by reference to another function, under the
10	  occasionally misguided assumption that the function will do
11	  the initialization. As this regularly leads to exploitable
12	  flaws, this plugin is available to identify and zero-initialize
13	  such variables, depending on the chosen level of coverage.
14
15	  This plugin was originally ported from grsecurity/PaX. More
16	  information at:
17	   * https://grsecurity.net/
18	   * https://pax.grsecurity.net/
19
20menu "Memory initialization"
21
22config CC_HAS_AUTO_VAR_INIT_PATTERN
23	def_bool $(cc-option,-ftrivial-auto-var-init=pattern)
24
25config CC_HAS_AUTO_VAR_INIT_ZERO
26	# GCC ignores the -enable flag, so we can test for the feature with
27	# a single invocation using the flag, but drop it as appropriate in
28	# the Makefile, depending on the presence of Clang.
29	def_bool $(cc-option,-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang)
30
31choice
32	prompt "Initialize kernel stack variables at function entry"
33	default GCC_PLUGIN_STRUCTLEAK_BYREF_ALL if COMPILE_TEST && GCC_PLUGINS
34	default INIT_STACK_ALL_PATTERN if COMPILE_TEST && CC_HAS_AUTO_VAR_INIT_PATTERN
35	default INIT_STACK_ALL_ZERO if CC_HAS_AUTO_VAR_INIT_ZERO
36	default INIT_STACK_NONE
37	help
38	  This option enables initialization of stack variables at
39	  function entry time. This has the possibility to have the
40	  greatest coverage (since all functions can have their
41	  variables initialized), but the performance impact depends
42	  on the function calling complexity of a given workload's
43	  syscalls.
44
45	  This chooses the level of coverage over classes of potentially
46	  uninitialized variables. The selected class of variable will be
47	  initialized before use in a function.
48
49	config INIT_STACK_NONE
50		bool "no automatic stack variable initialization (weakest)"
51		help
52		  Disable automatic stack variable initialization.
53		  This leaves the kernel vulnerable to the standard
54		  classes of uninitialized stack variable exploits
55		  and information exposures.
56
57	config GCC_PLUGIN_STRUCTLEAK_USER
58		bool "zero-init structs marked for userspace (weak)"
59		# Plugin can be removed once the kernel only supports GCC 12+
60		depends on GCC_PLUGINS && !CC_HAS_AUTO_VAR_INIT_ZERO
61		select GCC_PLUGIN_STRUCTLEAK
62		help
63		  Zero-initialize any structures on the stack containing
64		  a __user attribute. This can prevent some classes of
65		  uninitialized stack variable exploits and information
66		  exposures, like CVE-2013-2141:
67		  https://git.kernel.org/linus/b9e146d8eb3b9eca
68
69	config GCC_PLUGIN_STRUCTLEAK_BYREF
70		bool "zero-init structs passed by reference (strong)"
71		# Plugin can be removed once the kernel only supports GCC 12+
72		depends on GCC_PLUGINS && !CC_HAS_AUTO_VAR_INIT_ZERO
73		depends on !(KASAN && KASAN_STACK)
74		select GCC_PLUGIN_STRUCTLEAK
75		help
76		  Zero-initialize any structures on the stack that may
77		  be passed by reference and had not already been
78		  explicitly initialized. This can prevent most classes
79		  of uninitialized stack variable exploits and information
80		  exposures, like CVE-2017-1000410:
81		  https://git.kernel.org/linus/06e7e776ca4d3654
82
83		  As a side-effect, this keeps a lot of variables on the
84		  stack that can otherwise be optimized out, so combining
85		  this with CONFIG_KASAN_STACK can lead to a stack overflow
86		  and is disallowed.
87
88	config GCC_PLUGIN_STRUCTLEAK_BYREF_ALL
89		bool "zero-init everything passed by reference (very strong)"
90		# Plugin can be removed once the kernel only supports GCC 12+
91		depends on GCC_PLUGINS && !CC_HAS_AUTO_VAR_INIT_ZERO
92		depends on !(KASAN && KASAN_STACK)
93		select GCC_PLUGIN_STRUCTLEAK
94		help
95		  Zero-initialize any stack variables that may be passed
96		  by reference and had not already been explicitly
97		  initialized. This is intended to eliminate all classes
98		  of uninitialized stack variable exploits and information
99		  exposures.
100
101		  As a side-effect, this keeps a lot of variables on the
102		  stack that can otherwise be optimized out, so combining
103		  this with CONFIG_KASAN_STACK can lead to a stack overflow
104		  and is disallowed.
105
106	config INIT_STACK_ALL_PATTERN
107		bool "pattern-init everything (strongest)"
108		depends on CC_HAS_AUTO_VAR_INIT_PATTERN
109		help
110		  Initializes everything on the stack (including padding)
111		  with a specific debug value. This is intended to eliminate
112		  all classes of uninitialized stack variable exploits and
113		  information exposures, even variables that were warned about
114		  having been left uninitialized.
