xref: /openbmc/linux/rust/kernel/sync/arc.rs (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     bindings,
20     error::{self, Error},
21     init::{self, InPlaceInit, Init, PinInit},
22     try_init,
23     types::{ForeignOwnable, Opaque},
24 };
25 use alloc::boxed::Box;
26 use core::{
27     alloc::AllocError,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a ref-counted instance of `Example`.
60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// ```
77 ///
78 /// Using `Arc<T>` as the type of `self`:
79 ///
80 /// ```
81 /// use kernel::sync::Arc;
82 ///
83 /// struct Example {
84 ///     a: u32,
85 ///     b: u32,
86 /// }
87 ///
88 /// impl Example {
89 ///     fn take_over(self: Arc<Self>) {
90 ///         // ...
91 ///     }
92 ///
93 ///     fn use_reference(self: &Arc<Self>) {
94 ///         // ...
95 ///     }
96 /// }
97 ///
98 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
99 /// obj.use_reference();
100 /// obj.take_over();
101 /// ```
102 ///
103 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
104 ///
105 /// ```
106 /// use kernel::sync::{Arc, ArcBorrow};
107 ///
108 /// trait MyTrait {
109 ///     // Trait has a function whose `self` type is `Arc<Self>`.
110 ///     fn example1(self: Arc<Self>) {}
111 ///
112 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
113 ///     fn example2(self: ArcBorrow<'_, Self>) {}
114 /// }
115 ///
116 /// struct Example;
117 /// impl MyTrait for Example {}
118 ///
119 /// // `obj` has type `Arc<Example>`.
120 /// let obj: Arc<Example> = Arc::try_new(Example)?;
121 ///
122 /// // `coerced` has type `Arc<dyn MyTrait>`.
123 /// let coerced: Arc<dyn MyTrait> = obj;
124 /// ```
125 pub struct Arc<T: ?Sized> {
126     ptr: NonNull<ArcInner<T>>,
127     _p: PhantomData<ArcInner<T>>,
128 }
129 
130 #[pin_data]
131 #[repr(C)]
132 struct ArcInner<T: ?Sized> {
133     refcount: Opaque<bindings::refcount_t>,
134     data: T,
135 }
136 
137 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
138 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
139 
140 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
141 // dynamically-sized type (DST) `U`.
142 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
143 
144 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
146 
147 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
148 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
149 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for
150 // example, when the reference count reaches zero and `T` is dropped.
151 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
152 
153 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the
154 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>`
155 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above.
156 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
157 
158 impl<T> Arc<T> {
159     /// Constructs a new reference counted instance of `T`.
160     pub fn try_new(contents: T) -> Result<Self, AllocError> {
161         // INVARIANT: The refcount is initialised to a non-zero value.
162         let value = ArcInner {
163             // SAFETY: There are no safety requirements for this FFI call.
164             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
165             data: contents,
166         };
167 
168         let inner = Box::try_new(value)?;
169 
170         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
171         // `Arc` object.
172         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
173     }
174 
175     /// Use the given initializer to in-place initialize a `T`.
176     ///
177     /// If `T: !Unpin` it will not be able to move afterwards.
178     #[inline]
179     pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
180     where
181         Error: From<E>,
182     {
183         UniqueArc::pin_init(init).map(|u| u.into())
184     }
185 
186     /// Use the given initializer to in-place initialize a `T`.
187     ///
188     /// This is equivalent to [`pin_init`], since an [`Arc`] is always pinned.
189     #[inline]
190     pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
191     where
192         Error: From<E>,
193     {
194         UniqueArc::init(init).map(|u| u.into())
195     }
196 }
197 
198 impl<T: ?Sized> Arc<T> {
199     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
200     ///
201     /// # Safety
202     ///
203     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
204     /// count, one of which will be owned by the new [`Arc`] instance.
205     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
206         // INVARIANT: By the safety requirements, the invariants hold.
207         Arc {
208             ptr: inner,
209             _p: PhantomData,
210         }
211     }
212 
213     /// Returns an [`ArcBorrow`] from the given [`Arc`].
214     ///
215     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
216     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
217     #[inline]
218     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
219         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
220         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
221         // reference can be created.
222         unsafe { ArcBorrow::new(self.ptr) }
223     }
224 }
225 
226 impl<T: 'static> ForeignOwnable for Arc<T> {
227     type Borrowed<'a> = ArcBorrow<'a, T>;
228 
229     fn into_foreign(self) -> *const core::ffi::c_void {
230         ManuallyDrop::new(self).ptr.as_ptr() as _
231     }
232 
233     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
234         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
235         // a previous call to `Arc::into_foreign`.
236         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
237 
238         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
239         // for the lifetime of the returned value. Additionally, the safety requirements of
240         // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created.
241         unsafe { ArcBorrow::new(inner) }
242     }
243 
244     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
245         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
246         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
247         // holds a reference count increment that is transferrable to us.
