1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use alloc::alloc::AllocError; 6 use alloc::vec::Vec; 7 use core::fmt::{self, Write}; 8 use core::ops::{self, Deref, Index}; 9 10 use crate::{ 11 bindings, 12 error::{code::*, Error}, 13 }; 14 15 /// Byte string without UTF-8 validity guarantee. 16 /// 17 /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. 18 pub type BStr = [u8]; 19 20 /// Creates a new [`BStr`] from a string literal. 21 /// 22 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 23 /// characters can be included. 24 /// 25 /// # Examples 26 /// 27 /// ``` 28 /// # use kernel::b_str; 29 /// # use kernel::str::BStr; 30 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 31 /// ``` 32 #[macro_export] 33 macro_rules! b_str { 34 ($str:literal) => {{ 35 const S: &'static str = $str; 36 const C: &'static $crate::str::BStr = S.as_bytes(); 37 C 38 }}; 39 } 40 41 /// Possible errors when using conversion functions in [`CStr`]. 42 #[derive(Debug, Clone, Copy)] 43 pub enum CStrConvertError { 44 /// Supplied bytes contain an interior `NUL`. 45 InteriorNul, 46 47 /// Supplied bytes are not terminated by `NUL`. 48 NotNulTerminated, 49 } 50 51 impl From<CStrConvertError> for Error { 52 #[inline] from(_: CStrConvertError) -> Error53 fn from(_: CStrConvertError) -> Error { 54 EINVAL 55 } 56 } 57 58 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 59 /// end. 60 /// 61 /// Used for interoperability with kernel APIs that take C strings. 62 #[repr(transparent)] 63 pub struct CStr([u8]); 64 65 impl CStr { 66 /// Returns the length of this string excluding `NUL`. 67 #[inline] len(&self) -> usize68 pub const fn len(&self) -> usize { 69 self.len_with_nul() - 1 70 } 71 72 /// Returns the length of this string with `NUL`. 73 #[inline] len_with_nul(&self) -> usize74 pub const fn len_with_nul(&self) -> usize { 75 // SAFETY: This is one of the invariant of `CStr`. 76 // We add a `unreachable_unchecked` here to hint the optimizer that 77 // the value returned from this function is non-zero. 78 if self.0.is_empty() { 79 unsafe { core::hint::unreachable_unchecked() }; 80 } 81 self.0.len() 82 } 83 84 /// Returns `true` if the string only includes `NUL`. 85 #[inline] is_empty(&self) -> bool86 pub const fn is_empty(&self) -> bool { 87 self.len() == 0 88 } 89 90 /// Wraps a raw C string pointer. 91 /// 92 /// # Safety 93 /// 94 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 95 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 96 /// must not be mutated. 97 #[inline] from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self98 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 99 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 100 // to a `NUL`-terminated C string. 101 let len = unsafe { bindings::strlen(ptr) } + 1; 102 // SAFETY: Lifetime guaranteed by the safety precondition. 103 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 104 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 105 // As we have added 1 to `len`, the last byte is known to be `NUL`. 106 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 107 } 108 109 /// Creates a [`CStr`] from a `[u8]`. 110 /// 111 /// The provided slice must be `NUL`-terminated, does not contain any 112 /// interior `NUL` bytes. from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError>113 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 114 if bytes.is_empty() { 115 return Err(CStrConvertError::NotNulTerminated); 116 } 117 if bytes[bytes.len() - 1] != 0 { 118 return Err(CStrConvertError::NotNulTerminated); 119 } 120 let mut i = 0; 121 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 122 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 123 while i + 1 < bytes.len() { 124 if bytes[i] == 0 { 125 return Err(CStrConvertError::InteriorNul); 126 } 127 i += 1; 128 } 129 // SAFETY: We just checked that all properties hold. 130 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 131 } 132 133 /// Creates a [`CStr`] from a `[u8]` without performing any additional 134 /// checks. 135 /// 136 /// # Safety 137 /// 138 /// `bytes` *must* end with a `NUL` byte, and should only have a single 139 /// `NUL` byte (or the string will be truncated). 140 #[inline] from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr141 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 142 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 143 unsafe { core::mem::transmute(bytes) } 144 } 145 146 /// Returns a C pointer to the string. 