xref: /openbmc/linux/samples/vfio-mdev/mtty.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediated virtual PCI serial host device driver
4  *
5  * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
6  *     Author: Neo Jia <cjia@nvidia.com>
7  *             Kirti Wankhede <kwankhede@nvidia.com>
8  *
9  * Sample driver that creates mdev device that simulates serial port over PCI
10  * card.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/device.h>
16 #include <linux/kernel.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/cdev.h>
21 #include <linux/sched.h>
22 #include <linux/wait.h>
23 #include <linux/uuid.h>
24 #include <linux/vfio.h>
25 #include <linux/iommu.h>
26 #include <linux/sysfs.h>
27 #include <linux/ctype.h>
28 #include <linux/file.h>
29 #include <linux/mdev.h>
30 #include <linux/pci.h>
31 #include <linux/serial.h>
32 #include <uapi/linux/serial_reg.h>
33 #include <linux/eventfd.h>
34 /*
35  * #defines
36  */
37 
38 #define VERSION_STRING  "0.1"
39 #define DRIVER_AUTHOR   "NVIDIA Corporation"
40 
41 #define MTTY_CLASS_NAME "mtty"
42 
43 #define MTTY_NAME       "mtty"
44 
45 #define MTTY_STRING_LEN		16
46 
47 #define MTTY_CONFIG_SPACE_SIZE  0xff
48 #define MTTY_IO_BAR_SIZE        0x8
49 #define MTTY_MMIO_BAR_SIZE      0x100000
50 
51 #define STORE_LE16(addr, val)   (*(u16 *)addr = val)
52 #define STORE_LE32(addr, val)   (*(u32 *)addr = val)
53 
54 #define MAX_FIFO_SIZE   16
55 
56 #define CIRCULAR_BUF_INC_IDX(idx)    (idx = (idx + 1) & (MAX_FIFO_SIZE - 1))
57 
58 #define MTTY_VFIO_PCI_OFFSET_SHIFT   40
59 
60 #define MTTY_VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> MTTY_VFIO_PCI_OFFSET_SHIFT)
61 #define MTTY_VFIO_PCI_INDEX_TO_OFFSET(index) \
62 				((u64)(index) << MTTY_VFIO_PCI_OFFSET_SHIFT)
63 #define MTTY_VFIO_PCI_OFFSET_MASK    \
64 				(((u64)(1) << MTTY_VFIO_PCI_OFFSET_SHIFT) - 1)
65 #define MAX_MTTYS	24
66 
67 /*
68  * Global Structures
69  */
70 
71 static struct mtty_dev {
72 	dev_t		vd_devt;
73 	struct class	*vd_class;
74 	struct cdev	vd_cdev;
75 	struct idr	vd_idr;
76 	struct device	dev;
77 } mtty_dev;
78 
79 struct mdev_region_info {
80 	u64 start;
81 	u64 phys_start;
82 	u32 size;
83 	u64 vfio_offset;
84 };
85 
86 #if defined(DEBUG_REGS)
87 static const char *wr_reg[] = {
88 	"TX",
89 	"IER",
90 	"FCR",
91 	"LCR",
92 	"MCR",
93 	"LSR",
94 	"MSR",
95 	"SCR"
96 };
97 
98 static const char *rd_reg[] = {
99 	"RX",
100 	"IER",
101 	"IIR",
102 	"LCR",
103 	"MCR",
104 	"LSR",
105 	"MSR",
106 	"SCR"
107 };
108 #endif
109 
110 /* loop back buffer */
111 struct rxtx {
112 	u8 fifo[MAX_FIFO_SIZE];
113 	u8 head, tail;
114 	u8 count;
115 };
116 
117 struct serial_port {
118 	u8 uart_reg[8];         /* 8 registers */
119 	struct rxtx rxtx;       /* loop back buffer */
120 	bool dlab;
121 	bool overrun;
122 	u16 divisor;
123 	u8 fcr;                 /* FIFO control register */
124 	u8 max_fifo_size;
125 	u8 intr_trigger_level;  /* interrupt trigger level */
126 };
127 
128 /* State of each mdev device */
129 struct mdev_state {
130 	int irq_fd;
131 	struct eventfd_ctx *intx_evtfd;
132 	struct eventfd_ctx *msi_evtfd;
133 	int irq_index;
134 	u8 *vconfig;
135 	struct mutex ops_lock;
136 	struct mdev_device *mdev;
137 	struct mdev_region_info region_info[VFIO_PCI_NUM_REGIONS];
138 	u32 bar_mask[VFIO_PCI_NUM_REGIONS];
139 	struct list_head next;
140 	struct serial_port s[2];
141 	struct mutex rxtx_lock;
142 	struct vfio_device_info dev_info;
143 	int nr_ports;
144 };
145 
146 static struct mutex mdev_list_lock;
147 static struct list_head mdev_devices_list;
148 
149 static const struct file_operations vd_fops = {
150 	.owner          = THIS_MODULE,
151 };
152 
153 /* function prototypes */
154 
155 static int mtty_trigger_interrupt(const guid_t *uuid);
156 
157 /* Helper functions */
158 static struct mdev_state *find_mdev_state_by_uuid(const guid_t *uuid)
159 {
160 	struct mdev_state *mds;
161 
162 	list_for_each_entry(mds, &mdev_devices_list, next) {
163 		if (guid_equal(mdev_uuid(mds->mdev), uuid))
164 			return mds;
165 	}
166 
167 	return NULL;
168 }
169 
170 static void dump_buffer(u8 *buf, uint32_t count)
171 {
172 #if defined(DEBUG)
173 	int i;
174 
175 	pr_info("Buffer:\n");
176 	for (i = 0; i < count; i++) {
177 		pr_info("%2x ", *(buf + i));
178 		if ((i + 1) % 16 == 0)
179 			pr_info("\n");
180 	}
181 #endif
182 }
183 
184 static void mtty_create_config_space(struct mdev_state *mdev_state)
185 {
186 	/* PCI dev ID */
187 	STORE_LE32((u32 *) &mdev_state->vconfig[0x0], 0x32534348);
188 
189 	/* Control: I/O+, Mem-, BusMaster- */
190 	STORE_LE16((u16 *) &mdev_state->vconfig[0x4], 0x0001);
191 
192 	/* Status: capabilities list absent */
193 	STORE_LE16((u16 *) &mdev_state->vconfig[0x6], 0x0200);
194 
195 	/* Rev ID */
196 	mdev_state->vconfig[0x8] =  0x10;
197 
198 	/* programming interface class : 16550-compatible serial controller */
199 	mdev_state->vconfig[0x9] =  0x02;
200 
201 	/* Sub class : 00 */
202 	mdev_state->vconfig[0xa] =  0x00;
203 
204 	/* Base class : Simple Communication controllers */
205 	mdev_state->vconfig[0xb] =  0x07;
