1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 bindings, 20 error::{self, Error}, 21 init::{self, InPlaceInit, Init, PinInit}, 22 try_init, 23 types::{ForeignOwnable, Opaque}, 24 }; 25 use alloc::boxed::Box; 26 use core::{ 27 alloc::AllocError, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a ref-counted instance of `Example`. 60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// ``` 77 /// 78 /// Using `Arc<T>` as the type of `self`: 79 /// 80 /// ``` 81 /// use kernel::sync::Arc; 82 /// 83 /// struct Example { 84 /// a: u32, 85 /// b: u32, 86 /// } 87 /// 88 /// impl Example { 89 /// fn take_over(self: Arc<Self>) { 90 /// // ... 91 /// } 92 /// 93 /// fn use_reference(self: &Arc<Self>) { 94 /// // ... 95 /// } 96 /// } 97 /// 98 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 99 /// obj.use_reference(); 100 /// obj.take_over(); 101 /// ``` 102 /// 103 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 104 /// 105 /// ``` 106 /// use kernel::sync::{Arc, ArcBorrow}; 107 /// 108 /// trait MyTrait { 109 /// // Trait has a function whose `self` type is `Arc<Self>`. 110 /// fn example1(self: Arc<Self>) {} 111 /// 112 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 113 /// fn example2(self: ArcBorrow<'_, Self>) {} 114 /// } 115 /// 116 /// struct Example; 117 /// impl MyTrait for Example {} 118 /// 119 /// // `obj` has type `Arc<Example>`. 120 /// let obj: Arc<Example> = Arc::try_new(Example)?; 121 /// 122 /// // `coerced` has type `Arc<dyn MyTrait>`. 123 /// let coerced: Arc<dyn MyTrait> = obj; 124 /// ``` 125 pub struct Arc<T: ?Sized> { 126 ptr: NonNull<ArcInner<T>>, 127 _p: PhantomData<ArcInner<T>>, 128 } 129 130 #[pin_data] 131 #[repr(C)] 132 struct ArcInner<T: ?Sized> { 133 refcount: Opaque<bindings::refcount_t>, 134 data: T, 135 } 136 137 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 138 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 139 140 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 141 // dynamically-sized type (DST) `U`. 142 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 143 144 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 146 147 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 148 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 149 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for 150 // example, when the reference count reaches zero and `T` is dropped. 151 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 152 153 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the 154 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>` 155 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above. 156 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 157 158 impl<T> Arc<T> { 159 /// Constructs a new reference counted instance of `T`. 160 pub fn try_new(contents: T) -> Result<Self, AllocError> { 161 // INVARIANT: The refcount is initialised to a non-zero value. 162 let value = ArcInner { 163 // SAFETY: There are no safety requirements for this FFI call. 164 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 165 data: contents, 166 }; 167 168 let inner = Box::try_new(value)?; 169 170 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 171 // `Arc` object. 172 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 173 } 174 175 /// Use the given initializer to in-place initialize a `T`. 176 /// 177 /// If `T: !Unpin` it will not be able to move afterwards. 178 #[inline] 179 pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> 180 where 181 Error: From<E>, 182 { 183 UniqueArc::pin_init(init).map(|u| u.into()) 184 } 185 186 /// Use the given initializer to in-place initialize a `T`. 187 /// 188 /// This is equivalent to [`pin_init`], since an [`Arc`] is always pinned. 189 #[inline] 190 pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 191 where 192 Error: From<E>, 193 { 194 UniqueArc::init(init).map(|u| u.into()) 195 } 196 } 197 198 impl<T: ?Sized> Arc<T> { 199 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 200 /// 201 /// # Safety 202 /// 203 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 204 /// count, one of which will be owned by the new [`Arc`] instance. 205 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 206 // INVARIANT: By the safety requirements, the invariants hold. 207 Arc { 208 ptr: inner, 209 _p: PhantomData, 210 } 211 } 212 213 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 214 /// 215 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 216 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 217 #[inline] 218 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 219 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 220 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 221 // reference can be created. 222 unsafe { ArcBorrow::new(self.ptr) } 223 } 224 } 225 226 impl<T: 'static> ForeignOwnable for Arc<T> { 227 type Borrowed<'a> = ArcBorrow<'a, T>; 228 229 fn into_foreign(self) -> *const core::ffi::c_void { 230 ManuallyDrop::new(self).ptr.as_ptr() as _ 231 } 232 233 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 234 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 235 // a previous call to `Arc::into_foreign`. 236 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 237 238 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 239 // for the lifetime of the returned value. Additionally, the safety requirements of 240 // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created. 