xref: /openbmc/linux/rust/macros/lib.rs (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Crate for all kernel procedural macros.
4 
5 #[macro_use]
6 mod quote;
7 mod concat_idents;
8 mod helpers;
9 mod module;
10 mod paste;
11 mod pin_data;
12 mod pinned_drop;
13 mod vtable;
14 mod zeroable;
15 
16 use proc_macro::TokenStream;
17 
18 /// Declares a kernel module.
19 ///
20 /// The `type` argument should be a type which implements the [`Module`]
21 /// trait. Also accepts various forms of kernel metadata.
22 ///
23 /// C header: [`include/linux/moduleparam.h`](../../../include/linux/moduleparam.h)
24 ///
25 /// [`Module`]: ../kernel/trait.Module.html
26 ///
27 /// # Examples
28 ///
29 /// ```ignore
30 /// use kernel::prelude::*;
31 ///
32 /// module!{
33 ///     type: MyModule,
34 ///     name: "my_kernel_module",
35 ///     author: "Rust for Linux Contributors",
36 ///     description: "My very own kernel module!",
37 ///     license: "GPL",
38 ///     params: {
39 ///        my_i32: i32 {
40 ///            default: 42,
41 ///            permissions: 0o000,
42 ///            description: "Example of i32",
43 ///        },
44 ///        writeable_i32: i32 {
45 ///            default: 42,
46 ///            permissions: 0o644,
47 ///            description: "Example of i32",
48 ///        },
49 ///    },
50 /// }
51 ///
52 /// struct MyModule;
53 ///
54 /// impl kernel::Module for MyModule {
55 ///     fn init() -> Result<Self> {
56 ///         // If the parameter is writeable, then the kparam lock must be
57 ///         // taken to read the parameter:
58 ///         {
59 ///             let lock = THIS_MODULE.kernel_param_lock();
60 ///             pr_info!("i32 param is:  {}\n", writeable_i32.read(&lock));
61 ///         }
62 ///         // If the parameter is read only, it can be read without locking
63 ///         // the kernel parameters:
64 ///         pr_info!("i32 param is:  {}\n", my_i32.read());
65 ///         Ok(Self)
66 ///     }
67 /// }
68 /// ```
69 ///
70 /// # Supported argument types
71 ///   - `type`: type which implements the [`Module`] trait (required).
72 ///   - `name`: byte array of the name of the kernel module (required).
73 ///   - `author`: byte array of the author of the kernel module.
74 ///   - `description`: byte array of the description of the kernel module.
75 ///   - `license`: byte array of the license of the kernel module (required).
76 ///   - `alias`: byte array of alias name of the kernel module.
77 #[proc_macro]
78 pub fn module(ts: TokenStream) -> TokenStream {
79     module::module(ts)
80 }
81 
82 /// Declares or implements a vtable trait.
83 ///
84 /// Linux's use of pure vtables is very close to Rust traits, but they differ
85 /// in how unimplemented functions are represented. In Rust, traits can provide
86 /// default implementation for all non-required methods (and the default
87 /// implementation could just return `Error::EINVAL`); Linux typically use C
88 /// `NULL` pointers to represent these functions.
89 ///
90 /// This attribute is intended to close the gap. Traits can be declared and
91 /// implemented with the `#[vtable]` attribute, and a `HAS_*` associated constant
92 /// will be generated for each method in the trait, indicating if the implementor
93 /// has overridden a method.
94 ///
95 /// This attribute is not needed if all methods are required.
96 ///
97 /// # Examples
98 ///
99 /// ```ignore
100 /// use kernel::prelude::*;
101 ///
102 /// // Declares a `#[vtable]` trait
103 /// #[vtable]
104 /// pub trait Operations: Send + Sync + Sized {
105 ///     fn foo(&self) -> Result<()> {
106 ///         Err(EINVAL)
107 ///     }
108 ///
109 ///     fn bar(&self) -> Result<()> {
110 ///         Err(EINVAL)
111 ///     }
112 /// }
113 ///
114 /// struct Foo;
115 ///
116 /// // Implements the `#[vtable]` trait
117 /// #[vtable]
118 /// impl Operations for Foo {
119 ///     fn foo(&self) -> Result<()> {
120 /// #        Err(EINVAL)
121 ///         // ...
