xref: /openbmc/linux/rust/kernel/init.rs (revision b7d6e724)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
39 //! use kernel::{prelude::*, sync::Mutex, new_mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}};
83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
84 //! ```
85 //!
86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
87 //!
88 //! ```rust
89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
91 //! #[pin_data]
92 //! struct DriverData {
93 //!     #[pin]
94 //!     status: Mutex<i32>,
95 //!     buffer: Box<[u8; 1_000_000]>,
96 //! }
97 //!
98 //! impl DriverData {
99 //!     fn new() -> impl PinInit<Self, Error> {
100 //!         try_pin_init!(Self {
101 //!             status <- new_mutex!(0, "DriverData::status"),
102 //!             buffer: Box::init(kernel::init::zeroed())?,
103 //!         })
104 //!     }
105 //! }
106 //! ```
107 //!
108 //! ## Manual creation of an initializer
109 //!
110 //! Often when working with primitives the previous approaches are not sufficient. That is where
111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
113 //! actually does the initialization in the correct way. Here are the things to look out for
114 //! (we are calling the parameter to the closure `slot`):
115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
116 //!   `slot` now contains a valid bit pattern for the type `T`,
117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
118 //!   you need to take care to clean up anything if your initialization fails mid-way,
119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
120 //!   `slot` gets called.
121 //!
122 //! ```rust
123 //! # #![allow(unreachable_pub, clippy::disallowed_names)]
124 //! use kernel::{prelude::*, init, types::Opaque};
125 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
126 //! # mod bindings {
127 //! #     #![allow(non_camel_case_types)]
128 //! #     pub struct foo;
129 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
130 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
131 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
132 //! # }
133 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
134 //! # trait FromErrno {
135 //! #     fn from_errno(errno: core::ffi::c_int) -> Error {
136 //! #         // Dummy error that can be constructed outside the `kernel` crate.
137 //! #         Error::from(core::fmt::Error)
138 //! #     }
139 //! # }
140 //! # impl FromErrno for Error {}
141 //! /// # Invariants
142 //! ///
143 //! /// `foo` is always initialized
144 //! #[pin_data(PinnedDrop)]
145 //! pub struct RawFoo {
146 //!     #[pin]
147 //!     foo: Opaque<bindings::foo>,
148 //!     #[pin]
149 //!     _p: PhantomPinned,
150 //! }
151 //!
152 //! impl RawFoo {
153 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
154 //!         // SAFETY:
155 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
156 //!         //   enabled `foo`,
157 //!         // - when it returns `Err(e)`, then it has cleaned up before
158 //!         unsafe {
159 //!             init::pin_init_from_closure(move |slot: *mut Self| {
160 //!                 // `slot` contains uninit memory, avoid creating a reference.
161 //!                 let foo = addr_of_mut!((*slot).foo);
162 //!
163 //!                 // Initialize the `foo`
164 //!                 bindings::init_foo(Opaque::raw_get(foo));
165 //!
166 //!                 // Try to enable it.
167 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
168 //!                 if err != 0 {
169 //!                     // Enabling has failed, first clean up the foo and then return the error.
170 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
171 //!                     return Err(Error::from_errno(err));
172 //!                 }
173 //!
174 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
175 //!                 Ok(())
176 //!             })
177 //!         }
178 //!     }
179 //! }
180 //!
181 //! #[pinned_drop]
182 //! impl PinnedDrop for RawFoo {
183 //!     fn drop(self: Pin<&mut Self>) {
184 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
185 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
186 //!     }
187 //! }
188 //! ```
189 //!
190 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
191 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
192 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
193 //! with [`pin_init!`].
194 //!
195 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
196 //! the `kernel` crate. The [`sync`] module is a good starting point.
197 //!
198 //! [`sync`]: kernel::sync
199 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
200 //! [structurally pinned fields]:
201 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
202 //! [stack]: crate::stack_pin_init
203 //! [`Arc<T>`]: crate::sync::Arc
204 //! [`impl PinInit<Foo>`]: PinInit
205 //! [`impl PinInit<T, E>`]: PinInit
206 //! [`impl Init<T, E>`]: Init
207 //! [`Opaque`]: kernel::types::Opaque
208 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
209 //! [`pin_data`]: ::macros::pin_data
210 //! [`pin_init!`]: crate::pin_init!
211 
212 use crate::{
213     error::{self, Error},
214     sync::UniqueArc,
215     types::{Opaque, ScopeGuard},
216 };
217 use alloc::boxed::Box;
218 use core::{
219     alloc::AllocError,
220     cell::UnsafeCell,
221     convert::Infallible,
222     marker::PhantomData,
223     mem::MaybeUninit,
224     num::*,
225     pin::Pin,
226     ptr::{self, NonNull},
227 };
228 
229 #[doc(hidden)]
230 pub mod __internal;
231 #[doc(hidden)]
232 pub mod macros;
233 
234 /// Initialize and pin a type directly on the stack.
