xref: /openbmc/linux/rust/kernel/init.rs (revision 7f8977a7)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
39 //! use kernel::{prelude::*, sync::Mutex, new_mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}};
83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
84 //! ```
85 //!
86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
87 //!
88 //! ```rust
89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
91 //! #[pin_data]
92 //! struct DriverData {
93 //!     #[pin]
94 //!     status: Mutex<i32>,
95 //!     buffer: Box<[u8; 1_000_000]>,
96 //! }
97 //!
98 //! impl DriverData {
99 //!     fn new() -> impl PinInit<Self, Error> {
100 //!         try_pin_init!(Self {
101 //!             status <- new_mutex!(0, "DriverData::status"),
102 //!             buffer: Box::init(kernel::init::zeroed())?,
103 //!         })
104 //!     }
105 //! }
106 //! ```
107 //!
108 //! ## Manual creation of an initializer
109 //!
110 //! Often when working with primitives the previous approaches are not sufficient. That is where
111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
113 //! actually does the initialization in the correct way. Here are the things to look out for
114 //! (we are calling the parameter to the closure `slot`):
115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
116 //!   `slot` now contains a valid bit pattern for the type `T`,
117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
118 //!   you need to take care to clean up anything if your initialization fails mid-way,
119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
120 //!   `slot` gets called.
121 //!
122 //! ```rust
123 //! use kernel::{prelude::*, init};
124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
125 //! # mod bindings {
126 //! #     pub struct foo;
127 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
128 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
129 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
130 //! # }
131 //! /// # Invariants
132 //! ///
133 //! /// `foo` is always initialized
134 //! #[pin_data(PinnedDrop)]
135 //! pub struct RawFoo {
136 //!     #[pin]
137 //!     foo: Opaque<bindings::foo>,
138 //!     #[pin]
139 //!     _p: PhantomPinned,
140 //! }
141 //!
142 //! impl RawFoo {
143 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
144 //!         // SAFETY:
145 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
146 //!         //   enabled `foo`,
147 //!         // - when it returns `Err(e)`, then it has cleaned up before
148 //!         unsafe {
149 //!             init::pin_init_from_closure(move |slot: *mut Self| {
150 //!                 // `slot` contains uninit memory, avoid creating a reference.
151 //!                 let foo = addr_of_mut!((*slot).foo);
152 //!
153 //!                 // Initialize the `foo`
154 //!                 bindings::init_foo(Opaque::raw_get(foo));
155 //!
156 //!                 // Try to enable it.
157 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
158 //!                 if err != 0 {
159 //!                     // Enabling has failed, first clean up the foo and then return the error.
160 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
161 //!                     return Err(Error::from_kernel_errno(err));
162 //!                 }
163 //!
164 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
165 //!                 Ok(())
166 //!             })
167 //!         }
168 //!     }
169 //! }
170 //!
171 //! #[pinned_drop]
172 //! impl PinnedDrop for RawFoo {
173 //!     fn drop(self: Pin<&mut Self>) {
174 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
175 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
176 //!     }
177 //! }
178 //! ```
179 //!
180 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
183 //! with [`pin_init!`].
184 //!
185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
186 //! the `kernel` crate. The [`sync`] module is a good starting point.
187 //!
188 //! [`sync`]: kernel::sync
189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
190 //! [structurally pinned fields]:
191 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
192 //! [stack]: crate::stack_pin_init
193 //! [`Arc<T>`]: crate::sync::Arc
194 //! [`impl PinInit<Foo>`]: PinInit
195 //! [`impl PinInit<T, E>`]: PinInit
196 //! [`impl Init<T, E>`]: Init
197 //! [`Opaque`]: kernel::types::Opaque
198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
199 //! [`pin_data`]: ::macros::pin_data
200 //! [`pin_init!`]: crate::pin_init!
201 
202 use crate::{
203     error::{self, Error},
204     sync::UniqueArc,
205     types::{Opaque, ScopeGuard},
206 };
207 use alloc::boxed::Box;
208 use core::{
209     alloc::AllocError,
210     cell::UnsafeCell,
211     convert::Infallible,
212     marker::PhantomData,
213     mem::MaybeUninit,
214     num::*,
215     pin::Pin,
216     ptr::{self, NonNull},
217 };
218 
219 #[doc(hidden)]
220 pub mod __internal;
221 #[doc(hidden)]
222 pub mod macros;
223 
224 /// Initialize and pin a type directly on the stack.
