1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! A contiguous growable array type with heap-allocated contents, written 4 //! `Vec<T>`. 5 //! 6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and 7 //! *O*(1) pop (from the end). 8 //! 9 //! Vectors ensure they never allocate more than `isize::MAX` bytes. 10 //! 11 //! # Examples 12 //! 13 //! You can explicitly create a [`Vec`] with [`Vec::new`]: 14 //! 15 //! ``` 16 //! let v: Vec<i32> = Vec::new(); 17 //! ``` 18 //! 19 //! ...or by using the [`vec!`] macro: 20 //! 21 //! ``` 22 //! let v: Vec<i32> = vec![]; 23 //! 24 //! let v = vec![1, 2, 3, 4, 5]; 25 //! 26 //! let v = vec![0; 10]; // ten zeroes 27 //! ``` 28 //! 29 //! You can [`push`] values onto the end of a vector (which will grow the vector 30 //! as needed): 31 //! 32 //! ``` 33 //! let mut v = vec![1, 2]; 34 //! 35 //! v.push(3); 36 //! ``` 37 //! 38 //! Popping values works in much the same way: 39 //! 40 //! ``` 41 //! let mut v = vec![1, 2]; 42 //! 43 //! let two = v.pop(); 44 //! ``` 45 //! 46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): 47 //! 48 //! ``` 49 //! let mut v = vec![1, 2, 3]; 50 //! let three = v[2]; 51 //! v[1] = v[1] + 5; 52 //! ``` 53 //! 54 //! [`push`]: Vec::push 55 56 #![stable(feature = "rust1", since = "1.0.0")] 57 58 #[cfg(not(no_global_oom_handling))] 59 use core::cmp; 60 use core::cmp::Ordering; 61 use core::convert::TryFrom; 62 use core::fmt; 63 use core::hash::{Hash, Hasher}; 64 use core::intrinsics::{arith_offset, assume}; 65 use core::iter; 66 #[cfg(not(no_global_oom_handling))] 67 use core::iter::FromIterator; 68 use core::marker::PhantomData; 69 use core::mem::{self, ManuallyDrop, MaybeUninit}; 70 use core::ops::{self, Index, IndexMut, Range, RangeBounds}; 71 use core::ptr::{self, NonNull}; 72 use core::slice::{self, SliceIndex}; 73 74 use crate::alloc::{Allocator, Global}; 75 use crate::borrow::{Cow, ToOwned}; 76 use crate::boxed::Box; 77 use crate::collections::TryReserveError; 78 use crate::raw_vec::RawVec; 79 80 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] 81 pub use self::drain_filter::DrainFilter; 82 83 mod drain_filter; 84 85 #[cfg(not(no_global_oom_handling))] 86 #[stable(feature = "vec_splice", since = "1.21.0")] 87 pub use self::splice::Splice; 88 89 #[cfg(not(no_global_oom_handling))] 90 mod splice; 91 92 #[stable(feature = "drain", since = "1.6.0")] 93 pub use self::drain::Drain; 94 95 mod drain; 96 97 #[cfg(not(no_global_oom_handling))] 98 mod cow; 99 100 #[cfg(not(no_global_oom_handling))] 101 pub(crate) use self::in_place_collect::AsVecIntoIter; 102 #[stable(feature = "rust1", since = "1.0.0")] 103 pub use self::into_iter::IntoIter; 104 105 mod into_iter; 106 107 #[cfg(not(no_global_oom_handling))] 108 use self::is_zero::IsZero; 109 110 mod is_zero; 111 112 #[cfg(not(no_global_oom_handling))] 113 mod in_place_collect; 114 115 mod partial_eq; 116 117 #[cfg(not(no_global_oom_handling))] 118 use self::spec_from_elem::SpecFromElem; 119 120 #[cfg(not(no_global_oom_handling))] 121 mod spec_from_elem; 122 123 #[cfg(not(no_global_oom_handling))] 124 use self::set_len_on_drop::SetLenOnDrop; 125 126 #[cfg(not(no_global_oom_handling))] 127 mod set_len_on_drop; 128 129 #[cfg(not(no_global_oom_handling))] 130 use self::in_place_drop::InPlaceDrop; 131 132 #[cfg(not(no_global_oom_handling))] 133 mod in_place_drop; 134 135 #[cfg(not(no_global_oom_handling))] 136 use self::spec_from_iter_nested::SpecFromIterNested; 137 138 #[cfg(not(no_global_oom_handling))] 139 mod spec_from_iter_nested; 140 141 #[cfg(not(no_global_oom_handling))] 142 use self::spec_from_iter::SpecFromIter; 143 144 #[cfg(not(no_global_oom_handling))] 145 mod spec_from_iter; 146 147 #[cfg(not(no_global_oom_handling))] 148 use self::spec_extend::SpecExtend; 149 150 #[cfg(not(no_global_oom_handling))] 151 mod spec_extend; 152 153 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'. 154 /// 155 /// # Examples 156 /// 157 /// ``` 158 /// let mut vec = Vec::new(); 159 /// vec.push(1); 160 /// vec.push(2); 161 /// 162 /// assert_eq!(vec.len(), 2); 163 /// assert_eq!