xref: /openbmc/linux/rust/kernel/sync/arc.rs (revision c3d8cb19)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     bindings,
20     error::Result,
21     types::{ForeignOwnable, Opaque},
22 };
23 use alloc::boxed::Box;
24 use core::{
25     marker::{PhantomData, Unsize},
26     mem::{ManuallyDrop, MaybeUninit},
27     ops::{Deref, DerefMut},
28     pin::Pin,
29     ptr::NonNull,
30 };
31 
32 /// A reference-counted pointer to an instance of `T`.
33 ///
34 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
35 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
36 ///
37 /// # Invariants
38 ///
39 /// The reference count on an instance of [`Arc`] is always non-zero.
40 /// The object pointed to by [`Arc`] is always pinned.
41 ///
42 /// # Examples
43 ///
44 /// ```
45 /// use kernel::sync::Arc;
46 ///
47 /// struct Example {
48 ///     a: u32,
49 ///     b: u32,
50 /// }
51 ///
52 /// // Create a ref-counted instance of `Example`.
53 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
54 ///
55 /// // Get a new pointer to `obj` and increment the refcount.
56 /// let cloned = obj.clone();
57 ///
58 /// // Assert that both `obj` and `cloned` point to the same underlying object.
59 /// assert!(core::ptr::eq(&*obj, &*cloned));
60 ///
61 /// // Destroy `obj` and decrement its refcount.
62 /// drop(obj);
63 ///
64 /// // Check that the values are still accessible through `cloned`.
65 /// assert_eq!(cloned.a, 10);
66 /// assert_eq!(cloned.b, 20);
67 ///
68 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
69 /// ```
70 ///
71 /// Using `Arc<T>` as the type of `self`:
72 ///
73 /// ```
74 /// use kernel::sync::Arc;
75 ///
76 /// struct Example {
77 ///     a: u32,
78 ///     b: u32,
79 /// }
80 ///
81 /// impl Example {
82 ///     fn take_over(self: Arc<Self>) {
83 ///         // ...
84 ///     }
85 ///
86 ///     fn use_reference(self: &Arc<Self>) {
87 ///         // ...
88 ///     }
89 /// }
90 ///
91 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
92 /// obj.use_reference();
93 /// obj.take_over();
94 /// ```
95 ///
96 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
97 ///
98 /// ```
99 /// use kernel::sync::{Arc, ArcBorrow};
100 ///
101 /// trait MyTrait {
102 ///     // Trait has a function whose `self` type is `Arc<Self>`.
103 ///     fn example1(self: Arc<Self>) {}
104 ///
105 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
106 ///     fn example2(self: ArcBorrow<'_, Self>) {}
107 /// }
108 ///
109 /// struct Example;
110 /// impl MyTrait for Example {}
111 ///
112 /// // `obj` has type `Arc<Example>`.
113 /// let obj: Arc<Example> = Arc::try_new(Example)?;
114 ///
115 /// // `coerced` has type `Arc<dyn MyTrait>`.
116 /// let coerced: Arc<dyn MyTrait> = obj;
117 /// ```
118 pub struct Arc<T: ?Sized> {
119     ptr: NonNull<ArcInner<T>>,
120     _p: PhantomData<ArcInner<T>>,
121 }
122 
123 #[repr(C)]
124 struct ArcInner<T: ?Sized> {
125     refcount: Opaque<bindings::refcount_t>,
126     data: T,
127 }
128 
129 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
130 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
131 
132 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
133 // dynamically-sized type (DST) `U`.
134 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
135 
136 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
137 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
138 
139 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
140 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
141 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for
142 // example, when the reference count reaches zero and `T` is dropped.
143 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
144 
145 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the
146 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>`
147 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above.
148 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
149 
150 impl<T> Arc<T> {
151     /// Constructs a new reference counted instance of `T`.
152     pub fn try_new(contents: T) -> Result<Self> {
153         // INVARIANT: The refcount is initialised to a non-zero value.
154         let value = ArcInner {
155             // SAFETY: There are no safety requirements for this FFI call.
156             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
157             data: contents,
158         };
159 
160         let inner = Box::try_new(value)?;
161 
162         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
163         // `Arc` object.
164         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
165     }
166 }
167 
168 impl<T: ?Sized> Arc<T> {
169     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
170     ///
171     /// # Safety
172     ///
173     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
174     /// count, one of which will be owned by the new [`Arc`] instance.
175     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
176         // INVARIANT: By the safety requirements, the invariants hold.