235 ///
236 /// # Examples
237 ///
238 /// ```rust
239 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
240 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
241 /// # use core::pin::Pin;
242 /// #[pin_data]
243 /// struct Foo {
244 ///     #[pin]
245 ///     a: Mutex<usize>,
246 ///     b: Bar,
247 /// }
248 ///
249 /// #[pin_data]
250 /// struct Bar {
251 ///     x: u32,
252 /// }
253 ///
254 /// stack_pin_init!(let foo = pin_init!(Foo {
255 ///     a <- new_mutex!(42),
256 ///     b: Bar {
257 ///         x: 64,
258 ///     },
259 /// }));
260 /// let foo: Pin<&mut Foo> = foo;
261 /// pr_info!("a: {}", &*foo.a.lock());
262 /// ```
263 ///
264 /// # Syntax
265 ///
266 /// A normal `let` binding with optional type annotation. The expression is expected to implement
267 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
268 /// type, then use [`stack_try_pin_init!`].
269 ///
270 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
271 #[macro_export]
272 macro_rules! stack_pin_init {
273     (let $var:ident $(: $t:ty)? = $val:expr) => {
274         let val = $val;
275         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
276         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
277             Ok(res) => res,
278             Err(x) => {
279                 let x: ::core::convert::Infallible = x;
280                 match x {}
281             }
282         };
283     };
284 }
285 
286 /// Initialize and pin a type directly on the stack.
287 ///
288 /// # Examples
289 ///
290 /// ```rust,ignore
291 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
292 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
293 /// # use macros::pin_data;
294 /// # use core::{alloc::AllocError, pin::Pin};
295 /// #[pin_data]
296 /// struct Foo {
297 ///     #[pin]
298 ///     a: Mutex<usize>,
299 ///     b: Box<Bar>,
300 /// }
301 ///
302 /// struct Bar {
303 ///     x: u32,
304 /// }
305 ///
306 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
307 ///     a <- new_mutex!(42),
308 ///     b: Box::try_new(Bar {
309 ///         x: 64,
310 ///     })?,
311 /// }));
312 /// let foo = foo.unwrap();
313 /// pr_info!("a: {}", &*foo.a.lock());
314 /// ```
315 ///
316 /// ```rust,ignore
317 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
318 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
319 /// # use macros::pin_data;
320 /// # use core::{alloc::AllocError, pin::Pin};
321 /// #[pin_data]
322 /// struct Foo {
323 ///     #[pin]
324 ///     a: Mutex<usize>,
325 ///     b: Box<Bar>,
326 /// }
327 ///
328 /// struct Bar {
329 ///     x: u32,
330 /// }
331 ///
332 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
333 ///     a <- new_mutex!(42),
334 ///     b: Box::try_new(Bar {
335 ///         x: 64,
336 ///     })?,
337 /// }));
338 /// pr_info!("a: {}", &*foo.a.lock());
339 /// # Ok::<_, AllocError>(())
340 /// ```
341 ///
342 /// # Syntax
343 ///
344 /// A normal `let` binding with optional type annotation. The expression is expected to implement
345 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
346 /// `=` will propagate this error.
347 #[macro_export]
348 macro_rules! stack_try_pin_init {
349     (let $var:ident $(: $t:ty)? = $val:expr) => {
350         let val = $val;
351         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
352         let mut $var = $crate::init::__internal::StackInit::init($var, val);
353     };
354     (let $var:ident $(: $t:ty)? =? $val:expr) => {
355         let val = $val;
356         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
357         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
358     };
359 }
360 
361 /// Construct an in-place, pinned initializer for `struct`s.
362 ///
363 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
364 /// [`try_pin_init!`].
365 ///
366 /// The syntax is almost identical to that of a normal `struct` initializer:
367 ///
368 /// ```rust
369 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
370 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
371 /// # use core::pin::Pin;
372 /// #[pin_data]
373 /// struct Foo {
374 ///     a: usize,
375 ///     b: Bar,
376 /// }
377 ///
378 /// #[pin_data]
379 /// struct Bar {
380 ///     x: u32,
381 /// }
382 ///
383 /// # fn demo() -> impl PinInit<Foo> {
384 /// let a = 42;
385 ///
386 /// let initializer = pin_init!(Foo {
387 ///     a,
388 ///     b: Bar {
389 ///         x: 64,
390 ///     },
391 /// });
392 /// # initializer }
393 /// # Box::pin_init(demo()).unwrap();
394 /// ```
395 ///
396 /// Arbitrary Rust expressions can be used to set the value of a variable.
397 ///
398 /// The fields are initialized in the order that they appear in the initializer. So it is possible
399 /// to read already initialized fields using raw pointers.
400 ///
401 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
402 /// initializer.