225 ///
226 /// # Examples
227 ///
228 /// ```rust
229 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
230 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
231 /// # use macros::pin_data;
232 /// # use core::pin::Pin;
233 /// #[pin_data]
234 /// struct Foo {
235 ///     #[pin]
236 ///     a: Mutex<usize>,
237 ///     b: Bar,
238 /// }
239 ///
240 /// #[pin_data]
241 /// struct Bar {
242 ///     x: u32,
243 /// }
244 ///
245 /// stack_pin_init!(let foo = pin_init!(Foo {
246 ///     a <- new_mutex!(42),
247 ///     b: Bar {
248 ///         x: 64,
249 ///     },
250 /// }));
251 /// let foo: Pin<&mut Foo> = foo;
252 /// pr_info!("a: {}", &*foo.a.lock());
253 /// ```
254 ///
255 /// # Syntax
256 ///
257 /// A normal `let` binding with optional type annotation. The expression is expected to implement
258 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
259 /// type, then use [`stack_try_pin_init!`].
260 ///
261 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
262 #[macro_export]
263 macro_rules! stack_pin_init {
264     (let $var:ident $(: $t:ty)? = $val:expr) => {
265         let val = $val;
266         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
267         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
268             Ok(res) => res,
269             Err(x) => {
270                 let x: ::core::convert::Infallible = x;
271                 match x {}
272             }
273         };
274     };
275 }
276 
277 /// Initialize and pin a type directly on the stack.
278 ///
279 /// # Examples
280 ///
281 /// ```rust
282 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
283 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
284 /// # use macros::pin_data;
285 /// # use core::{alloc::AllocError, pin::Pin};
286 /// #[pin_data]
287 /// struct Foo {
288 ///     #[pin]
289 ///     a: Mutex<usize>,
290 ///     b: Box<Bar>,
291 /// }
292 ///
293 /// struct Bar {
294 ///     x: u32,
295 /// }
296 ///
297 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
298 ///     a <- new_mutex!(42),
299 ///     b: Box::try_new(Bar {
300 ///         x: 64,
301 ///     })?,
302 /// }));
303 /// let foo = foo.unwrap();
304 /// pr_info!("a: {}", &*foo.a.lock());
305 /// ```
306 ///
307 /// ```rust
308 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
309 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
310 /// # use macros::pin_data;
311 /// # use core::{alloc::AllocError, pin::Pin};
312 /// #[pin_data]
313 /// struct Foo {
314 ///     #[pin]
315 ///     a: Mutex<usize>,
316 ///     b: Box<Bar>,
317 /// }
318 ///
319 /// struct Bar {
320 ///     x: u32,
321 /// }
322 ///
323 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
324 ///     a <- new_mutex!(42),
325 ///     b: Box::try_new(Bar {
326 ///         x: 64,
327 ///     })?,
328 /// }));
329 /// pr_info!("a: {}", &*foo.a.lock());
330 /// # Ok::<_, AllocError>(())
331 /// ```
332 ///
333 /// # Syntax
334 ///
335 /// A normal `let` binding with optional type annotation. The expression is expected to implement
336 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
337 /// `=` will propagate this error.
338 #[macro_export]
339 macro_rules! stack_try_pin_init {
340     (let $var:ident $(: $t:ty)? = $val:expr) => {
341         let val = $val;
342         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
343         let mut $var = $crate::init::__internal::StackInit::init($var, val);
344     };
345     (let $var:ident $(: $t:ty)? =? $val:expr) => {
346         let val = $val;
347         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
348         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
349     };
350 }
351 
352 /// Construct an in-place, pinned initializer for `struct`s.
353 ///
354 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
355 /// [`try_pin_init!`].
356 ///
357 /// The syntax is almost identical to that of a normal `struct` initializer:
358 ///
359 /// ```rust
360 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
361 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
362 /// # use core::pin::Pin;
363 /// #[pin_data]
364 /// struct Foo {
365 ///     a: usize,
366 ///     b: Bar,
367 /// }
368 ///
369 /// #[pin_data]
370 /// struct Bar {
371 ///     x: u32,
372 /// }
373 ///
374 /// # fn demo() -> impl PinInit<Foo> {
375 /// let a = 42;
376 ///
377 /// let initializer = pin_init!(Foo {
378 ///     a,
379 ///     b: Bar {
380 ///         x: 64,
381 ///     },
382 /// });
383 /// # initializer }
384 /// # Box::pin_init(demo()).unwrap();
385 /// ```
386 ///
387 /// Arbitrary Rust expressions can be used to set the value of a variable.
388 ///
389 /// The fields are initialized in the order that they appear in the initializer. So it is possible
390 /// to read already initialized fields using raw pointers.
391 ///
392 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
393 /// initializer.
394 ///
395 /// # Init-functions
396 ///
397 /// When working with this API it is often desired to let others construct your types without
398 /// giving access to all fields. This is where you would normally write a plain function `new`
399 /// that would return a new instance of your type. With this API that is also possible.
400 /// However, there are a few extra things to keep in mind.