206 
207 	/* base address registers */
208 	/* BAR0: IO space */
209 	STORE_LE32((u32 *) &mdev_state->vconfig[0x10], 0x000001);
210 	mdev_state->bar_mask[0] = ~(MTTY_IO_BAR_SIZE) + 1;
211 
212 	if (mdev_state->nr_ports == 2) {
213 		/* BAR1: IO space */
214 		STORE_LE32((u32 *) &mdev_state->vconfig[0x14], 0x000001);
215 		mdev_state->bar_mask[1] = ~(MTTY_IO_BAR_SIZE) + 1;
216 	}
217 
218 	/* Subsystem ID */
219 	STORE_LE32((u32 *) &mdev_state->vconfig[0x2c], 0x32534348);
220 
221 	mdev_state->vconfig[0x34] =  0x00;   /* Cap Ptr */
222 	mdev_state->vconfig[0x3d] =  0x01;   /* interrupt pin (INTA#) */
223 
224 	/* Vendor specific data */
225 	mdev_state->vconfig[0x40] =  0x23;
226 	mdev_state->vconfig[0x43] =  0x80;
227 	mdev_state->vconfig[0x44] =  0x23;
228 	mdev_state->vconfig[0x48] =  0x23;
229 	mdev_state->vconfig[0x4c] =  0x23;
230 
231 	mdev_state->vconfig[0x60] =  0x50;
232 	mdev_state->vconfig[0x61] =  0x43;
233 	mdev_state->vconfig[0x62] =  0x49;
234 	mdev_state->vconfig[0x63] =  0x20;
235 	mdev_state->vconfig[0x64] =  0x53;
236 	mdev_state->vconfig[0x65] =  0x65;
237 	mdev_state->vconfig[0x66] =  0x72;
238 	mdev_state->vconfig[0x67] =  0x69;
239 	mdev_state->vconfig[0x68] =  0x61;
240 	mdev_state->vconfig[0x69] =  0x6c;
241 	mdev_state->vconfig[0x6a] =  0x2f;
242 	mdev_state->vconfig[0x6b] =  0x55;
243 	mdev_state->vconfig[0x6c] =  0x41;
244 	mdev_state->vconfig[0x6d] =  0x52;
245 	mdev_state->vconfig[0x6e] =  0x54;
246 }
247 
248 static void handle_pci_cfg_write(struct mdev_state *mdev_state, u16 offset,
249 				 u8 *buf, u32 count)
250 {
251 	u32 cfg_addr, bar_mask, bar_index = 0;
252 
253 	switch (offset) {
254 	case 0x04: /* device control */
255 	case 0x06: /* device status */
256 		/* do nothing */
257 		break;
258 	case 0x3c:  /* interrupt line */
259 		mdev_state->vconfig[0x3c] = buf[0];
260 		break;
261 	case 0x3d:
262 		/*
263 		 * Interrupt Pin is hardwired to INTA.
264 		 * This field is write protected by hardware
265 		 */
266 		break;
267 	case 0x10:  /* BAR0 */
268 	case 0x14:  /* BAR1 */
269 		if (offset == 0x10)
270 			bar_index = 0;
271 		else if (offset == 0x14)
272 			bar_index = 1;
273 
274 		if ((mdev_state->nr_ports == 1) && (bar_index == 1)) {
275 			STORE_LE32(&mdev_state->vconfig[offset], 0);
276 			break;
277 		}
278 
279 		cfg_addr = *(u32 *)buf;
280 		pr_info("BAR%d addr 0x%x\n", bar_index, cfg_addr);
281 
282 		if (cfg_addr == 0xffffffff) {
283 			bar_mask = mdev_state->bar_mask[bar_index];
284 			cfg_addr = (cfg_addr & bar_mask);
285 		}
286 
287 		cfg_addr |= (mdev_state->vconfig[offset] & 0x3ul);
288 		STORE_LE32(&mdev_state->vconfig[offset], cfg_addr);
289 		break;
290 	case 0x18:  /* BAR2 */
291 	case 0x1c:  /* BAR3 */
292 	case 0x20:  /* BAR4 */
293 		STORE_LE32(&mdev_state->vconfig[offset], 0);
294 		break;
295 	default:
296 		pr_info("PCI config write @0x%x of %d bytes not handled\n",
297 			offset, count);
298 		break;
299 	}
300 }
301 
302 static void handle_bar_write(unsigned int index, struct mdev_state *mdev_state,
303 				u16 offset, u8 *buf, u32 count)
304 {
305 	u8 data = *buf;
306 
307 	/* Handle data written by guest */
308 	switch (offset) {
309 	case UART_TX:
310 		/* if DLAB set, data is LSB of divisor */
311 		if (mdev_state->s[index].dlab) {
312 			mdev_state->s[index].divisor |= data;
313 			break;
314 		}
315 
316 		mutex_lock(&mdev_state->rxtx_lock);
317 
318 		/* save in TX buffer */
319 		if (mdev_state->s[index].rxtx.count <
320 				mdev_state->s[index].max_fifo_size) {
321 			mdev_state->s[index].rxtx.fifo[
322 					mdev_state->s[index].rxtx.head] = data;
323 			mdev_state->s[index].rxtx.count++;
324 			CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.head);
325 			mdev_state->s[index].overrun = false;
326 
327 			/*
328 			 * Trigger interrupt if receive data interrupt is
329 			 * enabled and fifo reached trigger level
330 			 */
331 			if ((mdev_state->s[index].uart_reg[UART_IER] &
332 						UART_IER_RDI) &&
333 			   (mdev_state->s[index].rxtx.count ==
334 				    mdev_state->s[index].intr_trigger_level)) {
335 				/* trigger interrupt */
336 #if defined(DEBUG_INTR)
337 				pr_err("Serial port %d: Fifo level trigger\n",
338 					index);
339 #endif
340 				mtty_trigger_interrupt(
341 						mdev_uuid(mdev_state->mdev));
342 			}
343 		} else {
344 #if defined(DEBUG_INTR)
345 			pr_err("Serial port %d: Buffer Overflow\n", index);
346 #endif
347 			mdev_state->s[index].overrun = true;
348 
349 			/*
350 			 * Trigger interrupt if receiver line status interrupt
351 			 * is enabled
352 			 */
353 			if (mdev_state->s[index].uart_reg[UART_IER] &
354 								UART_IER_RLSI)
355 				mtty_trigger_interrupt(
356 						mdev_uuid(mdev_state->mdev));
357 		}
358 		mutex_unlock(&mdev_state->rxtx_lock);
359 		break;
360 
361 	case UART_IER:
362 		/* if DLAB set, data is MSB of divisor */
363 		if (mdev_state->s[index].dlab)
364 			mdev_state->s[index].divisor |= (u16)data << 8;
365 		else {
366 			mdev_state->s[index].uart_reg[offset] = data;
367 			mutex_lock(&mdev_state->rxtx_lock);
368 			if ((data & UART_IER_THRI) &&