122 ///     }
123 /// }
124 ///
125 /// assert_eq!(<Foo as Operations>::HAS_FOO, true);
126 /// assert_eq!(<Foo as Operations>::HAS_BAR, false);
127 /// ```
128 #[proc_macro_attribute]
129 pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
130     vtable::vtable(attr, ts)
131 }
132 
133 /// Concatenate two identifiers.
134 ///
135 /// This is useful in macros that need to declare or reference items with names
136 /// starting with a fixed prefix and ending in a user specified name. The resulting
137 /// identifier has the span of the second argument.
138 ///
139 /// # Examples
140 ///
141 /// ```ignore
142 /// use kernel::macro::concat_idents;
143 ///
144 /// macro_rules! pub_no_prefix {
145 ///     ($prefix:ident, $($newname:ident),+) => {
146 ///         $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
147 ///     };
148 /// }
149 ///
150 /// pub_no_prefix!(
151 ///     binder_driver_return_protocol_,
152 ///     BR_OK,
153 ///     BR_ERROR,
154 ///     BR_TRANSACTION,
155 ///     BR_REPLY,
156 ///     BR_DEAD_REPLY,
157 ///     BR_TRANSACTION_COMPLETE,
158 ///     BR_INCREFS,
159 ///     BR_ACQUIRE,
160 ///     BR_RELEASE,
161 ///     BR_DECREFS,
162 ///     BR_NOOP,
163 ///     BR_SPAWN_LOOPER,
164 ///     BR_DEAD_BINDER,
165 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
166 ///     BR_FAILED_REPLY
167 /// );
168 ///
169 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
170 /// ```
171 #[proc_macro]
172 pub fn concat_idents(ts: TokenStream) -> TokenStream {
173     concat_idents::concat_idents(ts)
174 }
175 
176 /// Used to specify the pinning information of the fields of a struct.
177 ///
178 /// This is somewhat similar in purpose as
179 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
180 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
181 /// field you want to structurally pin.
182 ///
183 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
184 /// then `#[pin]` directs the type of initializer that is required.
185 ///
186 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
187 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
188 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
189 ///
190 /// # Examples
191 ///
192 /// ```rust,ignore
193 /// #[pin_data]
194 /// struct DriverData {
195 ///     #[pin]
196 ///     queue: Mutex<Vec<Command>>,
197 ///     buf: Box<[u8; 1024 * 1024]>,
198 /// }
199 /// ```
200 ///
201 /// ```rust,ignore
202 /// #[pin_data(PinnedDrop)]
203 /// struct DriverData {
204 ///     #[pin]
205 ///     queue: Mutex<Vec<Command>>,
206 ///     buf: Box<[u8; 1024 * 1024]>,
207 ///     raw_info: *mut Info,
208 /// }
209 ///
210 /// #[pinned_drop]
211 /// impl PinnedDrop for DriverData {
212 ///     fn drop(self: Pin<&mut Self>) {
213 ///         unsafe { bindings::destroy_info(self.raw_info) };
214 ///     }
215 /// }
216 /// ```
217 ///
218 /// [`pin_init!`]: ../kernel/macro.pin_init.html
219 //  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
220 #[proc_macro_attribute]
221 pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
222     pin_data::pin_data(inner, item)
223 }
224 
225 /// Used to implement `PinnedDrop` safely.
226 ///
227 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
228 ///
229 /// # Examples
230 ///
231 /// ```rust,ignore
232 /// #[pin_data(PinnedDrop)]
233 /// struct DriverData {
234 ///     #[pin]
235 ///     queue: Mutex<Vec<Command>>,
236 ///     buf: Box<[u8; 1024 * 1024]>,
237 ///     raw_info: *mut Info,
238 /// }
239 ///
240 /// #[pinned_drop]
241 /// impl PinnedDrop for DriverData {
242 ///     fn drop(self: Pin<&mut Self>) {
243 ///         unsafe { bindings::destroy_info(self.raw_info) };
244 ///     }
245 /// }
246 /// ```
247 #[proc_macro_attribute]
248 pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
249     pinned_drop::pinned_drop(args, input)
250 }
251 
252 /// Paste identifiers together.