401 ///
402 /// To create an initializer function, simply declare it like this:
403 ///
404 /// ```rust
405 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
406 /// # use kernel::{init, pin_init, prelude::*, init::*};
407 /// # use core::pin::Pin;
408 /// # #[pin_data]
409 /// # struct Foo {
410 /// #     a: usize,
411 /// #     b: Bar,
412 /// # }
413 /// # #[pin_data]
414 /// # struct Bar {
415 /// #     x: u32,
416 /// # }
417 /// impl Foo {
418 ///     fn new() -> impl PinInit<Self> {
419 ///         pin_init!(Self {
420 ///             a: 42,
421 ///             b: Bar {
422 ///                 x: 64,
423 ///             },
424 ///         })
425 ///     }
426 /// }
427 /// ```
428 ///
429 /// Users of `Foo` can now create it like this:
430 ///
431 /// ```rust
432 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
433 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
434 /// # use core::pin::Pin;
435 /// # #[pin_data]
436 /// # struct Foo {
437 /// #     a: usize,
438 /// #     b: Bar,
439 /// # }
440 /// # #[pin_data]
441 /// # struct Bar {
442 /// #     x: u32,
443 /// # }
444 /// # impl Foo {
445 /// #     fn new() -> impl PinInit<Self> {
446 /// #         pin_init!(Self {
447 /// #             a: 42,
448 /// #             b: Bar {
449 /// #                 x: 64,
450 /// #             },
451 /// #         })
452 /// #     }
453 /// # }
454 /// let foo = Box::pin_init(Foo::new());
455 /// ```
456 ///
457 /// They can also easily embed it into their own `struct`s:
458 ///
459 /// ```rust
460 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
461 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
462 /// # use core::pin::Pin;
463 /// # #[pin_data]
464 /// # struct Foo {
465 /// #     a: usize,
466 /// #     b: Bar,
467 /// # }
468 /// # #[pin_data]
469 /// # struct Bar {
470 /// #     x: u32,
471 /// # }
472 /// # impl Foo {
473 /// #     fn new() -> impl PinInit<Self> {
474 /// #         pin_init!(Self {
475 /// #             a: 42,
476 /// #             b: Bar {
477 /// #                 x: 64,
478 /// #             },
479 /// #         })
480 /// #     }
481 /// # }
482 /// #[pin_data]
483 /// struct FooContainer {
484 ///     #[pin]
485 ///     foo1: Foo,
486 ///     #[pin]
487 ///     foo2: Foo,
488 ///     other: u32,
489 /// }
490 ///
491 /// impl FooContainer {
492 ///     fn new(other: u32) -> impl PinInit<Self> {
493 ///         pin_init!(Self {
494 ///             foo1 <- Foo::new(),
495 ///             foo2 <- Foo::new(),
496 ///             other,
497 ///         })
498 ///     }
499 /// }
500 /// ```
501 ///
502 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
503 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
504 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
505 ///
506 /// # Syntax
507 ///
508 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
509 /// the following modifications is expected:
510 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
511 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
512 ///   pointer named `this` inside of the initializer.
513 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
514 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
515 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
516 ///
517 /// For instance:
518 ///
519 /// ```rust
520 /// # use kernel::pin_init;
521 /// # use macros::{Zeroable, pin_data};
522 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
523 /// #[pin_data]
524 /// #[derive(Zeroable)]
525 /// struct Buf {
526 ///     // `ptr` points into `buf`.
527 ///     ptr: *mut u8,
528 ///     buf: [u8; 64],
529 ///     #[pin]
530 ///     pin: PhantomPinned,
531 /// }
532 /// pin_init!(&this in Buf {
533 ///     buf: [0; 64],
534 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
535 ///     pin: PhantomPinned,
536 /// });
537 /// pin_init!(Buf {
538 ///     buf: [1; 64],
539 ///     ..Zeroable::zeroed()
540 /// });
541 /// ```
542 ///
543 /// [`try_pin_init!`]: kernel::try_pin_init
544 /// [`NonNull<Self>`]: core::ptr::NonNull
545 // For a detailed example of how this macro works, see the module documentation of the hidden
546 // module `__internal` inside of `init/__internal.rs`.
547 #[macro_export]
548 macro_rules! pin_init {
549     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
550         $($fields:tt)*
551     }) => {
552         $crate::__init_internal!(
553             @this($($this)?),
554             @typ($t $(::<$($generics),*>)?),
555             @fields($($fields)*),
556             @error(::core::convert::Infallible),
557             @data(PinData, use_data),
558             @has_data(HasPinData, __pin_data),
559             @construct_closure(pin_init_from_closure),
560             @munch_fields($($fields)*),
561         )
562     };
563 }
564 
565 /// Construct an in-place, fallible pinned initializer for `struct`s.
