1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 bindings, 20 error::{self, Error}, 21 init::{InPlaceInit, Init, PinInit}, 22 types::{ForeignOwnable, Opaque}, 23 }; 24 use alloc::boxed::Box; 25 use core::{ 26 alloc::AllocError, 27 fmt, 28 marker::{PhantomData, Unsize}, 29 mem::{ManuallyDrop, MaybeUninit}, 30 ops::{Deref, DerefMut}, 31 pin::Pin, 32 ptr::NonNull, 33 }; 34 35 mod std_vendor; 36 37 /// A reference-counted pointer to an instance of `T`. 38 /// 39 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 40 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 41 /// 42 /// # Invariants 43 /// 44 /// The reference count on an instance of [`Arc`] is always non-zero. 45 /// The object pointed to by [`Arc`] is always pinned. 46 /// 47 /// # Examples 48 /// 49 /// ``` 50 /// use kernel::sync::Arc; 51 /// 52 /// struct Example { 53 /// a: u32, 54 /// b: u32, 55 /// } 56 /// 57 /// // Create a ref-counted instance of `Example`. 58 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 59 /// 60 /// // Get a new pointer to `obj` and increment the refcount. 61 /// let cloned = obj.clone(); 62 /// 63 /// // Assert that both `obj` and `cloned` point to the same underlying object. 64 /// assert!(core::ptr::eq(&*obj, &*cloned)); 65 /// 66 /// // Destroy `obj` and decrement its refcount. 67 /// drop(obj); 68 /// 69 /// // Check that the values are still accessible through `cloned`. 70 /// assert_eq!(cloned.a, 10); 71 /// assert_eq!(cloned.b, 20); 72 /// 73 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 74 /// ``` 75 /// 76 /// Using `Arc<T>` as the type of `self`: 77 /// 78 /// ``` 79 /// use kernel::sync::Arc; 80 /// 81 /// struct Example { 82 /// a: u32, 83 /// b: u32, 84 /// } 85 /// 86 /// impl Example { 87 /// fn take_over(self: Arc<Self>) { 88 /// // ... 89 /// } 90 /// 91 /// fn use_reference(self: &Arc<Self>) { 92 /// // ... 93 /// } 94 /// } 95 /// 96 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 97 /// obj.use_reference(); 98 /// obj.take_over(); 99 /// ``` 100 /// 101 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 102 /// 103 /// ``` 104 /// use kernel::sync::{Arc, ArcBorrow}; 105 /// 106 /// trait MyTrait { 107 /// // Trait has a function whose `self` type is `Arc<Self>`. 108 /// fn example1(self: Arc<Self>) {} 109 /// 110 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 111 /// fn example2(self: ArcBorrow<'_, Self>) {} 112 /// } 113 /// 114 /// struct Example; 115 /// impl MyTrait for Example {} 116 /// 117 /// // `obj` has type `Arc<Example>`. 118 /// let obj: Arc<Example> = Arc::try_new(Example)?; 119 /// 120 /// // `coerced` has type `Arc<dyn MyTrait>`. 121 /// let coerced: Arc<dyn MyTrait> = obj; 122 /// ``` 123 pub struct Arc<T: ?Sized> { 124 ptr: NonNull<ArcInner<T>>, 125 _p: PhantomData<ArcInner<T>>, 126 } 127 128 #[repr(C)] 129 struct ArcInner<T: ?Sized> { 130 refcount: Opaque<bindings::refcount_t>, 131 data: T, 132 } 133 134 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 135 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 136 137 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 138 // dynamically-sized type (DST) `U`. 139 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 140 141 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 142 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 143 144 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 145 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 146 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for 147 // example, when the reference count reaches zero and `T` is dropped. 148 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 149 150 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the 151 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>` 152 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above. 153 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 154 155 impl<T> Arc<T> { 156 /// Constructs a new reference counted instance of `T`. 157 pub fn try_new(contents: T) -> Result<Self, AllocError> { 158 // INVARIANT: The refcount is initialised to a non-zero value. 159 let value = ArcInner { 160 // SAFETY: There are no safety requirements for this FFI call. 161 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 162 data: contents, 163 }; 164 165 let inner = Box::try_new(value)?; 166 167 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 168 // `Arc` object. 169 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 170 } 171 172 /// Use the given initializer to in-place initialize a `T`. 173 /// 174 /// If `T: !Unpin` it will not be able to move afterwards. 175 #[inline] 176 pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> 177 where 178 Error: From<E>, 179 { 180 UniqueArc::pin_init(init).map(|u| u.into()) 181 } 182 183 /// Use the given initializer to in-place initialize a `T`. 184 /// 185 /// This is equivalent to [`pin_init`], since an [`Arc`] is always pinned. 186 #[inline] 187 pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 188 where 189 Error: From<E>, 190 { 191 UniqueArc::init(init).map(|u| u.into()) 192 } 193 } 194 195 impl<T: ?Sized> Arc<T> { 196 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 197 /// 198 /// # Safety 199 /// 200 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 201 /// count, one of which will be owned by the new [`Arc`] instance. 202 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 203 // INVARIANT: By the safety requirements, the invariants hold. 204 Arc { 205 ptr: inner, 206 _p: PhantomData, 207 } 208 } 209 210 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 211 /// 212 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 213 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 214 #[inline] 215 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 216 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 217 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 218 // reference can be created. 