253 ///
254 /// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
255 /// single identifier.
256 ///
257 /// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers
258 /// (literals, lifetimes and documentation strings are not supported). There is a difference in
259 /// supported modifiers as well.
260 ///
261 /// # Example
262 ///
263 /// ```ignore
264 /// use kernel::macro::paste;
265 ///
266 /// macro_rules! pub_no_prefix {
267 ///     ($prefix:ident, $($newname:ident),+) => {
268 ///         paste! {
269 ///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
270 ///         }
271 ///     };
272 /// }
273 ///
274 /// pub_no_prefix!(
275 ///     binder_driver_return_protocol_,
276 ///     BR_OK,
277 ///     BR_ERROR,
278 ///     BR_TRANSACTION,
279 ///     BR_REPLY,
280 ///     BR_DEAD_REPLY,
281 ///     BR_TRANSACTION_COMPLETE,
282 ///     BR_INCREFS,
283 ///     BR_ACQUIRE,
284 ///     BR_RELEASE,
285 ///     BR_DECREFS,
286 ///     BR_NOOP,
287 ///     BR_SPAWN_LOOPER,
288 ///     BR_DEAD_BINDER,
289 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
290 ///     BR_FAILED_REPLY
291 /// );
292 ///
293 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
294 /// ```
295 ///
296 /// # Modifiers
297 ///
298 /// For each identifier, it is possible to attach one or multiple modifiers to
299 /// it.
300 ///
301 /// Currently supported modifiers are:
302 /// * `span`: change the span of concatenated identifier to the span of the specified token. By
303 /// default the span of the `[< >]` group is used.
304 /// * `lower`: change the identifier to lower case.
305 /// * `upper`: change the identifier to upper case.
306 ///
307 /// ```ignore
308 /// use kernel::macro::paste;
309 ///
310 /// macro_rules! pub_no_prefix {
311 ///     ($prefix:ident, $($newname:ident),+) => {
312 ///         kernel::macros::paste! {
313 ///             $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
314 ///         }
315 ///     };
316 /// }
317 ///
318 /// pub_no_prefix!(
319 ///     binder_driver_return_protocol_,
320 ///     BR_OK,
321 ///     BR_ERROR,
322 ///     BR_TRANSACTION,
323 ///     BR_REPLY,
324 ///     BR_DEAD_REPLY,
325 ///     BR_TRANSACTION_COMPLETE,
326 ///     BR_INCREFS,
327 ///     BR_ACQUIRE,
328 ///     BR_RELEASE,
329 ///     BR_DECREFS,
330 ///     BR_NOOP,
331 ///     BR_SPAWN_LOOPER,
332 ///     BR_DEAD_BINDER,
333 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
334 ///     BR_FAILED_REPLY
335 /// );
336 ///
337 /// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
338 /// ```
339 ///
340 /// [`paste`]: https://docs.rs/paste/
341 #[proc_macro]
342 pub fn paste(input: TokenStream) -> TokenStream {
343     let mut tokens = input.into_iter().collect();
344     paste::expand(&mut tokens);
345     tokens.into_iter().collect()
346 }
347 
348 /// Derives the [`Zeroable`] trait for the given struct.
349 ///
350 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
351 ///
352 /// # Examples
353 ///
354 /// ```rust,ignore
355 /// #[derive(Zeroable)]
356 /// pub struct DriverData {
357 ///     id: i64,
358 ///     buf_ptr: *mut u8,
359 ///     len: usize,
360 /// }
361 /// ```
362 #[proc_macro_derive(Zeroable)]
363 pub fn derive_zeroable(input: TokenStream) -> TokenStream {
364     zeroable::derive(input)
365 }
366