566 ///
567 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
568 ///
569 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
570 /// initialization and return the error.
571 ///
572 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
573 /// initialization fails, the memory can be safely deallocated without any further modifications.
574 ///
575 /// This macro defaults the error to [`Error`].
576 ///
577 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
578 /// after the `struct` initializer to specify the error type you want to use.
579 ///
580 /// # Examples
581 ///
582 /// ```rust
583 /// # #![feature(new_uninit)]
584 /// use kernel::{init::{self, PinInit}, error::Error};
585 /// #[pin_data]
586 /// struct BigBuf {
587 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
588 ///     small: [u8; 1024 * 1024],
589 ///     ptr: *mut u8,
590 /// }
591 ///
592 /// impl BigBuf {
593 ///     fn new() -> impl PinInit<Self, Error> {
594 ///         try_pin_init!(Self {
595 ///             big: Box::init(init::zeroed())?,
596 ///             small: [0; 1024 * 1024],
597 ///             ptr: core::ptr::null_mut(),
598 ///         }? Error)
599 ///     }
600 /// }
601 /// ```
602 // For a detailed example of how this macro works, see the module documentation of the hidden
603 // module `__internal` inside of `init/__internal.rs`.
604 #[macro_export]
605 macro_rules! try_pin_init {
606     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
607         $($fields:tt)*
608     }) => {
609         $crate::__init_internal!(
610             @this($($this)?),
611             @typ($t $(::<$($generics),*>)? ),
612             @fields($($fields)*),
613             @error($crate::error::Error),
614             @data(PinData, use_data),
615             @has_data(HasPinData, __pin_data),
616             @construct_closure(pin_init_from_closure),
617             @munch_fields($($fields)*),
618         )
619     };
620     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
621         $($fields:tt)*
622     }? $err:ty) => {
623         $crate::__init_internal!(
624             @this($($this)?),
625             @typ($t $(::<$($generics),*>)? ),
626             @fields($($fields)*),
627             @error($err),
628             @data(PinData, use_data),
629             @has_data(HasPinData, __pin_data),
630             @construct_closure(pin_init_from_closure),
631             @munch_fields($($fields)*),
632         )
633     };
634 }
635 
636 /// Construct an in-place initializer for `struct`s.
637 ///
638 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
639 /// [`try_init!`].
640 ///
641 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
642 /// - `unsafe` code must guarantee either full initialization or return an error and allow
643 ///   deallocation of the memory.
644 /// - the fields are initialized in the order given in the initializer.
645 /// - no references to fields are allowed to be created inside of the initializer.
646 ///
647 /// This initializer is for initializing data in-place that might later be moved. If you want to
648 /// pin-initialize, use [`pin_init!`].
649 ///
650 /// [`try_init!`]: crate::try_init!
651 // For a detailed example of how this macro works, see the module documentation of the hidden
652 // module `__internal` inside of `init/__internal.rs`.
653 #[macro_export]
654 macro_rules! init {
655     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
656         $($fields:tt)*
657     }) => {
658         $crate::__init_internal!(
659             @this($($this)?),
660             @typ($t $(::<$($generics),*>)?),
661             @fields($($fields)*),
662             @error(::core::convert::Infallible),
663             @data(InitData, /*no use_data*/),
664             @has_data(HasInitData, __init_data),
665             @construct_closure(init_from_closure),
666             @munch_fields($($fields)*),
667         )
668     }
669 }
670 
671 /// Construct an in-place fallible initializer for `struct`s.
672 ///
673 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
674 /// [`init!`].
675 ///
676 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
677 /// append `? $type` after the `struct` initializer.
678 /// The safety caveats from [`try_pin_init!`] also apply:
679 /// - `unsafe` code must guarantee either full initialization or return an error and allow
680 ///   deallocation of the memory.
681 /// - the fields are initialized in the order given in the initializer.
682 /// - no references to fields are allowed to be created inside of the initializer.
683 ///
684 /// # Examples
685 ///
686 /// ```rust
687 /// use kernel::{init::PinInit, error::Error, InPlaceInit};
688 /// struct BigBuf {
689 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
690 ///     small: [u8; 1024 * 1024],
691 /// }
692 ///
693 /// impl BigBuf {
694 ///     fn new() -> impl Init<Self, Error> {
695 ///         try_init!(Self {
696 ///             big: Box::init(zeroed())?,
697 ///             small: [0; 1024 * 1024],
698 ///         }? Error)
699 ///     }
700 /// }
701 /// ```
702 // For a detailed example of how this macro works, see the module documentation of the hidden
703 // module `__internal` inside of `init/__internal.rs`.