219 unsafe { ArcBorrow::new(self.ptr) } 220 } 221 } 222 223 impl<T: 'static> ForeignOwnable for Arc<T> { 224 type Borrowed<'a> = ArcBorrow<'a, T>; 225 226 fn into_foreign(self) -> *const core::ffi::c_void { 227 ManuallyDrop::new(self).ptr.as_ptr() as _ 228 } 229 230 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 231 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 232 // a previous call to `Arc::into_foreign`. 233 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 234 235 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 236 // for the lifetime of the returned value. Additionally, the safety requirements of 237 // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created. 238 unsafe { ArcBorrow::new(inner) } 239 } 240 241 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 242 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 243 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 244 // holds a reference count increment that is transferrable to us. 245 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 246 } 247 } 248 249 impl<T: ?Sized> Deref for Arc<T> { 250 type Target = T; 251 252 fn deref(&self) -> &Self::Target { 253 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 254 // safe to dereference it. 255 unsafe { &self.ptr.as_ref().data } 256 } 257 } 258 259 impl<T: ?Sized> Clone for Arc<T> { 260 fn clone(&self) -> Self { 261 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 262 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 263 // safe to increment the refcount. 264 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 265 266 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 267 unsafe { Self::from_inner(self.ptr) } 268 } 269 } 270 271 impl<T: ?Sized> Drop for Arc<T> { 272 fn drop(&mut self) { 273 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 274 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 275 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 276 // freed/invalid memory as long as it is never dereferenced. 277 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 278 279 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 280 // this instance is being dropped, so the broken invariant is not observable. 281 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 282 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 283 if is_zero { 284 // The count reached zero, we must free the memory. 285 // 286 // SAFETY: The pointer was initialised from the result of `Box::leak`. 287 unsafe { Box::from_raw(self.ptr.as_ptr()) }; 288 } 289 } 290 } 291 292 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 293 fn from(item: UniqueArc<T>) -> Self { 294 item.inner 295 } 296 } 297 298 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 299 fn from(item: Pin<UniqueArc<T>>) -> Self { 300 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 301 unsafe { Pin::into_inner_unchecked(item).inner } 302 } 303 } 304 305 /// A borrowed reference to an [`Arc`] instance. 306 /// 307 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 308 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance. 309 /// 310 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 311 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 312 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double 313 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if 314 /// needed. 315 /// 316 /// # Invariants 317 /// 318 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 319 /// lifetime of the [`ArcBorrow`] instance. 320 /// 321 /// # Example 322 /// 323 /// ``` 324 /// use crate::sync::{Arc, ArcBorrow}; 325 /// 326 /// struct Example; 327 /// 328 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 329 /// e.into() 330 /// } 331 /// 332 /// let obj = Arc::try_new(Example)?; 333 /// let cloned = do_something(obj.as_arc_borrow()); 334 /// 335 /// // Assert that both `obj` and `cloned` point to the same underlying object. 336 /// assert!(core::ptr::eq(&*obj, &*cloned)); 337 /// ``` 338 /// 339 /// Using `ArcBorrow<T>` as the type of `self`: 340 /// 341 /// ``` 342 /// use crate::sync::{Arc, ArcBorrow}; 343 /// 344 /// struct Example { 345 /// a: u32, 346 /// b: u32, 347 /// } 348 /// 349 /// impl Example { 350 /// fn use_reference(self: ArcBorrow<'_, Self>) { 351 /// // ... 352 /// } 353 /// } 354 /// 355 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 356 /// obj.as_arc_borrow().use_reference(); 357 /// ``` 358 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 359 inner: NonNull<ArcInner<T>>, 360 _p: PhantomData<&'a ()>, 361 } 362 363 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 364 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 365 366 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 367 // `ArcBorrow<U>`. 368 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 369 for ArcBorrow<'_, T> 370 { 371 } 372 373 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 374 fn clone(&self) -> Self { 375 *self 376 } 377 } 378 379 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 380 381 impl<T: ?Sized> ArcBorrow<'_, T> { 382 /// Creates a new [`ArcBorrow`] instance. 383 /// 384 /// # Safety 385 /// 386 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 387 /// 1. That `inner` remains valid; 388 /// 2. That no mutable references to `inner` are created. 389 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 390 // INVARIANT: The safety requirements guarantee the invariants. 