403 ///
404 /// # Init-functions
405 ///
406 /// When working with this API it is often desired to let others construct your types without
407 /// giving access to all fields. This is where you would normally write a plain function `new`
408 /// that would return a new instance of your type. With this API that is also possible.
409 /// However, there are a few extra things to keep in mind.
410 ///
411 /// To create an initializer function, simply declare it like this:
412 ///
413 /// ```rust
414 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
415 /// # use kernel::{init, pin_init, prelude::*, init::*};
416 /// # use core::pin::Pin;
417 /// # #[pin_data]
418 /// # struct Foo {
419 /// #     a: usize,
420 /// #     b: Bar,
421 /// # }
422 /// # #[pin_data]
423 /// # struct Bar {
424 /// #     x: u32,
425 /// # }
426 /// impl Foo {
427 ///     fn new() -> impl PinInit<Self> {
428 ///         pin_init!(Self {
429 ///             a: 42,
430 ///             b: Bar {
431 ///                 x: 64,
432 ///             },
433 ///         })
434 ///     }
435 /// }
436 /// ```
437 ///
438 /// Users of `Foo` can now create it like this:
439 ///
440 /// ```rust
441 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
442 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
443 /// # use core::pin::Pin;
444 /// # #[pin_data]
445 /// # struct Foo {
446 /// #     a: usize,
447 /// #     b: Bar,
448 /// # }
449 /// # #[pin_data]
450 /// # struct Bar {
451 /// #     x: u32,
452 /// # }
453 /// # impl Foo {
454 /// #     fn new() -> impl PinInit<Self> {
455 /// #         pin_init!(Self {
456 /// #             a: 42,
457 /// #             b: Bar {
458 /// #                 x: 64,
459 /// #             },
460 /// #         })
461 /// #     }
462 /// # }
463 /// let foo = Box::pin_init(Foo::new());
464 /// ```
465 ///
466 /// They can also easily embed it into their own `struct`s:
467 ///
468 /// ```rust
469 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
470 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
471 /// # use core::pin::Pin;
472 /// # #[pin_data]
473 /// # struct Foo {
474 /// #     a: usize,
475 /// #     b: Bar,
476 /// # }
477 /// # #[pin_data]
478 /// # struct Bar {
479 /// #     x: u32,
480 /// # }
481 /// # impl Foo {
482 /// #     fn new() -> impl PinInit<Self> {
483 /// #         pin_init!(Self {
484 /// #             a: 42,
485 /// #             b: Bar {
486 /// #                 x: 64,
487 /// #             },
488 /// #         })
489 /// #     }
490 /// # }
491 /// #[pin_data]
492 /// struct FooContainer {
493 ///     #[pin]
494 ///     foo1: Foo,
495 ///     #[pin]
496 ///     foo2: Foo,
497 ///     other: u32,
498 /// }
499 ///
500 /// impl FooContainer {
501 ///     fn new(other: u32) -> impl PinInit<Self> {
502 ///         pin_init!(Self {
503 ///             foo1 <- Foo::new(),
504 ///             foo2 <- Foo::new(),
505 ///             other,
506 ///         })
507 ///     }
508 /// }
509 /// ```
510 ///
511 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
512 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
513 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
514 ///
515 /// # Syntax
516 ///
517 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
518 /// the following modifications is expected:
519 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
520 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
521 ///   pointer named `this` inside of the initializer.
522 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
523 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
524 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
525 ///
526 /// For instance:
527 ///
528 /// ```rust
529 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
530 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
531 /// #[pin_data]
532 /// #[derive(Zeroable)]
533 /// struct Buf {
534 ///     // `ptr` points into `buf`.
535 ///     ptr: *mut u8,
536 ///     buf: [u8; 64],
537 ///     #[pin]
538 ///     pin: PhantomPinned,
539 /// }
540 /// pin_init!(&this in Buf {
541 ///     buf: [0; 64],
542 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
543 ///     pin: PhantomPinned,
544 /// });
545 /// pin_init!(Buf {
546 ///     buf: [1; 64],
547 ///     ..Zeroable::zeroed()
548 /// });
549 /// ```
550 ///
551 /// [`try_pin_init!`]: kernel::try_pin_init
552 /// [`NonNull<Self>`]: core::ptr::NonNull
553 // For a detailed example of how this macro works, see the module documentation of the hidden
554 // module `__internal` inside of `init/__internal.rs`.
555 #[macro_export]
556 macro_rules! pin_init {
557     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
558         $($fields:tt)*
559     }) => {
560         $crate::__init_internal!(
561             @this($($this)?),
562             @typ($t $(::<$($generics),*>)?),
563             @fields($($fields)*),
564             @error(::core::convert::Infallible),
565             @data(PinData, use_data),
566             @has_data(HasPinData, __pin_data),
567             @construct_closure(pin_init_from_closure),
568             @munch_fields($($fields)*),
569         )
570     };
571 }
572 
573 /// Construct an in-place, fallible pinned initializer for `struct`s.