(vec[0], 1); 164 /// 165 /// assert_eq!(vec.pop(), Some(2)); 166 /// assert_eq!(vec.len(), 1); 167 /// 168 /// vec[0] = 7; 169 /// assert_eq!(vec[0], 7); 170 /// 171 /// vec.extend([1, 2, 3].iter().copied()); 172 /// 173 /// for x in &vec { 174 /// println!("{x}"); 175 /// } 176 /// assert_eq!(vec, [7, 1, 2, 3]); 177 /// ``` 178 /// 179 /// The [`vec!`] macro is provided for convenient initialization: 180 /// 181 /// ``` 182 /// let mut vec1 = vec![1, 2, 3]; 183 /// vec1.push(4); 184 /// let vec2 = Vec::from([1, 2, 3, 4]); 185 /// assert_eq!(vec1, vec2); 186 /// ``` 187 /// 188 /// It can also initialize each element of a `Vec<T>` with a given value. 189 /// This may be more efficient than performing allocation and initialization 190 /// in separate steps, especially when initializing a vector of zeros: 191 /// 192 /// ``` 193 /// let vec = vec![0; 5]; 194 /// assert_eq!(vec, [0, 0, 0, 0, 0]); 195 /// 196 /// // The following is equivalent, but potentially slower: 197 /// let mut vec = Vec::with_capacity(5); 198 /// vec.resize(5, 0); 199 /// assert_eq!(vec, [0, 0, 0, 0, 0]); 200 /// ``` 201 /// 202 /// For more information, see 203 /// [Capacity and Reallocation](#capacity-and-reallocation). 204 /// 205 /// Use a `Vec<T>` as an efficient stack: 206 /// 207 /// ``` 208 /// let mut stack = Vec::new(); 209 /// 210 /// stack.push(1); 211 /// stack.push(2); 212 /// stack.push(3); 213 /// 214 /// while let Some(top) = stack.pop() { 215 /// // Prints 3, 2, 1 216 /// println!("{top}"); 217 /// } 218 /// ``` 219 /// 220 /// # Indexing 221 /// 222 /// The `Vec` type allows to access values by index, because it implements the 223 /// [`Index`] trait. An example will be more explicit: 224 /// 225 /// ``` 226 /// let v = vec![0, 2, 4, 6]; 227 /// println!("{}", v[1]); // it will display '2' 228 /// ``` 229 /// 230 /// However be careful: if you try to access an index which isn't in the `Vec`, 231 /// your software will panic! You cannot do this: 232 /// 233 /// ```should_panic 234 /// let v = vec![0, 2, 4, 6]; 235 /// println!("{}", v[6]); // it will panic! 236 /// ``` 237 /// 238 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in 239 /// the `Vec`. 240 /// 241 /// # Slicing 242 /// 243 /// A `Vec` can be mutable. On the other hand, slices are read-only objects. 244 /// To get a [slice][prim@slice], use [`&`]. Example: 245 /// 246 /// ``` 247 /// fn read_slice(slice: &[usize]) { 248 /// // ... 249 /// } 250 /// 251 /// let v = vec![0, 1]; 252 /// read_slice(&v); 253 /// 254 /// // ... and that's all! 255 /// // you can also do it like this: 256 /// let u: &[usize] = &v; 257 /// // or like this: 258 /// let u: &[_] = &v; 259 /// ``` 260 /// 261 /// In Rust, it's more common to pass slices as arguments rather than vectors 262 /// when you just want to provide read access. The same goes for [`String`] and 263 /// [`&str`]. 264 /// 265 /// # Capacity and reallocation 266 /// 267 /// The capacity of a vector is the amount of space allocated for any future 268 /// elements that will be added onto the vector. This is not to be confused with 269 /// the *length* of a vector, which specifies the number of actual elements 270 /// within the vector. If a vector's length exceeds its capacity, its capacity 271 /// will automatically be increased, but its elements will have to be 272 /// reallocated. 273 /// 274 /// For example, a vector with capacity 10 and length 0 would be an empty vector 275 /// with space for 10 more elements. Pushing 10 or fewer elements onto the 276 /// vector will not change its capacity or cause reallocation to occur. However, 277 /// if the vector's length is increased to 11, it will have to reallocate, which 278 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] 279 /// whenever possible to specify how big the vector is expected to get. 280 /// 281 /// # Guarantees 282 /// 283 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees 284 /// about its design. This ensures that it's as low-overhead as possible in 285 /// the general case, and can be correctly manipulated in primitive ways 286 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. 