391 Self { 392 inner, 393 _p: PhantomData, 394 } 395 } 396 } 397 398 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 399 fn from(b: ArcBorrow<'_, T>) -> Self { 400 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 401 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 402 // increment. 403 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 404 .deref() 405 .clone() 406 } 407 } 408 409 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 410 type Target = T; 411 412 fn deref(&self) -> &Self::Target { 413 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 414 // references to it, so it is safe to create a shared reference. 415 unsafe { &self.inner.as_ref().data } 416 } 417 } 418 419 /// A refcounted object that is known to have a refcount of 1. 420 /// 421 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 422 /// 423 /// # Invariants 424 /// 425 /// `inner` always has a reference count of 1. 426 /// 427 /// # Examples 428 /// 429 /// In the following example, we make changes to the inner object before turning it into an 430 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 431 /// cannot fail. 432 /// 433 /// ``` 434 /// use kernel::sync::{Arc, UniqueArc}; 435 /// 436 /// struct Example { 437 /// a: u32, 438 /// b: u32, 439 /// } 440 /// 441 /// fn test() -> Result<Arc<Example>> { 442 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 443 /// x.a += 1; 444 /// x.b += 1; 445 /// Ok(x.into()) 446 /// } 447 /// 448 /// # test().unwrap(); 449 /// ``` 450 /// 451 /// In the following example we first allocate memory for a ref-counted `Example` but we don't 452 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 453 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 454 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 455 /// 456 /// ``` 457 /// use kernel::sync::{Arc, UniqueArc}; 458 /// 459 /// struct Example { 460 /// a: u32, 461 /// b: u32, 462 /// } 463 /// 464 /// fn test() -> Result<Arc<Example>> { 465 /// let x = UniqueArc::try_new_uninit()?; 466 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 467 /// } 468 /// 469 /// # test().unwrap(); 470 /// ``` 471 /// 472 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 473 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 474 /// initialisation, for example, when initialising fields that are wrapped in locks. 475 /// 476 /// ``` 477 /// use kernel::sync::{Arc, UniqueArc}; 478 /// 479 /// struct Example { 480 /// a: u32, 481 /// b: u32, 482 /// } 483 /// 484 /// fn test() -> Result<Arc<Example>> { 485 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 486 /// // We can modify `pinned` because it is `Unpin`. 487 /// pinned.as_mut().a += 1; 488 /// Ok(pinned.into()) 489 /// } 490 /// 491 /// # test().unwrap(); 492 /// ``` 493 pub struct UniqueArc<T: ?Sized> { 494 inner: Arc<T>, 495 } 496 497 impl<T> UniqueArc<T> { 498 /// Tries to allocate a new [`UniqueArc`] instance. 499 pub fn try_new(value: T) -> Result<Self, AllocError> { 500 Ok(Self { 501 // INVARIANT: The newly-created object has a ref-count of 1. 502 inner: Arc::try_new(value)?, 503 }) 504 } 505 506 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 507 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 508 Ok(UniqueArc::<MaybeUninit<T>> { 509 // INVARIANT: The newly-created object has a ref-count of 1. 510 inner: Arc::try_new(MaybeUninit::uninit())?, 511 }) 512 } 513 } 514 515 impl<T> UniqueArc<MaybeUninit<T>> { 516 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 517 pub fn write(mut self, value: T) -> UniqueArc<T> { 518 self.deref_mut().write(value); 519 // SAFETY: We just wrote the value to be initialized. 520 unsafe { self.assume_init() } 521 } 522 523 /// Unsafely assume that `self` is initialized. 524 /// 525 /// # Safety 526 /// 527 /// The caller guarantees that the value behind this pointer has been initialized. It is 528 /// *immediate* UB to call this when the value is not initialized. 529 pub unsafe fn assume_init(self) -> UniqueArc<T> { 530 let inner = ManuallyDrop::new(self).inner.ptr; 531 UniqueArc { 532 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 533 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 534 inner: unsafe { Arc::from_inner(inner.cast()) }, 535 } 536 } 537 } 538 539 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 540 fn from(obj: UniqueArc<T>) -> Self { 541 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 542 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 543 unsafe { Pin::new_unchecked(obj) } 544 } 545 } 546 547 impl<T: ?Sized> Deref for UniqueArc<T> { 548 type Target = T; 549 550 fn deref(&self) -> &Self::Target { 551 self.inner.deref() 552 } 553 } 554 555 impl<T: ?Sized> DerefMut for UniqueArc<T> { 556 fn deref_mut(&mut self) -> &mut Self::Target { 557 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 558 // it is safe to dereference it. Additionally, we know there is only one reference when 559 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 560 unsafe { &mut self.inner.ptr.as_mut().data } 561 } 562 } 563 564 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 565 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 566 fmt::Display::fmt(self.deref(), f) 567 } 568 } 569 570 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 571 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 572 fmt::Display::fmt(self.deref(), f) 573 } 574 } 575 576 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 577 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 578 fmt::Debug::fmt(self.deref(), f) 579 } 580 } 581 582 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 583 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 584 fmt::Debug::fmt(self.deref(), f) 585 } 586 } 587