147 #[inline] as_char_ptr(&self) -> *const core::ffi::c_char148 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 149 self.0.as_ptr() as _ 150 } 151 152 /// Convert the string to a byte slice without the trailing 0 byte. 153 #[inline] as_bytes(&self) -> &[u8]154 pub fn as_bytes(&self) -> &[u8] { 155 &self.0[..self.len()] 156 } 157 158 /// Convert the string to a byte slice containing the trailing 0 byte. 159 #[inline] as_bytes_with_nul(&self) -> &[u8]160 pub const fn as_bytes_with_nul(&self) -> &[u8] { 161 &self.0 162 } 163 164 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 165 /// 166 /// If the contents of the [`CStr`] are valid UTF-8 data, this 167 /// function will return the corresponding [`&str`] slice. Otherwise, 168 /// it will return an error with details of where UTF-8 validation failed. 169 /// 170 /// # Examples 171 /// 172 /// ``` 173 /// # use kernel::str::CStr; 174 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 175 /// assert_eq!(cstr.to_str(), Ok("foo")); 176 /// ``` 177 #[inline] to_str(&self) -> Result<&str, core::str::Utf8Error>178 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 179 core::str::from_utf8(self.as_bytes()) 180 } 181 182 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 183 /// valid UTF-8. 184 /// 185 /// # Safety 186 /// 187 /// The contents must be valid UTF-8. 188 /// 189 /// # Examples 190 /// 191 /// ``` 192 /// # use kernel::c_str; 193 /// # use kernel::str::CStr; 194 /// // SAFETY: String literals are guaranteed to be valid UTF-8 195 /// // by the Rust compiler. 196 /// let bar = c_str!("ツ"); 197 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 198 /// ``` 199 #[inline] as_str_unchecked(&self) -> &str200 pub unsafe fn as_str_unchecked(&self) -> &str { 201 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 202 } 203 204 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 205 /// copying over the string data. to_cstring(&self) -> Result<CString, AllocError>206 pub fn to_cstring(&self) -> Result<CString, AllocError> { 207 CString::try_from(self) 208 } 209 } 210 211 impl fmt::Display for CStr { 212 /// Formats printable ASCII characters, escaping the rest. 213 /// 214 /// ``` 215 /// # use kernel::c_str; 216 /// # use kernel::fmt; 217 /// # use kernel::str::CStr; 218 /// # use kernel::str::CString; 219 /// let penguin = c_str!(""); 220 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 221 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 222 /// 223 /// let ascii = c_str!("so \"cool\""); 224 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 225 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 226 /// ``` fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result227 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 228 for &c in self.as_bytes() { 229 if (0x20..0x7f).contains(&c) { 230 // Printable character. 231 f.write_char(c as char)?; 232 } else { 233 write!(f, "\\x{:02x}", c)?; 234 } 235 } 236 Ok(()) 237 } 238 } 239 240 impl fmt::Debug for CStr { 241 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 242 /// 243 /// ``` 244 /// # use kernel::c_str; 245 /// # use kernel::fmt; 246 /// # use kernel::str::CStr; 247 /// # use kernel::str::CString; 248 /// let penguin = c_str!(""); 249 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 250 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 251 /// 252 /// // Embedded double quotes are escaped. 253 /// let ascii = c_str!("so \"cool\""); 254 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 255 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 256 /// ``` fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result257 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 258 f.write_str("\"")?; 259 for &c in self.as_bytes() { 260 match c { 261 // Printable characters. 262 b'\"' => f.write_str("\\\"")?, 263 0x20..=0x7e => f.write_char(c as char)?, 264 _ => write!(f, "\\x{:02x}", c)?, 265 } 266 } 267 f.write_str("\"") 268 } 269 } 270 271 impl AsRef<BStr> for CStr { 272 #[inline] as_ref(&self) -> &BStr273 fn as_ref(&self) -> &BStr { 274 self.as_bytes() 275 } 276 } 277 278 impl Deref for CStr { 279 type Target = BStr; 280 281 #[inline] deref(&self) -> &Self::Target282 fn deref(&self) -> &Self::Target { 283 self.as_bytes() 284 } 285 } 286 287 impl Index<ops::RangeFrom<usize>> for CStr { 288 type Output = CStr; 289 290 #[inline] index(&self, index: ops::RangeFrom<usize>) -> &Self::Output291 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 292 // Delegate bounds checking to slice. 293 // Assign to _ to mute clippy's unnecessary operation warning. 294 let _ = &self.as_bytes()[index.start..]; 295 // SAFETY: We just checked the bounds. 