369 			    (mdev_state->s[index].rxtx.head ==
370 					mdev_state->s[index].rxtx.tail)) {
371 #if defined(DEBUG_INTR)
372 				pr_err("Serial port %d: IER_THRI write\n",
373 					index);
374 #endif
375 				mtty_trigger_interrupt(
376 						mdev_uuid(mdev_state->mdev));
377 			}
378 
379 			mutex_unlock(&mdev_state->rxtx_lock);
380 		}
381 
382 		break;
383 
384 	case UART_FCR:
385 		mdev_state->s[index].fcr = data;
386 
387 		mutex_lock(&mdev_state->rxtx_lock);
388 		if (data & (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)) {
389 			/* clear loop back FIFO */
390 			mdev_state->s[index].rxtx.count = 0;
391 			mdev_state->s[index].rxtx.head = 0;
392 			mdev_state->s[index].rxtx.tail = 0;
393 		}
394 		mutex_unlock(&mdev_state->rxtx_lock);
395 
396 		switch (data & UART_FCR_TRIGGER_MASK) {
397 		case UART_FCR_TRIGGER_1:
398 			mdev_state->s[index].intr_trigger_level = 1;
399 			break;
400 
401 		case UART_FCR_TRIGGER_4:
402 			mdev_state->s[index].intr_trigger_level = 4;
403 			break;
404 
405 		case UART_FCR_TRIGGER_8:
406 			mdev_state->s[index].intr_trigger_level = 8;
407 			break;
408 
409 		case UART_FCR_TRIGGER_14:
410 			mdev_state->s[index].intr_trigger_level = 14;
411 			break;
412 		}
413 
414 		/*
415 		 * Set trigger level to 1 otherwise or  implement timer with
416 		 * timeout of 4 characters and on expiring that timer set
417 		 * Recevice data timeout in IIR register
418 		 */
419 		mdev_state->s[index].intr_trigger_level = 1;
420 		if (data & UART_FCR_ENABLE_FIFO)
421 			mdev_state->s[index].max_fifo_size = MAX_FIFO_SIZE;
422 		else {
423 			mdev_state->s[index].max_fifo_size = 1;
424 			mdev_state->s[index].intr_trigger_level = 1;
425 		}
426 
427 		break;
428 
429 	case UART_LCR:
430 		if (data & UART_LCR_DLAB) {
431 			mdev_state->s[index].dlab = true;
432 			mdev_state->s[index].divisor = 0;
433 		} else
434 			mdev_state->s[index].dlab = false;
435 
436 		mdev_state->s[index].uart_reg[offset] = data;
437 		break;
438 
439 	case UART_MCR:
440 		mdev_state->s[index].uart_reg[offset] = data;
441 
442 		if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
443 				(data & UART_MCR_OUT2)) {
444 #if defined(DEBUG_INTR)
445 			pr_err("Serial port %d: MCR_OUT2 write\n", index);
446 #endif
447 			mtty_trigger_interrupt(mdev_uuid(mdev_state->mdev));
448 		}
449 
450 		if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
451 				(data & (UART_MCR_RTS | UART_MCR_DTR))) {
452 #if defined(DEBUG_INTR)
453 			pr_err("Serial port %d: MCR RTS/DTR write\n", index);
454 #endif
455 			mtty_trigger_interrupt(mdev_uuid(mdev_state->mdev));
456 		}
457 		break;
458 
459 	case UART_LSR:
460 	case UART_MSR:
461 		/* do nothing */
462 		break;
463 
464 	case UART_SCR:
465 		mdev_state->s[index].uart_reg[offset] = data;
466 		break;
467 
468 	default:
469 		break;
470 	}
471 }
472 
473 static void handle_bar_read(unsigned int index, struct mdev_state *mdev_state,
474 			    u16 offset, u8 *buf, u32 count)
475 {
476 	/* Handle read requests by guest */
477 	switch (offset) {
478 	case UART_RX:
479 		/* if DLAB set, data is LSB of divisor */
480 		if (mdev_state->s[index].dlab) {
481 			*buf  = (u8)mdev_state->s[index].divisor;
482 			break;
483 		}
484 
485 		mutex_lock(&mdev_state->rxtx_lock);
486 		/* return data in tx buffer */
487 		if (mdev_state->s[index].rxtx.head !=
488 				 mdev_state->s[index].rxtx.tail) {
489 			*buf = mdev_state->s[index].rxtx.fifo[
490 						mdev_state->s[index].rxtx.tail];
491 			mdev_state->s[index].rxtx.count--;
492 			CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.tail);
493 		}
494 
495 		if (mdev_state->s[index].rxtx.head ==
496 				mdev_state->s[index].rxtx.tail) {
497 		/*
498 		 *  Trigger interrupt if tx buffer empty interrupt is
499 		 *  enabled and fifo is empty
500 		 */
501 #if defined(DEBUG_INTR)
502 			pr_err("Serial port %d: Buffer Empty\n", index);
503 #endif
504 			if (mdev_state->s[index].uart_reg[UART_IER] &
505 							 UART_IER_THRI)
506 				mtty_trigger_interrupt(
507 					mdev_uuid(mdev_state->mdev));
508 		}
509 		mutex_unlock(&mdev_state->rxtx_lock);
510 
511 		break;
512 
513 	case UART_IER:
514 		if (mdev_state->s[index].dlab) {
515 			*buf = (u8)(mdev_state->s[index].divisor >> 8);
516 			break;
517 		}
518 		*buf = mdev_state->s[index].uart_reg[offset] & 0x0f;
519 		break;
520 
521 	case UART_IIR:
522 	{
523 		u8 ier = mdev_state->s[index].uart_reg[UART_IER];
524 		*buf = 0;
525 
526 		mutex_lock(&mdev_state->rxtx_lock);
527 		/* Interrupt priority 1: Parity, overrun, framing or break */
528 		if ((ier & UART_IER_RLSI) && mdev_state->s[index].overrun)
529 			*buf |= UART_IIR_RLSI;
530 
531 		/* Interrupt priority 2: Fifo trigger level reached */
532 		if ((ier & UART_IER_RDI) &&
533 		    (mdev_state->s[index].rxtx.count >=
534 		      mdev_state->s[index].intr_trigger_level))
535 			*buf |= UART_IIR_RDI;
536 
537 		/* Interrupt priotiry 3: transmitter holding register empty */
538 		if ((ier & UART_IER_THRI) &&
539 		    (mdev_state->s[index].rxtx.head ==
540 				mdev_state->s[index].rxtx.tail))