287 /// If additional type parameters are added (e.g., to support custom allocators), 288 /// overriding their defaults may change the behavior. 289 /// 290 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) 291 /// triplet. No more, no less. The order of these fields is completely 292 /// unspecified, and you should use the appropriate methods to modify these. 293 /// The pointer will never be null, so this type is null-pointer-optimized. 294 /// 295 /// However, the pointer might not actually point to allocated memory. In particular, 296 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], 297 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] 298 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized 299 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case 300 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only 301 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation 302 /// details are very subtle --- if you intend to allocate memory using a `Vec` 303 /// and use it for something else (either to pass to unsafe code, or to build your 304 /// own memory-backed collection), be sure to deallocate this memory by using 305 /// `from_raw_parts` to recover the `Vec` and then dropping it. 306 /// 307 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap 308 /// (as defined by the allocator Rust is configured to use by default), and its 309 /// pointer points to [`len`] initialized, contiguous elements in order (what 310 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code> 311 /// logically uninitialized, contiguous elements. 312 /// 313 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be 314 /// visualized as below. The top part is the `Vec` struct, it contains a 315 /// pointer to the head of the allocation in the heap, length and capacity. 316 /// The bottom part is the allocation on the heap, a contiguous memory block. 317 /// 318 /// ```text 319 /// ptr len capacity 320 /// +--------+--------+--------+ 321 /// | 0x0123 | 2 | 4 | 322 /// +--------+--------+--------+ 323 /// | 324 /// v 325 /// Heap +--------+--------+--------+--------+ 326 /// | 'a' | 'b' | uninit | uninit | 327 /// +--------+--------+--------+--------+ 328 /// ``` 329 /// 330 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`]. 331 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory 332 /// layout (including the order of fields). 333 /// 334 /// `Vec` will never perform a "small optimization" where elements are actually 335 /// stored on the stack for two reasons: 336 /// 337 /// * It would make it more difficult for unsafe code to correctly manipulate 338 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were 339 /// only moved, and it would be more difficult to determine if a `Vec` had 340 /// actually allocated memory. 341 /// 342 /// * It would penalize the general case, incurring an additional branch 343 /// on every access. 344 /// 345 /// `Vec` will never automatically shrink itself, even if completely empty. This 346 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` 347 /// and then filling it back up to the same [`len`] should incur no calls to 348 /// the allocator. If you wish to free up unused memory, use 349 /// [`shrink_to_fit`] or [`shrink_to`]. 350 /// 351 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is 352 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if 353 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely 354 /// accurate, and can be relied on. It can even be used to manually free the memory 355 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even 356 /// when not necessary. 357 /// 358 /// `Vec` does not guarantee any particular growth strategy when reallocating 359 /// when full, nor when [`reserve`] is called. The current strategy is basic 360 /// and it may prove desirable to use a non-constant growth factor. Whatever 361 /// strategy is used will of course guarantee *O*(1) amortized [`push`]. 