177         Arc {
178             ptr: inner,
179             _p: PhantomData,
180         }
181     }
182 
183     /// Returns an [`ArcBorrow`] from the given [`Arc`].
184     ///
185     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
186     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
187     #[inline]
188     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
189         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
190         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
191         // reference can be created.
192         unsafe { ArcBorrow::new(self.ptr) }
193     }
194 }
195 
196 impl<T: 'static> ForeignOwnable for Arc<T> {
197     type Borrowed<'a> = ArcBorrow<'a, T>;
198 
199     fn into_foreign(self) -> *const core::ffi::c_void {
200         ManuallyDrop::new(self).ptr.as_ptr() as _
201     }
202 
203     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
204         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
205         // a previous call to `Arc::into_foreign`.
206         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
207 
208         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
209         // for the lifetime of the returned value. Additionally, the safety requirements of
210         // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created.
211         unsafe { ArcBorrow::new(inner) }
212     }
213 
214     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
215         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
216         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
217         // holds a reference count increment that is transferrable to us.
218         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
219     }
220 }
221 
222 impl<T: ?Sized> Deref for Arc<T> {
223     type Target = T;
224 
225     fn deref(&self) -> &Self::Target {
226         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
227         // safe to dereference it.
228         unsafe { &self.ptr.as_ref().data }
229     }
230 }
231 
232 impl<T: ?Sized> Clone for Arc<T> {
233     fn clone(&self) -> Self {
234         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
235         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
236         // safe to increment the refcount.
237         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
238 
239         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
240         unsafe { Self::from_inner(self.ptr) }
241     }
242 }
243 
244 impl<T: ?Sized> Drop for Arc<T> {
245     fn drop(&mut self) {
246         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
247         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
248         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
249         // freed/invalid memory as long as it is never dereferenced.
250         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
251 
252         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
253         // this instance is being dropped, so the broken invariant is not observable.
254         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
255         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
256         if is_zero {
257             // The count reached zero, we must free the memory.
258             //
259             // SAFETY: The pointer was initialised from the result of `Box::leak`.
260             unsafe { Box::from_raw(self.ptr.as_ptr()) };
261         }
262     }
263 }
264 
265 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
266     fn from(item: UniqueArc<T>) -> Self {
267         item.inner
268     }
269 }
270 
271 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
272     fn from(item: Pin<UniqueArc<T>>) -> Self {
273         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
274         unsafe { Pin::into_inner_unchecked(item).inner }
275     }
276 }
277 
278 /// A borrowed reference to an [`Arc`] instance.
279 ///
280 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
281 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
282 ///
283 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
284 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
285 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
286 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
287 /// needed.
288 ///
289 /// # Invariants
290 ///
291 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
292 /// lifetime of the [`ArcBorrow`] instance.
293 ///
294 /// # Example
295 ///
296 /// ```
297 /// use crate::sync::{Arc, ArcBorrow};
298 ///
299 /// struct Example;
300 ///
301 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
302 ///     e.into()
303 /// }
304 ///
305 /// let obj = Arc::try_new(Example)?;
306 /// let cloned = do_something(obj.as_arc_borrow());
307 ///
308 /// // Assert that both `obj` and `cloned` point to the same underlying object.
309 /// assert!(core::ptr::eq(&*obj, &*cloned));
310 /// ```
311 ///
312 /// Using `ArcBorrow<T>` as the type of `self`:
313 ///
314 /// ```
315 /// use crate::sync::{Arc, ArcBorrow};
316 ///
317 /// struct Example {
318 ///     a: u32,
319 ///     b: u32,
320 /// }
321 ///
322 /// impl Example {
323 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
324 ///         // ...
325 ///     }
326 /// }
327 ///
328 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
329 /// obj.as_arc_borrow().use_reference();
330 /// ```
331 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
332     inner: NonNull<ArcInner<T>>,
333     _p: PhantomData<&'a ()>,
334 }
335 
336 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
337 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
338 
339 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
340 // `ArcBorrow<U>`.
341 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
342     for ArcBorrow<'_, T>
343 {
344 }
345 
346 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
347     fn clone(&self) -> Self {
348         *self
349     }
350 }
351 
352 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
353 
354 impl<T: ?Sized> ArcBorrow<'_, T> {
355     /// Creates a new [`ArcBorrow`] instance.
356     ///
357     /// # Safety
358     ///
359     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
360     /// 1. That `inner` remains valid;
361     /// 2. That no mutable references to `inner` are created.