541 			*buf |= UART_IIR_THRI;
542 
543 		/* Interrupt priotiry 4: Modem status: CTS, DSR, RI or DCD  */
544 		if ((ier & UART_IER_MSI) &&
545 		    (mdev_state->s[index].uart_reg[UART_MCR] &
546 				 (UART_MCR_RTS | UART_MCR_DTR)))
547 			*buf |= UART_IIR_MSI;
548 
549 		/* bit0: 0=> interrupt pending, 1=> no interrupt is pending */
550 		if (*buf == 0)
551 			*buf = UART_IIR_NO_INT;
552 
553 		/* set bit 6 & 7 to be 16550 compatible */
554 		*buf |= 0xC0;
555 		mutex_unlock(&mdev_state->rxtx_lock);
556 	}
557 	break;
558 
559 	case UART_LCR:
560 	case UART_MCR:
561 		*buf = mdev_state->s[index].uart_reg[offset];
562 		break;
563 
564 	case UART_LSR:
565 	{
566 		u8 lsr = 0;
567 
568 		mutex_lock(&mdev_state->rxtx_lock);
569 		/* atleast one char in FIFO */
570 		if (mdev_state->s[index].rxtx.head !=
571 				 mdev_state->s[index].rxtx.tail)
572 			lsr |= UART_LSR_DR;
573 
574 		/* if FIFO overrun */
575 		if (mdev_state->s[index].overrun)
576 			lsr |= UART_LSR_OE;
577 
578 		/* transmit FIFO empty and tramsitter empty */
579 		if (mdev_state->s[index].rxtx.head ==
580 				 mdev_state->s[index].rxtx.tail)
581 			lsr |= UART_LSR_TEMT | UART_LSR_THRE;
582 
583 		mutex_unlock(&mdev_state->rxtx_lock);
584 		*buf = lsr;
585 		break;
586 	}
587 	case UART_MSR:
588 		*buf = UART_MSR_DSR | UART_MSR_DDSR | UART_MSR_DCD;
589 
590 		mutex_lock(&mdev_state->rxtx_lock);
591 		/* if AFE is 1 and FIFO have space, set CTS bit */
592 		if (mdev_state->s[index].uart_reg[UART_MCR] &
593 						 UART_MCR_AFE) {
594 			if (mdev_state->s[index].rxtx.count <
595 					mdev_state->s[index].max_fifo_size)
596 				*buf |= UART_MSR_CTS | UART_MSR_DCTS;
597 		} else
598 			*buf |= UART_MSR_CTS | UART_MSR_DCTS;
599 		mutex_unlock(&mdev_state->rxtx_lock);
600 
601 		break;
602 
603 	case UART_SCR:
604 		*buf = mdev_state->s[index].uart_reg[offset];
605 		break;
606 
607 	default:
608 		break;
609 	}
610 }
611 
612 static void mdev_read_base(struct mdev_state *mdev_state)
613 {
614 	int index, pos;
615 	u32 start_lo, start_hi;
616 	u32 mem_type;
617 
618 	pos = PCI_BASE_ADDRESS_0;
619 
620 	for (index = 0; index <= VFIO_PCI_BAR5_REGION_INDEX; index++) {
621 
622 		if (!mdev_state->region_info[index].size)
623 			continue;
624 
625 		start_lo = (*(u32 *)(mdev_state->vconfig + pos)) &
626 			PCI_BASE_ADDRESS_MEM_MASK;
627 		mem_type = (*(u32 *)(mdev_state->vconfig + pos)) &
628 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
629 
630 		switch (mem_type) {
631 		case PCI_BASE_ADDRESS_MEM_TYPE_64:
632 			start_hi = (*(u32 *)(mdev_state->vconfig + pos + 4));
633 			pos += 4;
634 			break;
635 		case PCI_BASE_ADDRESS_MEM_TYPE_32:
636 		case PCI_BASE_ADDRESS_MEM_TYPE_1M:
637 			/* 1M mem BAR treated as 32-bit BAR */
638 		default:
639 			/* mem unknown type treated as 32-bit BAR */
640 			start_hi = 0;
641 			break;
642 		}
643 		pos += 4;
644 		mdev_state->region_info[index].start = ((u64)start_hi << 32) |
645 							start_lo;
646 	}
647 }
648 
649 static ssize_t mdev_access(struct mdev_device *mdev, u8 *buf, size_t count,
650 			   loff_t pos, bool is_write)
651 {
652 	struct mdev_state *mdev_state;
653 	unsigned int index;
654 	loff_t offset;
655 	int ret = 0;
656 
657 	if (!mdev || !buf)
658 		return -EINVAL;
659 
660 	mdev_state = mdev_get_drvdata(mdev);
661 	if (!mdev_state) {
662 		pr_err("%s mdev_state not found\n", __func__);
663 		return -EINVAL;
664 	}
665 
666 	mutex_lock(&mdev_state->ops_lock);
667 
668 	index = MTTY_VFIO_PCI_OFFSET_TO_INDEX(pos);
669 	offset = pos & MTTY_VFIO_PCI_OFFSET_MASK;
670 	switch (index) {
671 	case VFIO_PCI_CONFIG_REGION_INDEX:
672 
673 #if defined(DEBUG)
674 		pr_info("%s: PCI config space %s at offset 0x%llx\n",
675 			 __func__, is_write ? "write" : "read", offset);
676 #endif
677 		if (is_write) {
678 			dump_buffer(buf, count);
679 			handle_pci_cfg_write(mdev_state, offset, buf, count);
680 		} else {
681 			memcpy(buf, (mdev_state->vconfig + offset), count);
682 			dump_buffer(buf, count);
683 		}
684 
685 		break;
686 
687 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
688 		if (!mdev_state->region_info[index].start)
689 			mdev_read_base(mdev_state);
690 
691 		if (is_write) {
692 			dump_buffer(buf, count);
693 
694 #if defined(DEBUG_REGS)
695 			pr_info("%s: BAR%d  WR @0x%llx %s val:0x%02x dlab:%d\n",
696 				__func__, index, offset, wr_reg[offset],
697 				*buf, mdev_state->s[index].dlab);
698 #endif
699 			handle_bar_write(index, mdev_state, offset, buf, count);
700 		} else {
701 			handle_bar_read(index, mdev_state, offset, buf, count);
702 			dump_buffer(buf, count);
703 
704 #if defined(DEBUG_REGS)
705 			pr_info("%s: BAR%d  RD @0x%llx %s val:0x%02x dlab:%d\n",
706 				__func__, index, offset, rd_reg[offset],
707 				*buf, mdev_state->s[index].dlab);
708 #endif
709 		}
710 		break;
711 
712 	default:
713 		ret = -1;
714 		goto accessfailed;
715 	}
716 
717 	ret = count;
718 
719 
720 accessfailed:
721 	mutex_unlock(&mdev_state->ops_lock);
722 
723 	return ret;
724 }
725 
726 static int mtty_create(struct kobject *kobj, struct mdev_device *mdev)