574 ///
575 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
576 ///
577 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
578 /// initialization and return the error.
579 ///
580 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
581 /// initialization fails, the memory can be safely deallocated without any further modifications.
582 ///
583 /// This macro defaults the error to [`Error`].
584 ///
585 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
586 /// after the `struct` initializer to specify the error type you want to use.
587 ///
588 /// # Examples
589 ///
590 /// ```rust
591 /// # #![feature(new_uninit)]
592 /// use kernel::{init::{self, PinInit}, error::Error};
593 /// #[pin_data]
594 /// struct BigBuf {
595 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
596 ///     small: [u8; 1024 * 1024],
597 ///     ptr: *mut u8,
598 /// }
599 ///
600 /// impl BigBuf {
601 ///     fn new() -> impl PinInit<Self, Error> {
602 ///         try_pin_init!(Self {
603 ///             big: Box::init(init::zeroed())?,
604 ///             small: [0; 1024 * 1024],
605 ///             ptr: core::ptr::null_mut(),
606 ///         }? Error)
607 ///     }
608 /// }
609 /// ```
610 // For a detailed example of how this macro works, see the module documentation of the hidden
611 // module `__internal` inside of `init/__internal.rs`.
612 #[macro_export]
613 macro_rules! try_pin_init {
614     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
615         $($fields:tt)*
616     }) => {
617         $crate::__init_internal!(
618             @this($($this)?),
619             @typ($t $(::<$($generics),*>)? ),
620             @fields($($fields)*),
621             @error($crate::error::Error),
622             @data(PinData, use_data),
623             @has_data(HasPinData, __pin_data),
624             @construct_closure(pin_init_from_closure),
625             @munch_fields($($fields)*),
626         )
627     };
628     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
629         $($fields:tt)*
630     }? $err:ty) => {
631         $crate::__init_internal!(
632             @this($($this)?),
633             @typ($t $(::<$($generics),*>)? ),
634             @fields($($fields)*),
635             @error($err),
636             @data(PinData, use_data),
637             @has_data(HasPinData, __pin_data),
638             @construct_closure(pin_init_from_closure),
639             @munch_fields($($fields)*),
640         )
641     };
642 }
643 
644 /// Construct an in-place initializer for `struct`s.
645 ///
646 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
647 /// [`try_init!`].
648 ///
649 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
650 /// - `unsafe` code must guarantee either full initialization or return an error and allow
651 ///   deallocation of the memory.
652 /// - the fields are initialized in the order given in the initializer.
653 /// - no references to fields are allowed to be created inside of the initializer.
654 ///
655 /// This initializer is for initializing data in-place that might later be moved. If you want to
656 /// pin-initialize, use [`pin_init!`].
657 ///
658 /// [`try_init!`]: crate::try_init!
659 // For a detailed example of how this macro works, see the module documentation of the hidden
660 // module `__internal` inside of `init/__internal.rs`.
661 #[macro_export]
662 macro_rules! init {
663     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
664         $($fields:tt)*
665     }) => {
666         $crate::__init_internal!(
667             @this($($this)?),
668             @typ($t $(::<$($generics),*>)?),
669             @fields($($fields)*),
670             @error(::core::convert::Infallible),
671             @data(InitData, /*no use_data*/),
672             @has_data(HasInitData, __init_data),
673             @construct_closure(init_from_closure),
674             @munch_fields($($fields)*),
675         )
676     }
677 }
678 
679 /// Construct an in-place fallible initializer for `struct`s.
680 ///
681 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
682 /// [`init!`].
683 ///
684 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
685 /// append `? $type` after the `struct` initializer.
686 /// The safety caveats from [`try_pin_init!`] also apply:
687 /// - `unsafe` code must guarantee either full initialization or return an error and allow
688 ///   deallocation of the memory.
689 /// - the fields are initialized in the order given in the initializer.
690 /// - no references to fields are allowed to be created inside of the initializer.
691 ///
692 /// # Examples
693 ///
694 /// ```rust
695 /// use kernel::{init::{PinInit, zeroed}, error::Error};
696 /// struct BigBuf {
697 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
698 ///     small: [u8; 1024 * 1024],
699 /// }
700 ///
701 /// impl BigBuf {
702 ///     fn new() -> impl Init<Self, Error> {
703 ///         try_init!(Self {
704 ///             big: Box::init(zeroed())?,
705 ///             small: [0; 1024 * 1024],
706 ///         }? Error)
707 ///     }
708 /// }
709 /// ```
710 // For a detailed example of how this macro works, see the module documentation of the hidden
711 // module `__internal` inside of `init/__internal.rs`.