362 /// 363 /// `vec![x; n]`, `vec![a, b, c, d]`, and 364 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec` 365 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>, 366 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to 367 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. 368 /// 369 /// `Vec` will not specifically overwrite any data that is removed from it, 370 /// but also won't specifically preserve it. Its uninitialized memory is 371 /// scratch space that it may use however it wants. It will generally just do 372 /// whatever is most efficient or otherwise easy to implement. Do not rely on 373 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its 374 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory 375 /// first, that might not actually happen because the optimizer does not consider 376 /// this a side-effect that must be preserved. There is one case which we will 377 /// not break, however: using `unsafe` code to write to the excess capacity, 378 /// and then increasing the length to match, is always valid. 379 /// 380 /// Currently, `Vec` does not guarantee the order in which elements are dropped. 381 /// The order has changed in the past and may change again. 382 /// 383 /// [`get`]: ../../std/vec/struct.Vec.html#method.get 384 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut 385 /// [`String`]: crate::string::String 386 /// [`&str`]: type@str 387 /// [`shrink_to_fit`]: Vec::shrink_to_fit 388 /// [`shrink_to`]: Vec::shrink_to 389 /// [capacity]: Vec::capacity 390 /// [`capacity`]: Vec::capacity 391 /// [mem::size_of::\<T>]: core::mem::size_of 392 /// [len]: Vec::len 393 /// [`len`]: Vec::len 394 /// [`push`]: Vec::push 395 /// [`insert`]: Vec::insert 396 /// [`reserve`]: Vec::reserve 397 /// [`MaybeUninit`]: core::mem::MaybeUninit 398 /// [owned slice]: Box 399 #[stable(feature = "rust1", since = "1.0.0")] 400 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")] 401 #[rustc_insignificant_dtor] 402 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> { 403 buf: RawVec<T, A>, 404 len: usize, 405 } 406 407 //////////////////////////////////////////////////////////////////////////////// 408 // Inherent methods 409 //////////////////////////////////////////////////////////////////////////////// 410 411 impl<T> Vec<T> { 412 /// Constructs a new, empty `Vec<T>`. 413 /// 414 /// The vector will not allocate until elements are pushed onto it. 415 /// 416 /// # Examples 417 /// 418 /// ``` 419 /// # #![allow(unused_mut)] 420 /// let mut vec: Vec<i32> = Vec::new(); 421 /// ``` 422 #[inline] 423 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")] 424 #[stable(feature = "rust1", since = "1.0.0")] 425 #[must_use] 426 pub const fn new() -> Self { 427 Vec { buf: RawVec::NEW, len: 0 } 428 } 429 430 /// Constructs a new, empty `Vec<T>` with the specified capacity. 431 /// 432 /// The vector will be able to hold exactly `capacity` elements without 433 /// reallocating. If `capacity` is 0, the vector will not allocate. 434 /// 435 /// It is important to note that although the returned vector has the 436 /// *capacity* specified, the vector will have a zero *length*. For an 437 /// explanation of the difference between length and capacity, see 438 /// *[Capacity and reallocation]*. 439 /// 440 /// [Capacity and reallocation]: #capacity-and-reallocation 441 /// 442 /// # Panics 443 /// 444 /// Panics if the new capacity exceeds `isize::MAX` bytes. 445 /// 446 /// # Examples 447 /// 448 /// ``` 449 /// let mut vec = Vec::with_capacity(10); 450 /// 451 /// // The vector contains no items, even though it has capacity for more 452 /// assert_eq!(vec.len(), 0); 453 /// assert_eq!(vec.capacity(), 10); 454 /// 455 /// // These are all done without reallocating... 456 /// for i in 0..10 { 457 /// vec.push(i); 458 /// } 459 /// assert_eq!(vec.len(), 10); 460 /// assert_eq!(vec.capacity(), 10); 461 /// 462 /// // ...but this may make the vector reallocate 463 /// vec.push(11); 464 /// assert_eq!(vec.len(), 11); 465 /// assert!(vec.capacity() >= 11); 466 /// ``` 467 #[cfg(not(no_global_oom_handling))] 468 #[inline] 469 #[stable(feature = "rust1", since = "1.0.0")] 470 #[must_use] 471 pub fn with_capacity(capacity: usize) -> Self { 472 Self::with_capacity_in(capacity, Global) 473 } 474 475 /// Tries to construct a new, empty `Vec<T>` with the specified capacity. 