727 {
728 	struct mdev_state *mdev_state;
729 	char name[MTTY_STRING_LEN];
730 	int nr_ports = 0, i;
731 
732 	if (!mdev)
733 		return -EINVAL;
734 
735 	for (i = 0; i < 2; i++) {
736 		snprintf(name, MTTY_STRING_LEN, "%s-%d",
737 			dev_driver_string(mdev_parent_dev(mdev)), i + 1);
738 		if (!strcmp(kobj->name, name)) {
739 			nr_ports = i + 1;
740 			break;
741 		}
742 	}
743 
744 	if (!nr_ports)
745 		return -EINVAL;
746 
747 	mdev_state = kzalloc(sizeof(struct mdev_state), GFP_KERNEL);
748 	if (mdev_state == NULL)
749 		return -ENOMEM;
750 
751 	mdev_state->nr_ports = nr_ports;
752 	mdev_state->irq_index = -1;
753 	mdev_state->s[0].max_fifo_size = MAX_FIFO_SIZE;
754 	mdev_state->s[1].max_fifo_size = MAX_FIFO_SIZE;
755 	mutex_init(&mdev_state->rxtx_lock);
756 	mdev_state->vconfig = kzalloc(MTTY_CONFIG_SPACE_SIZE, GFP_KERNEL);
757 
758 	if (mdev_state->vconfig == NULL) {
759 		kfree(mdev_state);
760 		return -ENOMEM;
761 	}
762 
763 	mutex_init(&mdev_state->ops_lock);
764 	mdev_state->mdev = mdev;
765 	mdev_set_drvdata(mdev, mdev_state);
766 
767 	mtty_create_config_space(mdev_state);
768 
769 	mutex_lock(&mdev_list_lock);
770 	list_add(&mdev_state->next, &mdev_devices_list);
771 	mutex_unlock(&mdev_list_lock);
772 
773 	return 0;
774 }
775 
776 static int mtty_remove(struct mdev_device *mdev)
777 {
778 	struct mdev_state *mds, *tmp_mds;
779 	struct mdev_state *mdev_state = mdev_get_drvdata(mdev);
780 	int ret = -EINVAL;
781 
782 	mutex_lock(&mdev_list_lock);
783 	list_for_each_entry_safe(mds, tmp_mds, &mdev_devices_list, next) {
784 		if (mdev_state == mds) {
785 			list_del(&mdev_state->next);
786 			mdev_set_drvdata(mdev, NULL);
787 			kfree(mdev_state->vconfig);
788 			kfree(mdev_state);
789 			ret = 0;
790 			break;
791 		}
792 	}
793 	mutex_unlock(&mdev_list_lock);
794 
795 	return ret;
796 }
797 
798 static int mtty_reset(struct mdev_device *mdev)
799 {
800 	struct mdev_state *mdev_state;
801 
802 	if (!mdev)
803 		return -EINVAL;
804 
805 	mdev_state = mdev_get_drvdata(mdev);
806 	if (!mdev_state)
807 		return -EINVAL;
808 
809 	pr_info("%s: called\n", __func__);
810 
811 	return 0;
812 }
813 
814 static ssize_t mtty_read(struct mdev_device *mdev, char __user *buf,
815 			 size_t count, loff_t *ppos)
816 {
817 	unsigned int done = 0;
818 	int ret;
819 
820 	while (count) {
821 		size_t filled;
822 
823 		if (count >= 4 && !(*ppos % 4)) {
824 			u32 val;
825 
826 			ret =  mdev_access(mdev, (u8 *)&val, sizeof(val),
827 					   *ppos, false);
828 			if (ret <= 0)
829 				goto read_err;
830 
831 			if (copy_to_user(buf, &val, sizeof(val)))
832 				goto read_err;
833 
834 			filled = 4;
835 		} else if (count >= 2 && !(*ppos % 2)) {
836 			u16 val;
837 
838 			ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
839 					  *ppos, false);
840 			if (ret <= 0)
841 				goto read_err;
842 
843 			if (copy_to_user(buf, &val, sizeof(val)))
844 				goto read_err;
845 
846 			filled = 2;
847 		} else {
848 			u8 val;
849 
850 			ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
851 					  *ppos, false);
852 			if (ret <= 0)
853 				goto read_err;
854 
855 			if (copy_to_user(buf, &val, sizeof(val)))
856 				goto read_err;
857 
858 			filled = 1;
859 		}
860 
861 		count -= filled;
862 		done += filled;
863 		*ppos += filled;
864 		buf += filled;
865 	}
866 
867 	return done;
868 
869 read_err:
870 	return -EFAULT;
871 }
872 
873 static ssize_t mtty_write(struct mdev_device *mdev, const char __user *buf,
874 		   size_t count, loff_t *ppos)
875 {
876 	unsigned int done = 0;
877 	int ret;
878 
879 	while (count) {
880 		size_t filled;
881 
882 		if (count >= 4 && !(*ppos % 4)) {
883 			u32 val;
884 
885 			if (copy_from_user(&val, buf, sizeof(val)))
886 				goto write_err;
887 
888 			ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
889 					  *ppos, true);
890 			if (ret <= 0)
891 				goto write_err;
892 
893 			filled = 4;
894 		} else if (count >= 2 && !(*ppos % 2)) {
895 			u16 val;
896 
897 			if (copy_from_user(&val, buf, sizeof(val)))
898 				goto write_err;
899 
900 			ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
901 					  *ppos, true);
902 			if (ret <= 0)
903 				goto write_err;
904 
905 			filled = 2;
906 		} else {
907 			u8 val;
908 
909 			if (copy_from_user(&val, buf, sizeof(val)))
910 				goto write_err;
911 
912 			ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
913 					  *ppos, true);
914 			if (ret <= 0)
915 				goto write_err;
916 
917 			filled = 1;
918 		}
919 		count -= filled;
920 		done += filled;
921 		*ppos += filled;
922 		buf += filled;
923 	}
924 
925 	return done;
926 write_err:
927 	return -EFAULT;
928 }
929 
930 static int mtty_set_irqs(struct mdev_device *mdev, uint32_t flags,
931 			 unsigned int index, unsigned int start,
932 			 unsigned int count, void *data)
933 {
934 	int ret = 0;
935 	struct mdev_state *mdev_state;
936 
937 	if (!mdev)
938 		return -EINVAL;
939 
940 	mdev_state = mdev_get_drvdata(mdev);
941 	if (!mdev_state)
942 		return -EINVAL;
943 
944 	mutex_lock(&mdev_state->ops_lock);
945 	switch (index) {