704 #[macro_export]
705 macro_rules! try_init {
706     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
707         $($fields:tt)*
708     }) => {
709         $crate::__init_internal!(
710             @this($($this)?),
711             @typ($t $(::<$($generics),*>)?),
712             @fields($($fields)*),
713             @error($crate::error::Error),
714             @data(InitData, /*no use_data*/),
715             @has_data(HasInitData, __init_data),
716             @construct_closure(init_from_closure),
717             @munch_fields($($fields)*),
718         )
719     };
720     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
721         $($fields:tt)*
722     }? $err:ty) => {
723         $crate::__init_internal!(
724             @this($($this)?),
725             @typ($t $(::<$($generics),*>)?),
726             @fields($($fields)*),
727             @error($err),
728             @data(InitData, /*no use_data*/),
729             @has_data(HasInitData, __init_data),
730             @construct_closure(init_from_closure),
731             @munch_fields($($fields)*),
732         )
733     };
734 }
735 
736 /// A pin-initializer for the type `T`.
737 ///
738 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
739 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
740 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
741 ///
742 /// Also see the [module description](self).
743 ///
744 /// # Safety
745 ///
746 /// When implementing this type you will need to take great care. Also there are probably very few
747 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
748 ///
749 /// The [`PinInit::__pinned_init`] function
750 /// - returns `Ok(())` if it initialized every field of `slot`,
751 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
752 ///     - `slot` can be deallocated without UB occurring,
753 ///     - `slot` does not need to be dropped,
754 ///     - `slot` is not partially initialized.
755 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
756 ///
757 /// [`Arc<T>`]: crate::sync::Arc
758 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
759 #[must_use = "An initializer must be used in order to create its value."]
760 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
761     /// Initializes `slot`.
762     ///
763     /// # Safety
764     ///
765     /// - `slot` is a valid pointer to uninitialized memory.
766     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
767     ///   deallocate.
768     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
769     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
770 
771     /// First initializes the value using `self` then calls the function `f` with the initialized
772     /// value.
773     ///
774     /// If `f` returns an error the value is dropped and the initializer will forward the error.
775     ///
776     /// # Examples
777     ///
778     /// ```rust
779     /// # #![allow(clippy::disallowed_names)]
780     /// use kernel::{types::Opaque, init::pin_init_from_closure};
781     /// #[repr(C)]
782     /// struct RawFoo([u8; 16]);
783     /// extern {
784     ///     fn init_foo(_: *mut RawFoo);
785     /// }
786     ///
787     /// #[pin_data]
788     /// struct Foo {
789     ///     #[pin]
790     ///     raw: Opaque<RawFoo>,
791     /// }
792     ///
793     /// impl Foo {
794     ///     fn setup(self: Pin<&mut Self>) {
795     ///         pr_info!("Setting up foo");
796     ///     }
797     /// }
798     ///
799     /// let foo = pin_init!(Foo {
800     ///     raw <- unsafe {
801     ///         Opaque::ffi_init(|s| {
802     ///             init_foo(s);
803     ///         })
804     ///     },
805     /// }).pin_chain(|foo| {
806     ///     foo.setup();
807     ///     Ok(())
808     /// });
809     /// ```
810     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
811     where
812         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
813     {
814         ChainPinInit(self, f, PhantomData)
815     }
816 }
817 
818 /// An initializer returned by [`PinInit::pin_chain`].
819 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
820 
821 // SAFETY: The `__pinned_init` function is implemented such that it
822 // - returns `Ok(())` on successful initialization,
823 // - returns `Err(err)` on error and in this case `slot` will be dropped.
824 // - considers `slot` pinned.
825 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
826 where
827     I: PinInit<T, E>,
828     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
829 {
830     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
831         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
832         unsafe { self.0.__pinned_init(slot)? };
833         // SAFETY: The above call initialized `slot` and we still have unique access.
834         let val = unsafe { &mut *slot };
835         // SAFETY: `slot` is considered pinned.
836         let val = unsafe { Pin::new_unchecked(val) };
837         (self.1)(val).map_err(|e| {
838             // SAFETY: `slot` was initialized above.
839             unsafe { core::ptr::drop_in_place(slot) };
840             e
841         })
842     }
843 }
844 
845 /// An initializer for `T`.
846 ///
847 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
848 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
849 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
850 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
851 ///
852 /// Also see the [module description](self).
853 ///
854 /// # Safety
855 ///
856 /// When implementing this type you will need to take great care. Also there are probably very few
857 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
858 ///
859 /// The [`Init::__init`] function
860 /// - returns `Ok(())` if it initialized every field of `slot`,
861 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
862 ///     - `slot` can be deallocated without UB occurring,
863 ///     - `slot` does not need to be dropped,
864 ///     - `slot` is not partially initialized.
865 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
866 ///
867 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
868 /// code as `__init`.
869 ///
870 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
871 /// move the pointee after initialization.