115
116		  Pattern initialization is known to provoke many existing bugs
117		  related to uninitialized locals, e.g. pointers receive
118		  non-NULL values, buffer sizes and indices are very big. The
119		  pattern is situation-specific; Clang on 64-bit uses 0xAA
120		  repeating for all types and padding except float and double
121		  which use 0xFF repeating (-NaN). Clang on 32-bit uses 0xFF
122		  repeating for all types and padding.
123
124	config INIT_STACK_ALL_ZERO
125		bool "zero-init everything (strongest and safest)"
126		depends on CC_HAS_AUTO_VAR_INIT_ZERO
127		help
128		  Initializes everything on the stack (including padding)
129		  with a zero value. This is intended to eliminate all
130		  classes of uninitialized stack variable exploits and
131		  information exposures, even variables that were warned
132		  about having been left uninitialized.
133
134		  Zero initialization provides safe defaults for strings
135		  (immediately NUL-terminated), pointers (NULL), indices
136		  (index 0), and sizes (0 length), so it is therefore more
137		  suitable as a production security mitigation than pattern
138		  initialization.
139
140endchoice
141
142config GCC_PLUGIN_STRUCTLEAK_VERBOSE
143	bool "Report forcefully initialized variables"
144	depends on GCC_PLUGIN_STRUCTLEAK
145	depends on !COMPILE_TEST	# too noisy
146	help
147	  This option will cause a warning to be printed each time the
148	  structleak plugin finds a variable it thinks needs to be
149	  initialized. Since not all existing initializers are detected
150	  by the plugin, this can produce false positive warnings.
151
152config GCC_PLUGIN_STACKLEAK
153	bool "Poison kernel stack before returning from syscalls"
154	depends on GCC_PLUGINS
155	depends on HAVE_ARCH_STACKLEAK
156	help
157	  This option makes the kernel erase the kernel stack before
158	  returning from system calls. This has the effect of leaving
159	  the stack initialized to the poison value, which both reduces
160	  the lifetime of any sensitive stack contents and reduces
161	  potential for uninitialized stack variable exploits or information
162	  exposures (it does not cover functions reaching the same stack
163	  depth as prior functions during the same syscall). This blocks
164	  most uninitialized stack variable attacks, with the performance
165	  impact being driven by the depth of the stack usage, rather than
166	  the function calling complexity.
167
168	  The performance impact on a single CPU system kernel compilation
169	  sees a 1% slowdown, other systems and workloads may vary and you
170	  are advised to test this feature on your expected workload before
171	  deploying it.
172
173	  This plugin was ported from grsecurity/PaX. More information at:
174	   * https://grsecurity.net/
175	   * https://pax.grsecurity.net/
176
177config GCC_PLUGIN_STACKLEAK_VERBOSE
178	bool "Report stack depth analysis instrumentation" if EXPERT
179	depends on GCC_PLUGIN_STACKLEAK
180	depends on !COMPILE_TEST	# too noisy
181	help
182	  This option will cause a warning to be printed each time the
183	  stackleak plugin finds a function it thinks needs to be
184	  instrumented. This is useful for comparing coverage between
185	  builds.
186
187config STACKLEAK_TRACK_MIN_SIZE
188	int "Minimum stack frame size of functions tracked by STACKLEAK"
189	default 100
190	range 0 4096
191	depends on GCC_PLUGIN_STACKLEAK
192	help
193	  The STACKLEAK gcc plugin instruments the kernel code for tracking
194	  the lowest border of the kernel stack (and for some other purposes).
195	  It inserts the stackleak_track_stack() call for the functions with
196	  a stack frame size greater than or equal to this parameter.
197	  If unsure, leave the default value 100.
198
199config STACKLEAK_METRICS
200	bool "Show STACKLEAK metrics in the /proc file system"
201	depends on GCC_PLUGIN_STACKLEAK
202	depends on PROC_FS
203	help
204	  If this is set, STACKLEAK metrics for every task are available in
205	  the /proc file system. In particular, /proc/<pid>/stack_depth
206	  shows the maximum kernel stack consumption for the current and
207	  previous syscalls. Although this information is not precise, it
208	  can be useful for estimating the STACKLEAK performance impact for
209	  your workloads.
210
211config STACKLEAK_RUNTIME_DISABLE
212	bool "Allow runtime disabling of kernel stack erasing"
213	depends on GCC_PLUGIN_STACKLEAK
214	help
215	  This option provides 'stack_erasing' sysctl, which can be used in
216	  runtime to control kernel stack erasing for kernels built with
217	  CONFIG_GCC_PLUGIN_STACKLEAK.
218
219config INIT_ON_ALLOC_DEFAULT_ON
220	bool "Enable heap memory zeroing on allocation by default"
221	help
222	  This has the effect of setting "init_on_alloc=1" on the kernel
223	  command line. This can be disabled with "init_on_alloc=0".
224	  When "init_on_alloc" is enabled, all page allocator and slab
225	  allocator memory will be zeroed when allocated, eliminating
226	  many kinds of "uninitialized heap memory" flaws, especially
227	  heap content exposures. The performance impact varies by
228	  workload, but most cases see <1% impact. Some synthetic
229	  workloads have measured as high as 7%.