946 	case VFIO_PCI_INTX_IRQ_INDEX:
947 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
948 		case VFIO_IRQ_SET_ACTION_MASK:
949 		case VFIO_IRQ_SET_ACTION_UNMASK:
950 			break;
951 		case VFIO_IRQ_SET_ACTION_TRIGGER:
952 		{
953 			if (flags & VFIO_IRQ_SET_DATA_NONE) {
954 				pr_info("%s: disable INTx\n", __func__);
955 				if (mdev_state->intx_evtfd)
956 					eventfd_ctx_put(mdev_state->intx_evtfd);
957 				break;
958 			}
959 
960 			if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
961 				int fd = *(int *)data;
962 
963 				if (fd > 0) {
964 					struct eventfd_ctx *evt;
965 
966 					evt = eventfd_ctx_fdget(fd);
967 					if (IS_ERR(evt)) {
968 						ret = PTR_ERR(evt);
969 						break;
970 					}
971 					mdev_state->intx_evtfd = evt;
972 					mdev_state->irq_fd = fd;
973 					mdev_state->irq_index = index;
974 					break;
975 				}
976 			}
977 			break;
978 		}
979 		}
980 		break;
981 	case VFIO_PCI_MSI_IRQ_INDEX:
982 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
983 		case VFIO_IRQ_SET_ACTION_MASK:
984 		case VFIO_IRQ_SET_ACTION_UNMASK:
985 			break;
986 		case VFIO_IRQ_SET_ACTION_TRIGGER:
987 			if (flags & VFIO_IRQ_SET_DATA_NONE) {
988 				if (mdev_state->msi_evtfd)
989 					eventfd_ctx_put(mdev_state->msi_evtfd);
990 				pr_info("%s: disable MSI\n", __func__);
991 				mdev_state->irq_index = VFIO_PCI_INTX_IRQ_INDEX;
992 				break;
993 			}
994 			if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
995 				int fd = *(int *)data;
996 				struct eventfd_ctx *evt;
997 
998 				if (fd <= 0)
999 					break;
1000 
1001 				if (mdev_state->msi_evtfd)
1002 					break;
1003 
1004 				evt = eventfd_ctx_fdget(fd);
1005 				if (IS_ERR(evt)) {
1006 					ret = PTR_ERR(evt);
1007 					break;
1008 				}
1009 				mdev_state->msi_evtfd = evt;
1010 				mdev_state->irq_fd = fd;
1011 				mdev_state->irq_index = index;
1012 			}
1013 			break;
1014 	}
1015 	break;
1016 	case VFIO_PCI_MSIX_IRQ_INDEX:
1017 		pr_info("%s: MSIX_IRQ\n", __func__);
1018 		break;
1019 	case VFIO_PCI_ERR_IRQ_INDEX:
1020 		pr_info("%s: ERR_IRQ\n", __func__);
1021 		break;
1022 	case VFIO_PCI_REQ_IRQ_INDEX:
1023 		pr_info("%s: REQ_IRQ\n", __func__);
1024 		break;
1025 	}
1026 
1027 	mutex_unlock(&mdev_state->ops_lock);
1028 	return ret;
1029 }
1030 
1031 static int mtty_trigger_interrupt(const guid_t *uuid)
1032 {
1033 	int ret = -1;
1034 	struct mdev_state *mdev_state;
1035 
1036 	mdev_state = find_mdev_state_by_uuid(uuid);
1037 
1038 	if (!mdev_state) {
1039 		pr_info("%s: mdev not found\n", __func__);
1040 		return -EINVAL;
1041 	}
1042 
1043 	if ((mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX) &&
1044 	    (!mdev_state->msi_evtfd))
1045 		return -EINVAL;
1046 	else if ((mdev_state->irq_index == VFIO_PCI_INTX_IRQ_INDEX) &&
1047 		 (!mdev_state->intx_evtfd)) {
1048 		pr_info("%s: Intr eventfd not found\n", __func__);
1049 		return -EINVAL;
1050 	}
1051 
1052 	if (mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX)
1053 		ret = eventfd_signal(mdev_state->msi_evtfd, 1);
1054 	else
1055 		ret = eventfd_signal(mdev_state->intx_evtfd, 1);
1056 
1057 #if defined(DEBUG_INTR)
1058 	pr_info("Intx triggered\n");
1059 #endif
1060 	if (ret != 1)
1061 		pr_err("%s: eventfd signal failed (%d)\n", __func__, ret);
1062 
1063 	return ret;
1064 }
1065 
1066 static int mtty_get_region_info(struct mdev_device *mdev,
1067 			 struct vfio_region_info *region_info,
1068 			 u16 *cap_type_id, void **cap_type)
1069 {
1070 	unsigned int size = 0;
1071 	struct mdev_state *mdev_state;
1072 	u32 bar_index;
1073 
1074 	if (!mdev)
1075 		return -EINVAL;
1076 
1077 	mdev_state = mdev_get_drvdata(mdev);
1078 	if (!mdev_state)
1079 		return -EINVAL;
1080 
1081 	bar_index = region_info->index;
1082 	if (bar_index >= VFIO_PCI_NUM_REGIONS)
1083 		return -EINVAL;
1084 
1085 	mutex_lock(&mdev_state->ops_lock);
1086 
1087 	switch (bar_index) {
1088 	case VFIO_PCI_CONFIG_REGION_INDEX:
1089 		size = MTTY_CONFIG_SPACE_SIZE;
1090 		break;
1091 	case VFIO_PCI_BAR0_REGION_INDEX:
1092 		size = MTTY_IO_BAR_SIZE;
1093 		break;
1094 	case VFIO_PCI_BAR1_REGION_INDEX:
1095 		if (mdev_state->nr_ports == 2)
1096 			size = MTTY_IO_BAR_SIZE;
1097 		break;
1098 	default:
1099 		size = 0;
1100 		break;
1101 	}
1102 
1103 	mdev_state->region_info[bar_index].size = size;
1104 	mdev_state->region_info[bar_index].vfio_offset =
1105 		MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
1106 
1107 	region_info->size = size;
1108 	region_info->offset = MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
1109 	region_info->flags = VFIO_REGION_INFO_FLAG_READ |
1110 		VFIO_REGION_INFO_FLAG_WRITE;
1111 	mutex_unlock(&mdev_state->ops_lock);
1112 	return 0;
1113 }
1114 
1115 static int mtty_get_irq_info(struct mdev_device *mdev,
1116 			     struct vfio_irq_info *irq_info)
1117 {
1118 	switch (irq_info->index) {
1119 	case VFIO_PCI_INTX_IRQ_INDEX:
1120 	case VFIO_PCI_MSI_IRQ_INDEX:
1121 	case VFIO_PCI_REQ_IRQ_INDEX:
1122 		break;
1123 
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 
1128 	irq_info->flags = VFIO_IRQ_INFO_EVENTFD;