362     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
363         // INVARIANT: The safety requirements guarantee the invariants.
364         Self {
365             inner,
366             _p: PhantomData,
367         }
368     }
369 }
370 
371 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
372     fn from(b: ArcBorrow<'_, T>) -> Self {
373         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
374         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
375         // increment.
376         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
377             .deref()
378             .clone()
379     }
380 }
381 
382 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
383     type Target = T;
384 
385     fn deref(&self) -> &Self::Target {
386         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
387         // references to it, so it is safe to create a shared reference.
388         unsafe { &self.inner.as_ref().data }
389     }
390 }
391 
392 /// A refcounted object that is known to have a refcount of 1.
393 ///
394 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
395 ///
396 /// # Invariants
397 ///
398 /// `inner` always has a reference count of 1.
399 ///
400 /// # Examples
401 ///
402 /// In the following example, we make changes to the inner object before turning it into an
403 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
404 /// cannot fail.
405 ///
406 /// ```
407 /// use kernel::sync::{Arc, UniqueArc};
408 ///
409 /// struct Example {
410 ///     a: u32,
411 ///     b: u32,
412 /// }
413 ///
414 /// fn test() -> Result<Arc<Example>> {
415 ///     let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
416 ///     x.a += 1;
417 ///     x.b += 1;
418 ///     Ok(x.into())
419 /// }
420 ///
421 /// # test().unwrap();
422 /// ```
423 ///
424 /// In the following example we first allocate memory for a ref-counted `Example` but we don't
425 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
426 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
427 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
428 ///
429 /// ```
430 /// use kernel::sync::{Arc, UniqueArc};
431 ///
432 /// struct Example {
433 ///     a: u32,
434 ///     b: u32,
435 /// }
436 ///
437 /// fn test() -> Result<Arc<Example>> {
438 ///     let x = UniqueArc::try_new_uninit()?;
439 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
440 /// }
441 ///
442 /// # test().unwrap();
443 /// ```
444 ///
445 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
446 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
447 /// initialisation, for example, when initialising fields that are wrapped in locks.
448 ///
449 /// ```
450 /// use kernel::sync::{Arc, UniqueArc};
451 ///
452 /// struct Example {
453 ///     a: u32,
454 ///     b: u32,
455 /// }
456 ///
457 /// fn test() -> Result<Arc<Example>> {
458 ///     let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
459 ///     // We can modify `pinned` because it is `Unpin`.
460 ///     pinned.as_mut().a += 1;
461 ///     Ok(pinned.into())
462 /// }
463 ///
464 /// # test().unwrap();
465 /// ```
466 pub struct UniqueArc<T: ?Sized> {
467     inner: Arc<T>,
468 }
469 
470 impl<T> UniqueArc<T> {
471     /// Tries to allocate a new [`UniqueArc`] instance.
472     pub fn try_new(value: T) -> Result<Self> {
473         Ok(Self {
474             // INVARIANT: The newly-created object has a ref-count of 1.
475             inner: Arc::try_new(value)?,
476         })
477     }
478 
479     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
480     pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>> {
481         Ok(UniqueArc::<MaybeUninit<T>> {
482             // INVARIANT: The newly-created object has a ref-count of 1.
483             inner: Arc::try_new(MaybeUninit::uninit())?,
484         })
485     }
486 }
487 
488 impl<T> UniqueArc<MaybeUninit<T>> {
489     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
490     pub fn write(mut self, value: T) -> UniqueArc<T> {
491         self.deref_mut().write(value);
492         let inner = ManuallyDrop::new(self).inner.ptr;
493         UniqueArc {
494             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
495             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
496             inner: unsafe { Arc::from_inner(inner.cast()) },
497         }
498     }
499 }
500 
501 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
502     fn from(obj: UniqueArc<T>) -> Self {
503         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
504         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
505         unsafe { Pin::new_unchecked(obj) }
506     }
507 }
508 
509 impl<T: ?Sized> Deref for UniqueArc<T> {
510     type Target = T;
511 
512     fn deref(&self) -> &Self::Target {
513         self.inner.deref()
514     }
515 }
516 
517 impl<T: ?Sized> DerefMut for UniqueArc<T> {
518     fn deref_mut(&mut self) -> &mut Self::Target {
519         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
520         // it is safe to dereference it. Additionally, we know there is only one reference when
521         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
522         unsafe { &mut self.inner.ptr.as_mut().data }
523     }
524 }
525