248         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
249     }
250 }
251 
252 impl<T: ?Sized> Deref for Arc<T> {
253     type Target = T;
254 
255     fn deref(&self) -> &Self::Target {
256         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
257         // safe to dereference it.
258         unsafe { &self.ptr.as_ref().data }
259     }
260 }
261 
262 impl<T: ?Sized> Clone for Arc<T> {
263     fn clone(&self) -> Self {
264         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
265         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
266         // safe to increment the refcount.
267         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
268 
269         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
270         unsafe { Self::from_inner(self.ptr) }
271     }
272 }
273 
274 impl<T: ?Sized> Drop for Arc<T> {
275     fn drop(&mut self) {
276         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
277         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
278         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
279         // freed/invalid memory as long as it is never dereferenced.
280         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
281 
282         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
283         // this instance is being dropped, so the broken invariant is not observable.
284         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
285         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
286         if is_zero {
287             // The count reached zero, we must free the memory.
288             //
289             // SAFETY: The pointer was initialised from the result of `Box::leak`.
290             unsafe { Box::from_raw(self.ptr.as_ptr()) };
291         }
292     }
293 }
294 
295 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
296     fn from(item: UniqueArc<T>) -> Self {
297         item.inner
298     }
299 }
300 
301 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
302     fn from(item: Pin<UniqueArc<T>>) -> Self {
303         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
304         unsafe { Pin::into_inner_unchecked(item).inner }
305     }
306 }
307 
308 /// A borrowed reference to an [`Arc`] instance.
309 ///
310 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
311 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
312 ///
313 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
314 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
315 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
316 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
317 /// needed.
318 ///
319 /// # Invariants
320 ///
321 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
322 /// lifetime of the [`ArcBorrow`] instance.
323 ///
324 /// # Example
325 ///
326 /// ```
327 /// use crate::sync::{Arc, ArcBorrow};
328 ///
329 /// struct Example;
330 ///
331 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
332 ///     e.into()
333 /// }
334 ///
335 /// let obj = Arc::try_new(Example)?;
336 /// let cloned = do_something(obj.as_arc_borrow());
337 ///
338 /// // Assert that both `obj` and `cloned` point to the same underlying object.
339 /// assert!(core::ptr::eq(&*obj, &*cloned));
340 /// ```
341 ///
342 /// Using `ArcBorrow<T>` as the type of `self`:
343 ///
344 /// ```
345 /// use crate::sync::{Arc, ArcBorrow};
346 ///
347 /// struct Example {
348 ///     a: u32,
349 ///     b: u32,
350 /// }
351 ///
352 /// impl Example {
353 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
354 ///         // ...
355 ///     }
356 /// }
357 ///
358 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
359 /// obj.as_arc_borrow().use_reference();
360 /// ```
361 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
362     inner: NonNull<ArcInner<T>>,
363     _p: PhantomData<&'a ()>,
364 }
365 
366 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
367 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
368 
369 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
370 // `ArcBorrow<U>`.
371 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
372     for ArcBorrow<'_, T>
373 {
374 }
375 
376 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
377     fn clone(&self) -> Self {
378         *self
379     }
380 }
381 
382 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
383 
384 impl<T: ?Sized> ArcBorrow<'_, T> {
385     /// Creates a new [`ArcBorrow`] instance.
386     ///
387     /// # Safety
388     ///
389     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
390     /// 1. That `inner` remains valid;
391     /// 2. That no mutable references to `inner` are created.
392     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
393         // INVARIANT: The safety requirements guarantee the invariants.
394         Self {
395             inner,
396             _p: PhantomData,
397         }
398     }
399 }
400 
401 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
402     fn from(b: ArcBorrow<'_, T>) -> Self {
403         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
404         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
405         // increment.
406         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
407             .deref()
408             .clone()
409     }
410 }
411 
412 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
413     type Target = T;
414 
415     fn deref(&self) -> &Self::Target {
416         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
417         // references to it, so it is safe to create a shared reference.
418         unsafe { &self.inner.as_ref().data }
419     }
420 }
421 
422 /// A refcounted object that is known to have a refcount of 1.
423 ///
424 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
425 ///
426 /// # Invariants
427 ///
428 /// `inner` always has a reference count of 1.
429 ///
430 /// # Examples
431 ///
432 /// In the following example, we make changes to the inner object before turning it into an
433 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
434 /// cannot fail.