712 #[macro_export]
713 macro_rules! try_init {
714     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
715         $($fields:tt)*
716     }) => {
717         $crate::__init_internal!(
718             @this($($this)?),
719             @typ($t $(::<$($generics),*>)?),
720             @fields($($fields)*),
721             @error($crate::error::Error),
722             @data(InitData, /*no use_data*/),
723             @has_data(HasInitData, __init_data),
724             @construct_closure(init_from_closure),
725             @munch_fields($($fields)*),
726         )
727     };
728     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
729         $($fields:tt)*
730     }? $err:ty) => {
731         $crate::__init_internal!(
732             @this($($this)?),
733             @typ($t $(::<$($generics),*>)?),
734             @fields($($fields)*),
735             @error($err),
736             @data(InitData, /*no use_data*/),
737             @has_data(HasInitData, __init_data),
738             @construct_closure(init_from_closure),
739             @munch_fields($($fields)*),
740         )
741     };
742 }
743 
744 /// A pin-initializer for the type `T`.
745 ///
746 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
747 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
748 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
749 ///
750 /// Also see the [module description](self).
751 ///
752 /// # Safety
753 ///
754 /// When implementing this type you will need to take great care. Also there are probably very few
755 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
756 ///
757 /// The [`PinInit::__pinned_init`] function
758 /// - returns `Ok(())` if it initialized every field of `slot`,
759 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
760 ///     - `slot` can be deallocated without UB occurring,
761 ///     - `slot` does not need to be dropped,
762 ///     - `slot` is not partially initialized.
763 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
764 ///
765 /// [`Arc<T>`]: crate::sync::Arc
766 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
767 #[must_use = "An initializer must be used in order to create its value."]
768 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
769     /// Initializes `slot`.
770     ///
771     /// # Safety
772     ///
773     /// - `slot` is a valid pointer to uninitialized memory.
774     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
775     ///   deallocate.
776     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
777     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
778 
779     /// First initializes the value using `self` then calls the function `f` with the initialized
780     /// value.
781     ///
782     /// If `f` returns an error the value is dropped and the initializer will forward the error.
783     ///
784     /// # Examples
785     ///
786     /// ```rust
787     /// # #![allow(clippy::disallowed_names)]
788     /// use kernel::{types::Opaque, init::pin_init_from_closure};
789     /// #[repr(C)]
790     /// struct RawFoo([u8; 16]);
791     /// extern {
792     ///     fn init_foo(_: *mut RawFoo);
793     /// }
794     ///
795     /// #[pin_data]
796     /// struct Foo {
797     ///     #[pin]
798     ///     raw: Opaque<RawFoo>,
799     /// }
800     ///
801     /// impl Foo {
802     ///     fn setup(self: Pin<&mut Self>) {
803     ///         pr_info!("Setting up foo");
804     ///     }
805     /// }
806     ///
807     /// let foo = pin_init!(Foo {
808     ///     raw <- unsafe {
809     ///         Opaque::ffi_init(|s| {
810     ///             init_foo(s);
811     ///         })
812     ///     },
813     /// }).pin_chain(|foo| {
814     ///     foo.setup();
815     ///     Ok(())
816     /// });
817     /// ```
818     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
819     where
820         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
821     {
822         ChainPinInit(self, f, PhantomData)
823     }
824 }
825 
826 /// An initializer returned by [`PinInit::pin_chain`].
827 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
828 
829 // SAFETY: The `__pinned_init` function is implemented such that it
830 // - returns `Ok(())` on successful initialization,
831 // - returns `Err(err)` on error and in this case `slot` will be dropped.
832 // - considers `slot` pinned.
833 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
834 where
835     I: PinInit<T, E>,
836     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
837 {
838     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
839         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
840         unsafe { self.0.__pinned_init(slot)? };
841         // SAFETY: The above call initialized `slot` and we still have unique access.
842         let val = unsafe { &mut *slot };
843         // SAFETY: `slot` is considered pinned.
844         let val = unsafe { Pin::new_unchecked(val) };
845         (self.1)(val).map_err(|e| {
846             // SAFETY: `slot` was initialized above.
847             unsafe { core::ptr::drop_in_place(slot) };
848             e
849         })
850     }
851 }
852 
853 /// An initializer for `T`.
854 ///
855 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
856 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
857 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
858 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
859 ///
860 /// Also see the [module description](self).
861 ///
862 /// # Safety
863 ///
864 /// When implementing this type you will need to take great care. Also there are probably very few
865 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
866 ///
867 /// The [`Init::__init`] function
868 /// - returns `Ok(())` if it initialized every field of `slot`,
869 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
870 ///     - `slot` can be deallocated without UB occurring,
871 ///     - `slot` does not need to be dropped,
872 ///     - `slot` is not partially initialized.
873 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
874 ///
875 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
876 /// code as `__init`.
877 ///
878 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
879 /// move the pointee after initialization.