230
231config INIT_ON_FREE_DEFAULT_ON
232	bool "Enable heap memory zeroing on free by default"
233	help
234	  This has the effect of setting "init_on_free=1" on the kernel
235	  command line. This can be disabled with "init_on_free=0".
236	  Similar to "init_on_alloc", when "init_on_free" is enabled,
237	  all page allocator and slab allocator memory will be zeroed
238	  when freed, eliminating many kinds of "uninitialized heap memory"
239	  flaws, especially heap content exposures. The primary difference
240	  with "init_on_free" is that data lifetime in memory is reduced,
241	  as anything freed is wiped immediately, making live forensics or
242	  cold boot memory attacks unable to recover freed memory contents.
243	  The performance impact varies by workload, but is more expensive
244	  than "init_on_alloc" due to the negative cache effects of
245	  touching "cold" memory areas. Most cases see 3-5% impact. Some
246	  synthetic workloads have measured as high as 8%.
247
248config CC_HAS_ZERO_CALL_USED_REGS
249	def_bool $(cc-option,-fzero-call-used-regs=used-gpr)
250
251config ZERO_CALL_USED_REGS
252	bool "Enable register zeroing on function exit"
253	depends on CC_HAS_ZERO_CALL_USED_REGS
254	help
255	  At the end of functions, always zero any caller-used register
256	  contents. This helps ensure that temporary values are not
257	  leaked beyond the function boundary. This means that register
258	  contents are less likely to be available for side channels
259	  and information exposures. Additionally, this helps reduce the
260	  number of useful ROP gadgets by about 20% (and removes compiler
261	  generated "write-what-where" gadgets) in the resulting kernel
262	  image. This has a less than 1% performance impact on most
263	  workloads. Image size growth depends on architecture, and should
264	  be evaluated for suitability. For example, x86_64 grows by less
265	  than 1%, and arm64 grows by about 5%.
266
267endmenu
268
269config CC_HAS_RANDSTRUCT
270	def_bool $(cc-option,-frandomize-layout-seed-file=/dev/null)
271
272choice
273	prompt "Randomize layout of sensitive kernel structures"
274	default RANDSTRUCT_FULL if COMPILE_TEST && (GCC_PLUGINS || CC_HAS_RANDSTRUCT)
275	default RANDSTRUCT_NONE
276	help
277	  If you enable this, the layouts of structures that are entirely
278	  function pointers (and have not been manually annotated with
279	  __no_randomize_layout), or structures that have been explicitly
280	  marked with __randomize_layout, will be randomized at compile-time.
281	  This can introduce the requirement of an additional information
282	  exposure vulnerability for exploits targeting these structure
283	  types.
284
285	  Enabling this feature will introduce some performance impact,
286	  slightly increase memory usage, and prevent the use of forensic
287	  tools like Volatility against the system (unless the kernel
288	  source tree isn't cleaned after kernel installation).
289
290	  The seed used for compilation is in scripts/basic/randomize.seed.
291	  It remains after a "make clean" to allow for external modules to
292	  be compiled with the existing seed and will be removed by a
293	  "make mrproper" or "make distclean". This file should not be made
294	  public, or the structure layout can be determined.
295
296	config RANDSTRUCT_NONE
297		bool "Disable structure layout randomization"
298		help
299		  Build normally: no structure layout randomization.
300
301	config RANDSTRUCT_FULL
302		bool "Fully randomize structure layout"
303		depends on CC_HAS_RANDSTRUCT || GCC_PLUGINS
304		select MODVERSIONS if MODULES
305		help
306		  Fully randomize the member layout of sensitive
307		  structures as much as possible, which may have both a
308		  memory size and performance impact.
309
310		  One difference between the Clang and GCC plugin
311		  implementations is the handling of bitfields. The GCC
312		  plugin treats them as fully separate variables,
313		  introducing sometimes significant padding. Clang tries
314		  to keep adjacent bitfields together, but with their bit
315		  ordering randomized.
316
317	config RANDSTRUCT_PERFORMANCE
318		bool "Limit randomization of structure layout to cache-lines"
319		depends on GCC_PLUGINS
320		select MODVERSIONS if MODULES
321		help
322		  Randomization of sensitive kernel structures will make a
323		  best effort at restricting randomization to cacheline-sized
324		  groups of members. It will further not randomize bitfields
325		  in structures. This reduces the performance hit of RANDSTRUCT
326		  at the cost of weakened randomization.
327endchoice
328
329config RANDSTRUCT
330	def_bool !RANDSTRUCT_NONE
331
332config GCC_PLUGIN_RANDSTRUCT
333	def_bool GCC_PLUGINS && RANDSTRUCT
334	help
335	  Use GCC plugin to randomize structure layout.
336
337	  This plugin was ported from grsecurity/PaX. More
338	  information at:
339	   * https://grsecurity.net/
340	   * https://pax.grsecurity.net/
341
342endmenu
343