296 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 297 } 298 } 299 300 impl Index<ops::RangeFull> for CStr { 301 type Output = CStr; 302 303 #[inline] index(&self, _index: ops::RangeFull) -> &Self::Output304 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 305 self 306 } 307 } 308 309 mod private { 310 use core::ops; 311 312 // Marker trait for index types that can be forward to `BStr`. 313 pub trait CStrIndex {} 314 315 impl CStrIndex for usize {} 316 impl CStrIndex for ops::Range<usize> {} 317 impl CStrIndex for ops::RangeInclusive<usize> {} 318 impl CStrIndex for ops::RangeToInclusive<usize> {} 319 } 320 321 impl<Idx> Index<Idx> for CStr 322 where 323 Idx: private::CStrIndex, 324 BStr: Index<Idx>, 325 { 326 type Output = <BStr as Index<Idx>>::Output; 327 328 #[inline] index(&self, index: Idx) -> &Self::Output329 fn index(&self, index: Idx) -> &Self::Output { 330 &self.as_bytes()[index] 331 } 332 } 333 334 /// Creates a new [`CStr`] from a string literal. 335 /// 336 /// The string literal should not contain any `NUL` bytes. 337 /// 338 /// # Examples 339 /// 340 /// ``` 341 /// # use kernel::c_str; 342 /// # use kernel::str::CStr; 343 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 344 /// ``` 345 #[macro_export] 346 macro_rules! c_str { 347 ($str:expr) => {{ 348 const S: &str = concat!($str, "\0"); 349 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 350 Ok(v) => v, 351 Err(_) => panic!("string contains interior NUL"), 352 }; 353 C 354 }}; 355 } 356 357 #[cfg(test)] 358 mod tests { 359 use super::*; 360 361 #[test] test_cstr_to_str()362 fn test_cstr_to_str() { 363 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 364 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 365 let checked_str = checked_cstr.to_str().unwrap(); 366 assert_eq!(checked_str, ""); 367 } 368 369 #[test] 370 #[should_panic] test_cstr_to_str_panic()371 fn test_cstr_to_str_panic() { 372 let bad_bytes = b"\xc3\x28\0"; 373 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 374 checked_cstr.to_str().unwrap(); 375 } 376 377 #[test] test_cstr_as_str_unchecked()378 fn test_cstr_as_str_unchecked() { 379 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 380 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 381 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 382 assert_eq!(unchecked_str, ""); 383 } 384 } 385 386 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 387 /// 388 /// It does not fail if callers write past the end of the buffer so that they can calculate the 389 /// size required to fit everything. 390 /// 391 /// # Invariants 392 /// 393 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 394 /// is less than `end`. 395 pub(crate) struct RawFormatter { 396 // Use `usize` to use `saturating_*` functions. 397 beg: usize, 398 pos: usize, 399 end: usize, 400 } 401 402 impl RawFormatter { 403 /// Creates a new instance of [`RawFormatter`] with an empty buffer. new() -> Self404 fn new() -> Self { 405 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 406 Self { 407 beg: 0, 408 pos: 0, 409 end: 0, 410 } 411 } 412 413 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 414 /// 415 /// # Safety 416 /// 417 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 418 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. from_ptrs(pos: *mut u8, end: *mut u8) -> Self419 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 420 // INVARIANT: The safety requirements guarantee the type invariants. 421 Self { 422 beg: pos as _, 423 pos: pos as _, 424 end: end as _, 425 } 426 } 427 428 /// Creates a new instance of [`RawFormatter`] with the given buffer. 429 /// 430 /// # Safety 431 /// 432 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 433 /// for the lifetime of the returned [`RawFormatter`]. from_buffer(buf: *mut u8, len: usize) -> Self434 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 435 let pos = buf as usize; 436 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 437 // guarantees that the memory region is valid for writes. 438 Self { 439 pos, 440 beg: pos, 441 end: pos.saturating_add(len), 442 } 443 } 444 445 /// Returns the current insert position. 446 /// 447 /// N.B. It may point to invalid memory. pos(&self) -> *mut u8448 pub(crate) fn pos(&self) -> *mut u8 { 449 self.pos as _ 450 } 451 452 /// Return the number of bytes written to the formatter. bytes_written(&self) -> usize453 pub(crate) fn bytes_written(&self) -> usize { 454 self.pos - self.beg 455 } 456 } 457 458 impl fmt::Write for RawFormatter { write_str(&mut self, s: &str) -> fmt::Result459 fn write_str(&mut self, s: &str) -> fmt::Result { 460 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 461 // don't want it to wrap around to 0. 