880 ///
881 /// [`Arc<T>`]: crate::sync::Arc
882 #[must_use = "An initializer must be used in order to create its value."]
883 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
884     /// Initializes `slot`.
885     ///
886     /// # Safety
887     ///
888     /// - `slot` is a valid pointer to uninitialized memory.
889     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
890     ///   deallocate.
891     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
892 
893     /// First initializes the value using `self` then calls the function `f` with the initialized
894     /// value.
895     ///
896     /// If `f` returns an error the value is dropped and the initializer will forward the error.
897     ///
898     /// # Examples
899     ///
900     /// ```rust
901     /// # #![allow(clippy::disallowed_names)]
902     /// use kernel::{types::Opaque, init::{self, init_from_closure}};
903     /// struct Foo {
904     ///     buf: [u8; 1_000_000],
905     /// }
906     ///
907     /// impl Foo {
908     ///     fn setup(&mut self) {
909     ///         pr_info!("Setting up foo");
910     ///     }
911     /// }
912     ///
913     /// let foo = init!(Foo {
914     ///     buf <- init::zeroed()
915     /// }).chain(|foo| {
916     ///     foo.setup();
917     ///     Ok(())
918     /// });
919     /// ```
920     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
921     where
922         F: FnOnce(&mut T) -> Result<(), E>,
923     {
924         ChainInit(self, f, PhantomData)
925     }
926 }
927 
928 /// An initializer returned by [`Init::chain`].
929 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
930 
931 // SAFETY: The `__init` function is implemented such that it
932 // - returns `Ok(())` on successful initialization,
933 // - returns `Err(err)` on error and in this case `slot` will be dropped.
934 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
935 where
936     I: Init<T, E>,
937     F: FnOnce(&mut T) -> Result<(), E>,
938 {
939     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
940         // SAFETY: All requirements fulfilled since this function is `__init`.
941         unsafe { self.0.__pinned_init(slot)? };
942         // SAFETY: The above call initialized `slot` and we still have unique access.
943         (self.1)(unsafe { &mut *slot }).map_err(|e| {
944             // SAFETY: `slot` was initialized above.
945             unsafe { core::ptr::drop_in_place(slot) };
946             e
947         })
948     }
949 }
950 
951 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
952 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
953 where
954     I: Init<T, E>,
955     F: FnOnce(&mut T) -> Result<(), E>,
956 {
957     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
958         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
959         unsafe { self.__init(slot) }
960     }
961 }
962 
963 /// Creates a new [`PinInit<T, E>`] from the given closure.
964 ///
965 /// # Safety
966 ///
967 /// The closure:
968 /// - returns `Ok(())` if it initialized every field of `slot`,
969 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
970 ///     - `slot` can be deallocated without UB occurring,
971 ///     - `slot` does not need to be dropped,
972 ///     - `slot` is not partially initialized.
973 /// - may assume that the `slot` does not move if `T: !Unpin`,
974 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
975 #[inline]
976 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
977     f: impl FnOnce(*mut T) -> Result<(), E>,
978 ) -> impl PinInit<T, E> {
979     __internal::InitClosure(f, PhantomData)
980 }
981 
982 /// Creates a new [`Init<T, E>`] from the given closure.
983 ///
984 /// # Safety
985 ///
986 /// The closure:
987 /// - returns `Ok(())` if it initialized every field of `slot`,
988 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
989 ///     - `slot` can be deallocated without UB occurring,
990 ///     - `slot` does not need to be dropped,
991 ///     - `slot` is not partially initialized.
992 /// - the `slot` may move after initialization.
993 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
994 #[inline]
995 pub const unsafe fn init_from_closure<T: ?Sized, E>(
996     f: impl FnOnce(*mut T) -> Result<(), E>,
997 ) -> impl Init<T, E> {
998     __internal::InitClosure(f, PhantomData)
999 }
1000 
1001 /// An initializer that leaves the memory uninitialized.
1002 ///
1003 /// The initializer is a no-op. The `slot` memory is not changed.
1004 #[inline]
1005 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1006     // SAFETY: The memory is allowed to be uninitialized.
1007     unsafe { init_from_closure(|_| Ok(())) }
1008 }
1009 
1010 /// Initializes an array by initializing each element via the provided initializer.
1011 ///
1012 /// # Examples
1013 ///
1014 /// ```rust
1015 /// use kernel::{error::Error, init::init_array_from_fn};
1016 /// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap();
1017 /// assert_eq!(array.len(), 1_000);
1018 /// ```
1019 pub fn init_array_from_fn<I, const N: usize, T, E>(
1020     mut make_init: impl FnMut(usize) -> I,
1021 ) -> impl Init<[T; N], E>
1022 where
1023     I: Init<T, E>,
1024 {
1025     let init = move |slot: *mut [T; N]| {
1026         let slot = slot.cast::<T>();
1027         // Counts the number of initialized elements and when dropped drops that many elements from
1028         // `slot`.