1129 	irq_info->count = 1;
1130 
1131 	if (irq_info->index == VFIO_PCI_INTX_IRQ_INDEX)
1132 		irq_info->flags |= (VFIO_IRQ_INFO_MASKABLE |
1133 				VFIO_IRQ_INFO_AUTOMASKED);
1134 	else
1135 		irq_info->flags |= VFIO_IRQ_INFO_NORESIZE;
1136 
1137 	return 0;
1138 }
1139 
1140 static int mtty_get_device_info(struct mdev_device *mdev,
1141 			 struct vfio_device_info *dev_info)
1142 {
1143 	dev_info->flags = VFIO_DEVICE_FLAGS_PCI;
1144 	dev_info->num_regions = VFIO_PCI_NUM_REGIONS;
1145 	dev_info->num_irqs = VFIO_PCI_NUM_IRQS;
1146 
1147 	return 0;
1148 }
1149 
1150 static long mtty_ioctl(struct mdev_device *mdev, unsigned int cmd,
1151 			unsigned long arg)
1152 {
1153 	int ret = 0;
1154 	unsigned long minsz;
1155 	struct mdev_state *mdev_state;
1156 
1157 	if (!mdev)
1158 		return -EINVAL;
1159 
1160 	mdev_state = mdev_get_drvdata(mdev);
1161 	if (!mdev_state)
1162 		return -ENODEV;
1163 
1164 	switch (cmd) {
1165 	case VFIO_DEVICE_GET_INFO:
1166 	{
1167 		struct vfio_device_info info;
1168 
1169 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1170 
1171 		if (copy_from_user(&info, (void __user *)arg, minsz))
1172 			return -EFAULT;
1173 
1174 		if (info.argsz < minsz)
1175 			return -EINVAL;
1176 
1177 		ret = mtty_get_device_info(mdev, &info);
1178 		if (ret)
1179 			return ret;
1180 
1181 		memcpy(&mdev_state->dev_info, &info, sizeof(info));
1182 
1183 		if (copy_to_user((void __user *)arg, &info, minsz))
1184 			return -EFAULT;
1185 
1186 		return 0;
1187 	}
1188 	case VFIO_DEVICE_GET_REGION_INFO:
1189 	{
1190 		struct vfio_region_info info;
1191 		u16 cap_type_id = 0;
1192 		void *cap_type = NULL;
1193 
1194 		minsz = offsetofend(struct vfio_region_info, offset);
1195 
1196 		if (copy_from_user(&info, (void __user *)arg, minsz))
1197 			return -EFAULT;
1198 
1199 		if (info.argsz < minsz)
1200 			return -EINVAL;
1201 
1202 		ret = mtty_get_region_info(mdev, &info, &cap_type_id,
1203 					   &cap_type);
1204 		if (ret)
1205 			return ret;
1206 
1207 		if (copy_to_user((void __user *)arg, &info, minsz))
1208 			return -EFAULT;
1209 
1210 		return 0;
1211 	}
1212 
1213 	case VFIO_DEVICE_GET_IRQ_INFO:
1214 	{
1215 		struct vfio_irq_info info;
1216 
1217 		minsz = offsetofend(struct vfio_irq_info, count);
1218 
1219 		if (copy_from_user(&info, (void __user *)arg, minsz))
1220 			return -EFAULT;
1221 
1222 		if ((info.argsz < minsz) ||
1223 		    (info.index >= mdev_state->dev_info.num_irqs))
1224 			return -EINVAL;
1225 
1226 		ret = mtty_get_irq_info(mdev, &info);
1227 		if (ret)
1228 			return ret;
1229 
1230 		if (copy_to_user((void __user *)arg, &info, minsz))
1231 			return -EFAULT;
1232 
1233 		return 0;
1234 	}
1235 	case VFIO_DEVICE_SET_IRQS:
1236 	{
1237 		struct vfio_irq_set hdr;
1238 		u8 *data = NULL, *ptr = NULL;
1239 		size_t data_size = 0;
1240 
1241 		minsz = offsetofend(struct vfio_irq_set, count);
1242 
1243 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1244 			return -EFAULT;
1245 
1246 		ret = vfio_set_irqs_validate_and_prepare(&hdr,
1247 						mdev_state->dev_info.num_irqs,
1248 						VFIO_PCI_NUM_IRQS,
1249 						&data_size);
1250 		if (ret)
1251 			return ret;
1252 
1253 		if (data_size) {
1254 			ptr = data = memdup_user((void __user *)(arg + minsz),
1255 						 data_size);
1256 			if (IS_ERR(data))
1257 				return PTR_ERR(data);
1258 		}
1259 
1260 		ret = mtty_set_irqs(mdev, hdr.flags, hdr.index, hdr.start,
1261 				    hdr.count, data);
1262 
1263 		kfree(ptr);
1264 		return ret;
1265 	}
1266 	case VFIO_DEVICE_RESET:
1267 		return mtty_reset(mdev);
1268 	}
1269 	return -ENOTTY;
1270 }
1271 
1272 static int mtty_open(struct mdev_device *mdev)
1273 {
1274 	pr_info("%s\n", __func__);
1275 	return 0;
1276 }
1277 
1278 static void mtty_close(struct mdev_device *mdev)
1279 {
1280 	pr_info("%s\n", __func__);
1281 }
1282 
1283 static ssize_t
1284 sample_mtty_dev_show(struct device *dev, struct device_attribute *attr,
1285 		     char *buf)
1286 {
1287 	return sprintf(buf, "This is phy device\n");
1288 }
1289 
1290 static DEVICE_ATTR_RO(sample_mtty_dev);
1291 
1292 static struct attribute *mtty_dev_attrs[] = {
1293 	&dev_attr_sample_mtty_dev.attr,
1294 	NULL,
1295 };
1296 
1297 static const struct attribute_group mtty_dev_group = {
1298 	.name  = "mtty_dev",
1299 	.attrs = mtty_dev_attrs,
1300 };
1301 
1302 static const struct attribute_group *mtty_dev_groups[] = {
1303 	&mtty_dev_group,
1304 	NULL,
1305 };
1306 
1307 static ssize_t
1308 sample_mdev_dev_show(struct device *dev, struct device_attribute *attr,
1309 		     char *buf)
1310 {
1311 	if (mdev_from_dev(dev))
1312 		return sprintf(buf, "This is MDEV %s\n", dev_name(dev));
1313 
1314 	return sprintf(buf, "\n");
1315 }
1316 
1317 static DEVICE_ATTR_RO(sample_mdev_dev);
1318 
1319 static struct attribute *mdev_dev_attrs[] = {
1320 	&dev_attr_sample_mdev_dev.attr,
1321 	NULL,
1322 };
1323 
1324 static const struct attribute_group mdev_dev_group = {
1325 	.name  = "vendor",
1326 	.attrs = mdev_dev_attrs,
1327 };
1328 
1329 static const struct attribute_group *mdev_dev_groups[] = {