872 ///
873 /// [`Arc<T>`]: crate::sync::Arc
874 #[must_use = "An initializer must be used in order to create its value."]
875 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
876     /// Initializes `slot`.
877     ///
878     /// # Safety
879     ///
880     /// - `slot` is a valid pointer to uninitialized memory.
881     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
882     ///   deallocate.
883     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
884 
885     /// First initializes the value using `self` then calls the function `f` with the initialized
886     /// value.
887     ///
888     /// If `f` returns an error the value is dropped and the initializer will forward the error.
889     ///
890     /// # Examples
891     ///
892     /// ```rust
893     /// # #![allow(clippy::disallowed_names)]
894     /// use kernel::{types::Opaque, init::{self, init_from_closure}};
895     /// struct Foo {
896     ///     buf: [u8; 1_000_000],
897     /// }
898     ///
899     /// impl Foo {
900     ///     fn setup(&mut self) {
901     ///         pr_info!("Setting up foo");
902     ///     }
903     /// }
904     ///
905     /// let foo = init!(Foo {
906     ///     buf <- init::zeroed()
907     /// }).chain(|foo| {
908     ///     foo.setup();
909     ///     Ok(())
910     /// });
911     /// ```
912     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
913     where
914         F: FnOnce(&mut T) -> Result<(), E>,
915     {
916         ChainInit(self, f, PhantomData)
917     }
918 }
919 
920 /// An initializer returned by [`Init::chain`].
921 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
922 
923 // SAFETY: The `__init` function is implemented such that it
924 // - returns `Ok(())` on successful initialization,
925 // - returns `Err(err)` on error and in this case `slot` will be dropped.
926 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
927 where
928     I: Init<T, E>,
929     F: FnOnce(&mut T) -> Result<(), E>,
930 {
931     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
932         // SAFETY: All requirements fulfilled since this function is `__init`.
933         unsafe { self.0.__pinned_init(slot)? };
934         // SAFETY: The above call initialized `slot` and we still have unique access.
935         (self.1)(unsafe { &mut *slot }).map_err(|e| {
936             // SAFETY: `slot` was initialized above.
937             unsafe { core::ptr::drop_in_place(slot) };
938             e
939         })
940     }
941 }
942 
943 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
944 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
945 where
946     I: Init<T, E>,
947     F: FnOnce(&mut T) -> Result<(), E>,
948 {
949     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
950         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
951         unsafe { self.__init(slot) }
952     }
953 }
954 
955 /// Creates a new [`PinInit<T, E>`] from the given closure.
956 ///
957 /// # Safety
958 ///
959 /// The closure:
960 /// - returns `Ok(())` if it initialized every field of `slot`,
961 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
962 ///     - `slot` can be deallocated without UB occurring,
963 ///     - `slot` does not need to be dropped,
964 ///     - `slot` is not partially initialized.
965 /// - may assume that the `slot` does not move if `T: !Unpin`,
966 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
967 #[inline]
968 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
969     f: impl FnOnce(*mut T) -> Result<(), E>,
970 ) -> impl PinInit<T, E> {
971     __internal::InitClosure(f, PhantomData)
972 }
973 
974 /// Creates a new [`Init<T, E>`] from the given closure.
975 ///
976 /// # Safety
977 ///
978 /// The closure:
979 /// - returns `Ok(())` if it initialized every field of `slot`,
980 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
981 ///     - `slot` can be deallocated without UB occurring,
982 ///     - `slot` does not need to be dropped,
983 ///     - `slot` is not partially initialized.
984 /// - the `slot` may move after initialization.
985 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
986 #[inline]
987 pub const unsafe fn init_from_closure<T: ?Sized, E>(
988     f: impl FnOnce(*mut T) -> Result<(), E>,
989 ) -> impl Init<T, E> {
990     __internal::InitClosure(f, PhantomData)
991 }
992 
993 /// An initializer that leaves the memory uninitialized.
994 ///
995 /// The initializer is a no-op. The `slot` memory is not changed.
996 #[inline]
997 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
998     // SAFETY: The memory is allowed to be uninitialized.
999     unsafe { init_from_closure(|_| Ok(())) }
1000 }
1001 
1002 /// Initializes an array by initializing each element via the provided initializer.
1003 ///
1004 /// # Examples
1005 ///
1006 /// ```rust
1007 /// use kernel::{error::Error, init::init_array_from_fn};
1008 /// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap();
1009 /// assert_eq!(array.len(), 1_000);
1010 /// ```
1011 pub fn init_array_from_fn<I, const N: usize, T, E>(
1012     mut make_init: impl FnMut(usize) -> I,
1013 ) -> impl Init<[T; N], E>
1014 where
1015     I: Init<T, E>,
1016 {
1017     let init = move |slot: *mut [T; N]| {
1018         let slot = slot.cast::<T>();
1019         // Counts the number of initialized elements and when dropped drops that many elements from
1020         // `slot`.