1029         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1030             // We now free every element that has been initialized before:
1031             // SAFETY: The loop initialized exactly the values from 0..i and since we
1032             // return `Err` below, the caller will consider the memory at `slot` as
1033             // uninitialized.
1034             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1035         });
1036         for i in 0..N {
1037             let init = make_init(i);
1038             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1039             let ptr = unsafe { slot.add(i) };
1040             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1041             // requirements.
1042             unsafe { init.__init(ptr) }?;
1043             *init_count += 1;
1044         }
1045         init_count.dismiss();
1046         Ok(())
1047     };
1048     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1049     // any initialized elements and returns `Err`.
1050     unsafe { init_from_closure(init) }
1051 }
1052 
1053 /// Initializes an array by initializing each element via the provided initializer.
1054 ///
1055 /// # Examples
1056 ///
1057 /// ```rust
1058 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
1059 /// let array: Arc<[Mutex<usize>; 1_000]>=
1060 ///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap();
1061 /// assert_eq!(array.len(), 1_000);
1062 /// ```
1063 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1064     mut make_init: impl FnMut(usize) -> I,
1065 ) -> impl PinInit<[T; N], E>
1066 where
1067     I: PinInit<T, E>,
1068 {
1069     let init = move |slot: *mut [T; N]| {
1070         let slot = slot.cast::<T>();
1071         // Counts the number of initialized elements and when dropped drops that many elements from
1072         // `slot`.
1073         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1074             // We now free every element that has been initialized before:
1075             // SAFETY: The loop initialized exactly the values from 0..i and since we
1076             // return `Err` below, the caller will consider the memory at `slot` as
1077             // uninitialized.
1078             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1079         });
1080         for i in 0..N {
1081             let init = make_init(i);
1082             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1083             let ptr = unsafe { slot.add(i) };
1084             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1085             // requirements.
1086             unsafe { init.__pinned_init(ptr) }?;
1087             *init_count += 1;
1088         }
1089         init_count.dismiss();
1090         Ok(())
1091     };
1092     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1093     // any initialized elements and returns `Err`.
1094     unsafe { pin_init_from_closure(init) }
1095 }
1096 
1097 // SAFETY: Every type can be initialized by-value.
1098 unsafe impl<T, E> Init<T, E> for T {
1099     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1100         unsafe { slot.write(self) };
1101         Ok(())
1102     }
1103 }
1104 
1105 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1106 unsafe impl<T, E> PinInit<T, E> for T {
1107     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1108         unsafe { self.__init(slot) }
1109     }
1110 }
1111 
1112 /// Smart pointer that can initialize memory in-place.
1113 pub trait InPlaceInit<T>: Sized {
1114     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1115     /// type.
1116     ///
1117     /// If `T: !Unpin` it will not be able to move afterwards.
1118     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1119     where
1120         E: From<AllocError>;
1121 
1122     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1123     /// type.
1124     ///
1125     /// If `T: !Unpin` it will not be able to move afterwards.
1126     fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
1127     where
1128         Error: From<E>,
1129     {
1130         // SAFETY: We delegate to `init` and only change the error type.
1131         let init = unsafe {
1132             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1133         };
1134         Self::try_pin_init(init)
1135     }
1136 
1137     /// Use the given initializer to in-place initialize a `T`.
1138     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1139     where
1140         E: From<AllocError>;
1141 
1142     /// Use the given initializer to in-place initialize a `T`.
1143     fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
1144     where
1145         Error: From<E>,
1146     {
1147         // SAFETY: We delegate to `init` and only change the error type.
1148         let init = unsafe {
1149             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1150         };
1151         Self::try_init(init)
1152     }
1153 }
1154 
1155 impl<T> InPlaceInit<T> for Box<T> {
1156     #[inline]
1157     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1158     where
1159         E: From<AllocError>,
1160     {
1161         let mut this = Box::try_new_uninit()?;
1162         let slot = this.as_mut_ptr();
1163         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1164         // slot is valid and will not be moved, because we pin it later.
1165         unsafe { init.__pinned_init(slot)? };
1166         // SAFETY: All fields have been initialized.
1167         Ok(unsafe { this.assume_init() }.into())
1168     }
1169 
1170     #[inline]
1171     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1172     where
1173         E: From<AllocError>,
1174     {
1175         let mut this = Box::try_new_uninit()?;
1176         let slot = this.as_mut_ptr();
1177         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1178         // slot is valid.
1179         unsafe { init.__init(slot)? };
1180         // SAFETY: All fields have been initialized.