1330 	&mdev_dev_group,
1331 	NULL,
1332 };
1333 
1334 static ssize_t
1335 name_show(struct kobject *kobj, struct device *dev, char *buf)
1336 {
1337 	char name[MTTY_STRING_LEN];
1338 	int i;
1339 	const char *name_str[2] = {"Single port serial", "Dual port serial"};
1340 
1341 	for (i = 0; i < 2; i++) {
1342 		snprintf(name, MTTY_STRING_LEN, "%s-%d",
1343 			 dev_driver_string(dev), i + 1);
1344 		if (!strcmp(kobj->name, name))
1345 			return sprintf(buf, "%s\n", name_str[i]);
1346 	}
1347 
1348 	return -EINVAL;
1349 }
1350 
1351 static MDEV_TYPE_ATTR_RO(name);
1352 
1353 static ssize_t
1354 available_instances_show(struct kobject *kobj, struct device *dev, char *buf)
1355 {
1356 	char name[MTTY_STRING_LEN];
1357 	int i;
1358 	struct mdev_state *mds;
1359 	int ports = 0, used = 0;
1360 
1361 	for (i = 0; i < 2; i++) {
1362 		snprintf(name, MTTY_STRING_LEN, "%s-%d",
1363 			 dev_driver_string(dev), i + 1);
1364 		if (!strcmp(kobj->name, name)) {
1365 			ports = i + 1;
1366 			break;
1367 		}
1368 	}
1369 
1370 	if (!ports)
1371 		return -EINVAL;
1372 
1373 	list_for_each_entry(mds, &mdev_devices_list, next)
1374 		used += mds->nr_ports;
1375 
1376 	return sprintf(buf, "%d\n", (MAX_MTTYS - used)/ports);
1377 }
1378 
1379 static MDEV_TYPE_ATTR_RO(available_instances);
1380 
1381 
1382 static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
1383 			       char *buf)
1384 {
1385 	return sprintf(buf, "%s\n", VFIO_DEVICE_API_PCI_STRING);
1386 }
1387 
1388 static MDEV_TYPE_ATTR_RO(device_api);
1389 
1390 static struct attribute *mdev_types_attrs[] = {
1391 	&mdev_type_attr_name.attr,
1392 	&mdev_type_attr_device_api.attr,
1393 	&mdev_type_attr_available_instances.attr,
1394 	NULL,
1395 };
1396 
1397 static struct attribute_group mdev_type_group1 = {
1398 	.name  = "1",
1399 	.attrs = mdev_types_attrs,
1400 };
1401 
1402 static struct attribute_group mdev_type_group2 = {
1403 	.name  = "2",
1404 	.attrs = mdev_types_attrs,
1405 };
1406 
1407 static struct attribute_group *mdev_type_groups[] = {
1408 	&mdev_type_group1,
1409 	&mdev_type_group2,
1410 	NULL,
1411 };
1412 
1413 static const struct mdev_parent_ops mdev_fops = {
1414 	.owner                  = THIS_MODULE,
1415 	.dev_attr_groups        = mtty_dev_groups,
1416 	.mdev_attr_groups       = mdev_dev_groups,
1417 	.supported_type_groups  = mdev_type_groups,
1418 	.create                 = mtty_create,
1419 	.remove			= mtty_remove,
1420 	.open                   = mtty_open,
1421 	.release                = mtty_close,
1422 	.read                   = mtty_read,
1423 	.write                  = mtty_write,
1424 	.ioctl		        = mtty_ioctl,
1425 };
1426 
1427 static void mtty_device_release(struct device *dev)
1428 {
1429 	dev_dbg(dev, "mtty: released\n");
1430 }
1431 
1432 static int __init mtty_dev_init(void)
1433 {
1434 	int ret = 0;
1435 
1436 	pr_info("mtty_dev: %s\n", __func__);
1437 
1438 	memset(&mtty_dev, 0, sizeof(mtty_dev));
1439 
1440 	idr_init(&mtty_dev.vd_idr);
1441 
1442 	ret = alloc_chrdev_region(&mtty_dev.vd_devt, 0, MINORMASK + 1,
1443 				  MTTY_NAME);
1444 
1445 	if (ret < 0) {
1446 		pr_err("Error: failed to register mtty_dev, err:%d\n", ret);
1447 		return ret;
1448 	}
1449 
1450 	cdev_init(&mtty_dev.vd_cdev, &vd_fops);
1451 	cdev_add(&mtty_dev.vd_cdev, mtty_dev.vd_devt, MINORMASK + 1);
1452 
1453 	pr_info("major_number:%d\n", MAJOR(mtty_dev.vd_devt));
1454 
1455 	mtty_dev.vd_class = class_create(THIS_MODULE, MTTY_CLASS_NAME);
1456 
1457 	if (IS_ERR(mtty_dev.vd_class)) {
1458 		pr_err("Error: failed to register mtty_dev class\n");
1459 		ret = PTR_ERR(mtty_dev.vd_class);
1460 		goto failed1;
1461 	}
1462 
1463 	mtty_dev.dev.class = mtty_dev.vd_class;
1464 	mtty_dev.dev.release = mtty_device_release;
1465 	dev_set_name(&mtty_dev.dev, "%s", MTTY_NAME);
1466 
1467 	ret = device_register(&mtty_dev.dev);
1468 	if (ret)
1469 		goto failed2;
1470 
1471 	ret = mdev_register_device(&mtty_dev.dev, &mdev_fops);
1472 	if (ret)
1473 		goto failed3;
1474 
1475 	mutex_init(&mdev_list_lock);
1476 	INIT_LIST_HEAD(&mdev_devices_list);
1477 
1478 	goto all_done;
1479 
1480 failed3:
1481 
1482 	device_unregister(&mtty_dev.dev);
1483 failed2:
1484 	class_destroy(mtty_dev.vd_class);
1485 
1486 failed1:
1487 	cdev_del(&mtty_dev.vd_cdev);
1488 	unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK + 1);
1489 
1490 all_done:
1491 	return ret;
1492 }
1493 
1494 static void __exit mtty_dev_exit(void)
1495 {
1496 	mtty_dev.dev.bus = NULL;
1497 	mdev_unregister_device(&mtty_dev.dev);
1498 
1499 	device_unregister(&mtty_dev.dev);
1500 	idr_destroy(&mtty_dev.vd_idr);
1501 	cdev_del(&mtty_dev.vd_cdev);
1502 	unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK + 1);
1503 	class_destroy(mtty_dev.vd_class);
1504 	mtty_dev.vd_class = NULL;
1505 	pr_info("mtty_dev: Unloaded!\n");
1506 }
1507 
1508 module_init(mtty_dev_init)
1509 module_exit(mtty_dev_exit)
1510 
1511 MODULE_LICENSE("GPL v2");
1512 MODULE_INFO(supported, "Test driver that simulate serial port over PCI");
1513 MODULE_VERSION(VERSION_STRING);
1514 MODULE_AUTHOR(DRIVER_AUTHOR);
1515