1021         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1022             // We now free every element that has been initialized before:
1023             // SAFETY: The loop initialized exactly the values from 0..i and since we
1024             // return `Err` below, the caller will consider the memory at `slot` as
1025             // uninitialized.
1026             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1027         });
1028         for i in 0..N {
1029             let init = make_init(i);
1030             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1031             let ptr = unsafe { slot.add(i) };
1032             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1033             // requirements.
1034             unsafe { init.__init(ptr) }?;
1035             *init_count += 1;
1036         }
1037         init_count.dismiss();
1038         Ok(())
1039     };
1040     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1041     // any initialized elements and returns `Err`.
1042     unsafe { init_from_closure(init) }
1043 }
1044 
1045 /// Initializes an array by initializing each element via the provided initializer.
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```rust
1050 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
1051 /// let array: Arc<[Mutex<usize>; 1_000]>=
1052 ///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap();
1053 /// assert_eq!(array.len(), 1_000);
1054 /// ```
1055 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1056     mut make_init: impl FnMut(usize) -> I,
1057 ) -> impl PinInit<[T; N], E>
1058 where
1059     I: PinInit<T, E>,
1060 {
1061     let init = move |slot: *mut [T; N]| {
1062         let slot = slot.cast::<T>();
1063         // Counts the number of initialized elements and when dropped drops that many elements from
1064         // `slot`.
1065         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1066             // We now free every element that has been initialized before:
1067             // SAFETY: The loop initialized exactly the values from 0..i and since we
1068             // return `Err` below, the caller will consider the memory at `slot` as
1069             // uninitialized.
1070             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1071         });
1072         for i in 0..N {
1073             let init = make_init(i);
1074             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1075             let ptr = unsafe { slot.add(i) };
1076             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1077             // requirements.
1078             unsafe { init.__pinned_init(ptr) }?;
1079             *init_count += 1;
1080         }
1081         init_count.dismiss();
1082         Ok(())
1083     };
1084     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1085     // any initialized elements and returns `Err`.
1086     unsafe { pin_init_from_closure(init) }
1087 }
1088 
1089 // SAFETY: Every type can be initialized by-value.
1090 unsafe impl<T, E> Init<T, E> for T {
1091     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1092         unsafe { slot.write(self) };
1093         Ok(())
1094     }
1095 }
1096 
1097 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1098 unsafe impl<T, E> PinInit<T, E> for T {
1099     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1100         unsafe { self.__init(slot) }
1101     }
1102 }
1103 
1104 /// Smart pointer that can initialize memory in-place.
1105 pub trait InPlaceInit<T>: Sized {
1106     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1107     /// type.
1108     ///
1109     /// If `T: !Unpin` it will not be able to move afterwards.
1110     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1111     where
1112         E: From<AllocError>;
1113 
1114     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1115     /// type.
1116     ///
1117     /// If `T: !Unpin` it will not be able to move afterwards.
1118     fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
1119     where
1120         Error: From<E>,
1121     {
1122         // SAFETY: We delegate to `init` and only change the error type.
1123         let init = unsafe {
1124             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1125         };
1126         Self::try_pin_init(init)
1127     }
1128 
1129     /// Use the given initializer to in-place initialize a `T`.
1130     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1131     where
1132         E: From<AllocError>;
1133 
1134     /// Use the given initializer to in-place initialize a `T`.
1135     fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
1136     where
1137         Error: From<E>,
1138     {
1139         // SAFETY: We delegate to `init` and only change the error type.
1140         let init = unsafe {
1141             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1142         };
1143         Self::try_init(init)
1144     }
1145 }
1146 
1147 impl<T> InPlaceInit<T> for Box<T> {
1148     #[inline]
1149     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1150     where
1151         E: From<AllocError>,
1152     {
1153         let mut this = Box::try_new_uninit()?;
1154         let slot = this.as_mut_ptr();
1155         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1156         // slot is valid and will not be moved, because we pin it later.
1157         unsafe { init.__pinned_init(slot)? };
1158         // SAFETY: All fields have been initialized.
1159         Ok(unsafe { this.assume_init() }.into())
1160     }
1161 
1162     #[inline]
1163     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1164     where
1165         E: From<AllocError>,
1166     {
1167         let mut this = Box::try_new_uninit()?;
1168         let slot = this.as_mut_ptr();
1169         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1170         // slot is valid.
1171         unsafe { init.__init(slot)? };
1172         // SAFETY: All fields have been initialized.