1181         Ok(unsafe { this.assume_init() })
1182     }
1183 }
1184 
1185 impl<T> InPlaceInit<T> for UniqueArc<T> {
1186     #[inline]
1187     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1188     where
1189         E: From<AllocError>,
1190     {
1191         let mut this = UniqueArc::try_new_uninit()?;
1192         let slot = this.as_mut_ptr();
1193         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1194         // slot is valid and will not be moved, because we pin it later.
1195         unsafe { init.__pinned_init(slot)? };
1196         // SAFETY: All fields have been initialized.
1197         Ok(unsafe { this.assume_init() }.into())
1198     }
1199 
1200     #[inline]
1201     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1202     where
1203         E: From<AllocError>,
1204     {
1205         let mut this = UniqueArc::try_new_uninit()?;
1206         let slot = this.as_mut_ptr();
1207         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1208         // slot is valid.
1209         unsafe { init.__init(slot)? };
1210         // SAFETY: All fields have been initialized.
1211         Ok(unsafe { this.assume_init() })
1212     }
1213 }
1214 
1215 /// Trait facilitating pinned destruction.
1216 ///
1217 /// Use [`pinned_drop`] to implement this trait safely:
1218 ///
1219 /// ```rust
1220 /// # use kernel::sync::Mutex;
1221 /// use kernel::macros::pinned_drop;
1222 /// use core::pin::Pin;
1223 /// #[pin_data(PinnedDrop)]
1224 /// struct Foo {
1225 ///     #[pin]
1226 ///     mtx: Mutex<usize>,
1227 /// }
1228 ///
1229 /// #[pinned_drop]
1230 /// impl PinnedDrop for Foo {
1231 ///     fn drop(self: Pin<&mut Self>) {
1232 ///         pr_info!("Foo is being dropped!");
1233 ///     }
1234 /// }
1235 /// ```
1236 ///
1237 /// # Safety
1238 ///
1239 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1240 ///
1241 /// [`pinned_drop`]: kernel::macros::pinned_drop
1242 pub unsafe trait PinnedDrop: __internal::HasPinData {
1243     /// Executes the pinned destructor of this type.
1244     ///
1245     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1246     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1247     /// and thus prevents this function from being called where it should not.
1248     ///
1249     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1250     /// automatically.
1251     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1252 }
1253 
1254 /// Marker trait for types that can be initialized by writing just zeroes.
1255 ///
1256 /// # Safety
1257 ///
1258 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1259 /// this is not UB:
1260 ///
1261 /// ```rust,ignore
1262 /// let val: Self = unsafe { core::mem::zeroed() };
1263 /// ```
1264 pub unsafe trait Zeroable {}
1265 
1266 /// Create a new zeroed T.
1267 ///
1268 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1269 #[inline]
1270 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1271     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1272     // and because we write all zeroes, the memory is initialized.
1273     unsafe {
1274         init_from_closure(|slot: *mut T| {
1275             slot.write_bytes(0, 1);
1276             Ok(())
1277         })
1278     }
1279 }
1280 
1281 macro_rules! impl_zeroable {
1282     ($($({$($generics:tt)*})? $t:ty, )*) => {
1283         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1284     };
1285 }
1286 
1287 impl_zeroable! {
1288     // SAFETY: All primitives that are allowed to be zero.
1289     bool,
1290     char,
1291     u8, u16, u32, u64, u128, usize,
1292     i8, i16, i32, i64, i128, isize,
1293     f32, f64,
1294 
1295     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1296     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1297     // uninhabited/empty types, consult The Rustonomicon:
1298     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1299     // also has information on undefined behavior:
1300     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1301     //
1302     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1303     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1304 
1305     // SAFETY: Type is allowed to take any value, including all zeros.
1306     {<T>} MaybeUninit<T>,
1307     // SAFETY: Type is allowed to take any value, including all zeros.
1308     {<T>} Opaque<T>,
1309 
1310     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1311     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1312 
1313     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1314     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1315     Option<NonZeroU128>, Option<NonZeroUsize>,
1316     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1317     Option<NonZeroI128>, Option<NonZeroIsize>,
1318 
1319     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1320     //
1321     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1322     {<T: ?Sized>} Option<NonNull<T>>,
1323     {<T: ?Sized>} Option<Box<T>>,
1324 
1325     // SAFETY: `null` pointer is valid.
1326     //
1327     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1328     // null.
1329     //
1330     // When `Pointee` gets stabilized, we could use
1331     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1332     {<T>} *mut T, {<T>} *const T,
1333 
1334     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1335     // zero.
1336     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1337 
1338     // SAFETY: `T` is `Zeroable`.
1339     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1340 }
1341 
1342 macro_rules! impl_tuple_zeroable {
1343     ($(,)?) => {};
1344     ($first:ident, $($t:ident),* $(,)?) => {
1345         // SAFETY: All elements are zeroable and padding can be zero.
1346         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1347         impl_tuple_zeroable!($($t),* ,);
1348     }
1349 }
1350 
1351 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1352