462 let pos_new = self.pos.saturating_add(s.len()); 463 464 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 465 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 466 467 if len_to_copy > 0 { 468 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 469 // yet, so it is valid for write per the type invariants. 470 unsafe { 471 core::ptr::copy_nonoverlapping( 472 s.as_bytes().as_ptr(), 473 self.pos as *mut u8, 474 len_to_copy, 475 ) 476 }; 477 } 478 479 self.pos = pos_new; 480 Ok(()) 481 } 482 } 483 484 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 485 /// 486 /// Fails if callers attempt to write more than will fit in the buffer. 487 pub(crate) struct Formatter(RawFormatter); 488 489 impl Formatter { 490 /// Creates a new instance of [`Formatter`] with the given buffer. 491 /// 492 /// # Safety 493 /// 494 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 495 /// for the lifetime of the returned [`Formatter`]. from_buffer(buf: *mut u8, len: usize) -> Self496 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 497 // SAFETY: The safety requirements of this function satisfy those of the callee. 498 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 499 } 500 } 501 502 impl Deref for Formatter { 503 type Target = RawFormatter; 504 deref(&self) -> &Self::Target505 fn deref(&self) -> &Self::Target { 506 &self.0 507 } 508 } 509 510 impl fmt::Write for Formatter { write_str(&mut self, s: &str) -> fmt::Result511 fn write_str(&mut self, s: &str) -> fmt::Result { 512 self.0.write_str(s)?; 513 514 // Fail the request if we go past the end of the buffer. 515 if self.0.pos > self.0.end { 516 Err(fmt::Error) 517 } else { 518 Ok(()) 519 } 520 } 521 } 522 523 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 524 /// 525 /// Used for interoperability with kernel APIs that take C strings. 526 /// 527 /// # Invariants 528 /// 529 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 530 /// 531 /// # Examples 532 /// 533 /// ``` 534 /// use kernel::{str::CString, fmt}; 535 /// 536 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 537 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 538 /// 539 /// let tmp = "testing"; 540 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 541 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 542 /// 543 /// // This fails because it has an embedded `NUL` byte. 544 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 545 /// assert_eq!(s.is_ok(), false); 546 /// ``` 547 pub struct CString { 548 buf: Vec<u8>, 549 } 550 551 impl CString { 552 /// Creates an instance of [`CString`] from the given formatted arguments. try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error>553 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 554 // Calculate the size needed (formatted string plus `NUL` terminator). 555 let mut f = RawFormatter::new(); 556 f.write_fmt(args)?; 557 f.write_str("\0")?; 558 let size = f.bytes_written(); 559 560 // Allocate a vector with the required number of bytes, and write to it. 561 let mut buf = Vec::try_with_capacity(size)?; 562 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 563 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 564 f.write_fmt(args)?; 565 f.write_str("\0")?; 566 567 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 568 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 569 unsafe { buf.set_len(f.bytes_written()) }; 570 571 // Check that there are no `NUL` bytes before the end. 572 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 573 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 574 // so `f.bytes_written() - 1` doesn't underflow. 575 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 576 if !ptr.is_null() { 577 return Err(EINVAL); 578 } 579 580 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 581 // exist in the buffer. 582 Ok(Self { buf }) 583 } 584 } 585 586 impl Deref for CString { 587 type Target = CStr; 588 deref(&self) -> &Self::Target589 fn deref(&self) -> &Self::Target { 590 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 591 // other `NUL` bytes exist. 592 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 593 } 594 } 595 596 impl<'a> TryFrom<&'a CStr> for CString { 597 type Error = AllocError; 598 try_from(cstr: &'a CStr) -> Result<CString, AllocError>599 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 600 let mut buf = Vec::new(); 601 602 buf.try_extend_from_slice(cstr.as_bytes_with_nul()) 603 .map_err(|_| AllocError)?; 604 605 // INVARIANT: The `CStr` and `CString` types have the same invariants for 606 // the string data, and we copied it over without changes. 607 Ok(CString { buf }) 608 } 609 } 610 611 /// A convenience alias for [`core::format_args`]. 612 #[macro_export] 613 macro_rules! fmt { 614 ($($f:tt)*) => ( core::format_args!($($f)*) ) 615 } 616