241 unsafe { ArcBorrow::new(inner) } 242 } 243 244 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 245 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 246 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 247 // holds a reference count increment that is transferrable to us. 248 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 249 } 250 } 251 252 impl<T: ?Sized> Deref for Arc<T> { 253 type Target = T; 254 255 fn deref(&self) -> &Self::Target { 256 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 257 // safe to dereference it. 258 unsafe { &self.ptr.as_ref().data } 259 } 260 } 261 262 impl<T: ?Sized> Clone for Arc<T> { 263 fn clone(&self) -> Self { 264 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 265 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 266 // safe to increment the refcount. 267 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 268 269 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 270 unsafe { Self::from_inner(self.ptr) } 271 } 272 } 273 274 impl<T: ?Sized> Drop for Arc<T> { 275 fn drop(&mut self) { 276 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 277 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 278 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 279 // freed/invalid memory as long as it is never dereferenced. 280 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 281 282 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 283 // this instance is being dropped, so the broken invariant is not observable. 284 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 285 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 286 if is_zero { 287 // The count reached zero, we must free the memory. 288 // 289 // SAFETY: The pointer was initialised from the result of `Box::leak`. 290 unsafe { Box::from_raw(self.ptr.as_ptr()) }; 291 } 292 } 293 } 294 295 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 296 fn from(item: UniqueArc<T>) -> Self { 297 item.inner 298 } 299 } 300 301 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 302 fn from(item: Pin<UniqueArc<T>>) -> Self { 303 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 304 unsafe { Pin::into_inner_unchecked(item).inner } 305 } 306 } 307 308 /// A borrowed reference to an [`Arc`] instance. 309 /// 310 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 311 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance. 312 /// 313 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 314 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 315 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double 316 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if 317 /// needed. 318 /// 319 /// # Invariants 320 /// 321 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 322 /// lifetime of the [`ArcBorrow`] instance. 323 /// 324 /// # Example 325 /// 326 /// ``` 327 /// use crate::sync::{Arc, ArcBorrow}; 328 /// 329 /// struct Example; 330 /// 331 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 332 /// e.into() 333 /// } 334 /// 335 /// let obj = Arc::try_new(Example)?; 336 /// let cloned = do_something(obj.as_arc_borrow()); 337 /// 338 /// // Assert that both `obj` and `cloned` point to the same underlying object. 339 /// assert!(core::ptr::eq(&*obj, &*cloned)); 340 /// ``` 341 /// 342 /// Using `ArcBorrow<T>` as the type of `self`: 343 /// 344 /// ``` 345 /// use crate::sync::{Arc, ArcBorrow}; 346 /// 347 /// struct Example { 348 /// a: u32, 349 /// b: u32, 350 /// } 351 /// 352 /// impl Example { 353 /// fn use_reference(self: ArcBorrow<'_, Self>) { 354 /// // ... 355 /// } 356 /// } 357 /// 358 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 359 /// obj.as_arc_borrow().use_reference(); 360 /// ``` 361 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 362 inner: NonNull<ArcInner<T>>, 363 _p: PhantomData<&'a ()>, 364 } 365 366 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 367 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 368 369 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 370 // `ArcBorrow<U>`. 371 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 372 for ArcBorrow<'_, T> 373 { 374 } 375 376 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 377 fn clone(&self) -> Self { 378 *self 379 } 380 } 381 382 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 383 384 impl<T: ?Sized> ArcBorrow<'_, T> { 385 /// Creates a new [`ArcBorrow`] instance. 386 /// 387 /// # Safety 388 /// 389 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 390 /// 1. That `inner` remains valid; 391 /// 2. That no mutable references to `inner` are created. 392 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 393 // INVARIANT: The safety requirements guarantee the invariants. 394 Self { 395 inner, 396 _p: PhantomData, 397 } 398 } 399 } 400 401 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 402 fn from(b: ArcBorrow<'_, T>) -> Self { 403 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 404 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 405 // increment. 406 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 407 .deref() 408 .clone() 409 } 410 } 411 412 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 413 type Target = T; 414 415 fn deref(&self) -> &Self::Target { 416 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 417 // references to it, so it is safe to create a shared reference. 418 unsafe { &self.inner.as_ref().data } 419 } 420 } 421 422 /// A refcounted object that is known to have a refcount of 1. 423 /// 424 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 425 /// 426 /// # Invariants 427 /// 428 /// `inner` always has a reference count of 1. 