1173         Ok(unsafe { this.assume_init() })
1174     }
1175 }
1176 
1177 impl<T> InPlaceInit<T> for UniqueArc<T> {
1178     #[inline]
1179     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1180     where
1181         E: From<AllocError>,
1182     {
1183         let mut this = UniqueArc::try_new_uninit()?;
1184         let slot = this.as_mut_ptr();
1185         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1186         // slot is valid and will not be moved, because we pin it later.
1187         unsafe { init.__pinned_init(slot)? };
1188         // SAFETY: All fields have been initialized.
1189         Ok(unsafe { this.assume_init() }.into())
1190     }
1191 
1192     #[inline]
1193     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1194     where
1195         E: From<AllocError>,
1196     {
1197         let mut this = UniqueArc::try_new_uninit()?;
1198         let slot = this.as_mut_ptr();
1199         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1200         // slot is valid.
1201         unsafe { init.__init(slot)? };
1202         // SAFETY: All fields have been initialized.
1203         Ok(unsafe { this.assume_init() })
1204     }
1205 }
1206 
1207 /// Trait facilitating pinned destruction.
1208 ///
1209 /// Use [`pinned_drop`] to implement this trait safely:
1210 ///
1211 /// ```rust
1212 /// # use kernel::sync::Mutex;
1213 /// use kernel::macros::pinned_drop;
1214 /// use core::pin::Pin;
1215 /// #[pin_data(PinnedDrop)]
1216 /// struct Foo {
1217 ///     #[pin]
1218 ///     mtx: Mutex<usize>,
1219 /// }
1220 ///
1221 /// #[pinned_drop]
1222 /// impl PinnedDrop for Foo {
1223 ///     fn drop(self: Pin<&mut Self>) {
1224 ///         pr_info!("Foo is being dropped!");
1225 ///     }
1226 /// }
1227 /// ```
1228 ///
1229 /// # Safety
1230 ///
1231 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1232 ///
1233 /// [`pinned_drop`]: kernel::macros::pinned_drop
1234 pub unsafe trait PinnedDrop: __internal::HasPinData {
1235     /// Executes the pinned destructor of this type.
1236     ///
1237     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1238     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1239     /// and thus prevents this function from being called where it should not.
1240     ///
1241     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1242     /// automatically.
1243     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1244 }
1245 
1246 /// Marker trait for types that can be initialized by writing just zeroes.
1247 ///
1248 /// # Safety
1249 ///
1250 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1251 /// this is not UB:
1252 ///
1253 /// ```rust,ignore
1254 /// let val: Self = unsafe { core::mem::zeroed() };
1255 /// ```
1256 pub unsafe trait Zeroable {}
1257 
1258 /// Create a new zeroed T.
1259 ///
1260 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1261 #[inline]
1262 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1263     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1264     // and because we write all zeroes, the memory is initialized.
1265     unsafe {
1266         init_from_closure(|slot: *mut T| {
1267             slot.write_bytes(0, 1);
1268             Ok(())
1269         })
1270     }
1271 }
1272 
1273 macro_rules! impl_zeroable {
1274     ($($({$($generics:tt)*})? $t:ty, )*) => {
1275         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1276     };
1277 }
1278 
1279 impl_zeroable! {
1280     // SAFETY: All primitives that are allowed to be zero.
1281     bool,
1282     char,
1283     u8, u16, u32, u64, u128, usize,
1284     i8, i16, i32, i64, i128, isize,
1285     f32, f64,
1286 
1287     // SAFETY: These are ZSTs, there is nothing to zero.
1288     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),
1289 
1290     // SAFETY: Type is allowed to take any value, including all zeros.
1291     {<T>} MaybeUninit<T>,
1292     // SAFETY: Type is allowed to take any value, including all zeros.
1293     {<T>} Opaque<T>,
1294 
1295     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1296     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1297 
1298     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1299     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1300     Option<NonZeroU128>, Option<NonZeroUsize>,
1301     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1302     Option<NonZeroI128>, Option<NonZeroIsize>,
1303 
1304     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1305     //
1306     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1307     {<T: ?Sized>} Option<NonNull<T>>,
1308     {<T: ?Sized>} Option<Box<T>>,
1309 
1310     // SAFETY: `null` pointer is valid.
1311     //
1312     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1313     // null.
1314     //
1315     // When `Pointee` gets stabilized, we could use
1316     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1317     {<T>} *mut T, {<T>} *const T,
1318 
1319     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1320     // zero.
1321     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1322 
1323     // SAFETY: `T` is `Zeroable`.
1324     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1325 }
1326 
1327 macro_rules! impl_tuple_zeroable {
1328     ($(,)?) => {};
1329     ($first:ident, $($t:ident),* $(,)?) => {
1330         // SAFETY: All elements are zeroable and padding can be zero.
1331         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1332         impl_tuple_zeroable!($($t),* ,);
1333     }
1334 }
1335 
1336 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1337