435 ///
436 /// ```
437 /// use kernel::sync::{Arc, UniqueArc};
438 ///
439 /// struct Example {
440 ///     a: u32,
441 ///     b: u32,
442 /// }
443 ///
444 /// fn test() -> Result<Arc<Example>> {
445 ///     let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
446 ///     x.a += 1;
447 ///     x.b += 1;
448 ///     Ok(x.into())
449 /// }
450 ///
451 /// # test().unwrap();
452 /// ```
453 ///
454 /// In the following example we first allocate memory for a ref-counted `Example` but we don't
455 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
456 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
457 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
458 ///
459 /// ```
460 /// use kernel::sync::{Arc, UniqueArc};
461 ///
462 /// struct Example {
463 ///     a: u32,
464 ///     b: u32,
465 /// }
466 ///
467 /// fn test() -> Result<Arc<Example>> {
468 ///     let x = UniqueArc::try_new_uninit()?;
469 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
470 /// }
471 ///
472 /// # test().unwrap();
473 /// ```
474 ///
475 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
476 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
477 /// initialisation, for example, when initialising fields that are wrapped in locks.
478 ///
479 /// ```
480 /// use kernel::sync::{Arc, UniqueArc};
481 ///
482 /// struct Example {
483 ///     a: u32,
484 ///     b: u32,
485 /// }
486 ///
487 /// fn test() -> Result<Arc<Example>> {
488 ///     let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
489 ///     // We can modify `pinned` because it is `Unpin`.
490 ///     pinned.as_mut().a += 1;
491 ///     Ok(pinned.into())
492 /// }
493 ///
494 /// # test().unwrap();
495 /// ```
496 pub struct UniqueArc<T: ?Sized> {
497     inner: Arc<T>,
498 }
499 
500 impl<T> UniqueArc<T> {
501     /// Tries to allocate a new [`UniqueArc`] instance.
502     pub fn try_new(value: T) -> Result<Self, AllocError> {
503         Ok(Self {
504             // INVARIANT: The newly-created object has a ref-count of 1.
505             inner: Arc::try_new(value)?,
506         })
507     }
508 
509     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
510     pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
511         // INVARIANT: The refcount is initialised to a non-zero value.
512         let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
513             // SAFETY: There are no safety requirements for this FFI call.
514             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
515             data <- init::uninit::<T, AllocError>(),
516         }? AllocError))?;
517         Ok(UniqueArc {
518             // INVARIANT: The newly-created object has a ref-count of 1.
519             // SAFETY: The pointer from the `Box` is valid.
520             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
521         })
522     }
523 }
524 
525 impl<T> UniqueArc<MaybeUninit<T>> {
526     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
527     pub fn write(mut self, value: T) -> UniqueArc<T> {
528         self.deref_mut().write(value);
529         // SAFETY: We just wrote the value to be initialized.
530         unsafe { self.assume_init() }
531     }
532 
533     /// Unsafely assume that `self` is initialized.
534     ///
535     /// # Safety
536     ///
537     /// The caller guarantees that the value behind this pointer has been initialized. It is
538     /// *immediate* UB to call this when the value is not initialized.
539     pub unsafe fn assume_init(self) -> UniqueArc<T> {
540         let inner = ManuallyDrop::new(self).inner.ptr;
541         UniqueArc {
542             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
543             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
544             inner: unsafe { Arc::from_inner(inner.cast()) },
545         }
546     }
547 
548     /// Initialize `self` using the given initializer.
549     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
550         // SAFETY: The supplied pointer is valid for initialization.
551         match unsafe { init.__init(self.as_mut_ptr()) } {
552             // SAFETY: Initialization completed successfully.
553             Ok(()) => Ok(unsafe { self.assume_init() }),
554             Err(err) => Err(err),
555         }
556     }
557 
558     /// Pin-initialize `self` using the given pin-initializer.
559     pub fn pin_init_with<E>(
560         mut self,
561         init: impl PinInit<T, E>,
562     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
563         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
564         // to ensure it does not move.
565         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
566             // SAFETY: Initialization completed successfully.
567             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
568             Err(err) => Err(err),
569         }
570     }
571 }
572 
573 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
574     fn from(obj: UniqueArc<T>) -> Self {
575         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
576         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
577         unsafe { Pin::new_unchecked(obj) }
578     }
579 }
580 
581 impl<T: ?Sized> Deref for UniqueArc<T> {
582     type Target = T;
583 
584     fn deref(&self) -> &Self::Target {
585         self.inner.deref()
586     }
587 }
588 
589 impl<T: ?Sized> DerefMut for UniqueArc<T> {
590     fn deref_mut(&mut self) -> &mut Self::Target {
591         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
592         // it is safe to dereference it. Additionally, we know there is only one reference when
593         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
594         unsafe { &mut self.inner.ptr.as_mut().data }
595     }
596 }
597 
598 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
599     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
600         fmt::Display::fmt(self.deref(), f)
601     }
602 }
603 
604 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
605     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
606         fmt::Display::fmt(self.deref(), f)
607     }
608 }
609 
610 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
611     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
612         fmt::Debug::fmt(self.deref(), f)
613     }
614 }
615 
616 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
617     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
618         fmt::Debug::fmt(self.deref(), f)
619     }
620 }
621