429 /// 430 /// # Examples 431 /// 432 /// In the following example, we make changes to the inner object before turning it into an 433 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 434 /// cannot fail. 435 /// 436 /// ``` 437 /// use kernel::sync::{Arc, UniqueArc}; 438 /// 439 /// struct Example { 440 /// a: u32, 441 /// b: u32, 442 /// } 443 /// 444 /// fn test() -> Result<Arc<Example>> { 445 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 446 /// x.a += 1; 447 /// x.b += 1; 448 /// Ok(x.into()) 449 /// } 450 /// 451 /// # test().unwrap(); 452 /// ``` 453 /// 454 /// In the following example we first allocate memory for a ref-counted `Example` but we don't 455 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 456 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 457 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 458 /// 459 /// ``` 460 /// use kernel::sync::{Arc, UniqueArc}; 461 /// 462 /// struct Example { 463 /// a: u32, 464 /// b: u32, 465 /// } 466 /// 467 /// fn test() -> Result<Arc<Example>> { 468 /// let x = UniqueArc::try_new_uninit()?; 469 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 470 /// } 471 /// 472 /// # test().unwrap(); 473 /// ``` 474 /// 475 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 476 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 477 /// initialisation, for example, when initialising fields that are wrapped in locks. 478 /// 479 /// ``` 480 /// use kernel::sync::{Arc, UniqueArc}; 481 /// 482 /// struct Example { 483 /// a: u32, 484 /// b: u32, 485 /// } 486 /// 487 /// fn test() -> Result<Arc<Example>> { 488 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 489 /// // We can modify `pinned` because it is `Unpin`. 490 /// pinned.as_mut().a += 1; 491 /// Ok(pinned.into()) 492 /// } 493 /// 494 /// # test().unwrap(); 495 /// ``` 496 pub struct UniqueArc<T: ?Sized> { 497 inner: Arc<T>, 498 } 499 500 impl<T> UniqueArc<T> { 501 /// Tries to allocate a new [`UniqueArc`] instance. 502 pub fn try_new(value: T) -> Result<Self, AllocError> { 503 Ok(Self { 504 // INVARIANT: The newly-created object has a ref-count of 1. 505 inner: Arc::try_new(value)?, 506 }) 507 } 508 509 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 510 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 511 // INVARIANT: The refcount is initialised to a non-zero value. 512 let inner = Box::try_init::<AllocError>(try_init!(ArcInner { 513 // SAFETY: There are no safety requirements for this FFI call. 514 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 515 data <- init::uninit::<T, AllocError>(), 516 }? AllocError))?; 517 Ok(UniqueArc { 518 // INVARIANT: The newly-created object has a ref-count of 1. 519 // SAFETY: The pointer from the `Box` is valid. 520 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 521 }) 522 } 523 } 524 525 impl<T> UniqueArc<MaybeUninit<T>> { 526 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 527 pub fn write(mut self, value: T) -> UniqueArc<T> { 528 self.deref_mut().write(value); 529 // SAFETY: We just wrote the value to be initialized. 530 unsafe { self.assume_init() } 531 } 532 533 /// Unsafely assume that `self` is initialized. 534 /// 535 /// # Safety 536 /// 537 /// The caller guarantees that the value behind this pointer has been initialized. It is 538 /// *immediate* UB to call this when the value is not initialized. 539 pub unsafe fn assume_init(self) -> UniqueArc<T> { 540 let inner = ManuallyDrop::new(self).inner.ptr; 541 UniqueArc { 542 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 543 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 544 inner: unsafe { Arc::from_inner(inner.cast()) }, 545 } 546 } 547 548 /// Initialize `self` using the given initializer. 549 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 550 // SAFETY: The supplied pointer is valid for initialization. 551 match unsafe { init.__init(self.as_mut_ptr()) } { 552 // SAFETY: Initialization completed successfully. 553 Ok(()) => Ok(unsafe { self.assume_init() }), 554 Err(err) => Err(err), 555 } 556 } 557 558 /// Pin-initialize `self` using the given pin-initializer. 559 pub fn pin_init_with<E>( 560 mut self, 561 init: impl PinInit<T, E>, 562 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 563 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 564 // to ensure it does not move. 565 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 566 // SAFETY: Initialization completed successfully. 567 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 568 Err(err) => Err(err), 569 } 570 } 571 } 572 573 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 574 fn from(obj: UniqueArc<T>) -> Self { 575 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 576 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 577 unsafe { Pin::new_unchecked(obj) } 578 } 579 } 580 581 impl<T: ?Sized> Deref for UniqueArc<T> { 582 type Target = T; 583 584 fn deref(&self) -> &Self::Target { 585 self.inner.deref() 586 } 587 } 588 589 impl<T: ?Sized> DerefMut for UniqueArc<T> { 590 fn deref_mut(&mut self) -> &mut Self::Target { 591 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 592 // it is safe to dereference it. Additionally, we know there is only one reference when 593 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 594 unsafe { &mut self.inner.ptr.as_mut().data } 595 } 596 } 597 598 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 599 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 600 fmt::Display::fmt(self.deref(), f) 601 } 602 } 603 604 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 605 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 606 fmt::Display::fmt(self.deref(), f) 607 } 608 } 609 610 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 611 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 612 fmt::Debug::fmt(self.deref(), f) 613 } 614 } 615 616 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 617 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 618 fmt::Debug::fmt(self.deref(), f) 619 } 620 } 621