476 /// 477 /// The vector will be able to hold exactly `capacity` elements without 478 /// reallocating. If `capacity` is 0, the vector will not allocate. 479 /// 480 /// It is important to note that although the returned vector has the 481 /// *capacity* specified, the vector will have a zero *length*. For an 482 /// explanation of the difference between length and capacity, see 483 /// *[Capacity and reallocation]*. 484 /// 485 /// [Capacity and reallocation]: #capacity-and-reallocation 486 /// 487 /// # Examples 488 /// 489 /// ``` 490 /// let mut vec = Vec::try_with_capacity(10).unwrap(); 491 /// 492 /// // The vector contains no items, even though it has capacity for more 493 /// assert_eq!(vec.len(), 0); 494 /// assert_eq!(vec.capacity(), 10); 495 /// 496 /// // These are all done without reallocating... 497 /// for i in 0..10 { 498 /// vec.push(i); 499 /// } 500 /// assert_eq!(vec.len(), 10); 501 /// assert_eq!(vec.capacity(), 10); 502 /// 503 /// // ...but this may make the vector reallocate 504 /// vec.push(11); 505 /// assert_eq!(vec.len(), 11); 506 /// assert!(vec.capacity() >= 11); 507 /// 508 /// let mut result = Vec::try_with_capacity(usize::MAX); 509 /// assert!(result.is_err()); 510 /// ``` 511 #[inline] 512 #[stable(feature = "kernel", since = "1.0.0")] 513 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { 514 Self::try_with_capacity_in(capacity, Global) 515 } 516 517 /// Creates a `Vec<T>` directly from the raw components of another vector. 518 /// 519 /// # Safety 520 /// 521 /// This is highly unsafe, due to the number of invariants that aren't 522 /// checked: 523 /// 524 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>` 525 /// (at least, it's highly likely to be incorrect if it wasn't). 526 /// * `T` needs to have the same alignment as what `ptr` was allocated with. 527 /// (`T` having a less strict alignment is not sufficient, the alignment really 528 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be 529 /// allocated and deallocated with the same layout.) 530 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs 531 /// to be the same size as the pointer was allocated with. (Because similar to 532 /// alignment, [`dealloc`] must be called with the same layout `size`.) 533 /// * `length` needs to be less than or equal to `capacity`. 534 /// 535 /// Violating these may cause problems like corrupting the allocator's 536 /// internal data structures. For example it is normally **not** safe 537 /// to build a `Vec<u8>` from a pointer to a C `char` array with length 538 /// `size_t`, doing so is only safe if the array was initially allocated by 539 /// a `Vec` or `String`. 540 /// It's also not safe to build one from a `Vec<u16>` and its length, because 541 /// the allocator cares about the alignment, and these two types have different 542 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after 543 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid 544 /// these issues, it is often preferable to do casting/transmuting using 545 /// [`slice::from_raw_parts`] instead. 546 /// 547 /// The ownership of `ptr` is effectively transferred to the 548 /// `Vec<T>` which may then deallocate, reallocate or change the 549 /// contents of memory pointed to by the pointer at will. Ensure 550 /// that nothing else uses the pointer after calling this 551 /// function. 552 /// 553 /// [`String`]: crate::string::String 554 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc 555 /// 556 /// # Examples 557 /// 558 /// ``` 559 /// use std::ptr; 560 /// use std::mem; 561 /// 562 /// let v = vec![1, 2, 3]; 563 /// 564 // FIXME Update this when vec_into_raw_parts is stabilized 565 /// // Prevent running `v`'s destructor so we are in complete control 566 /// // of the allocation. 567 /// let mut v = mem::ManuallyDrop::new(v); 568 /// 569 /// // Pull out the various important pieces of information about `v` 570 /// let p = v.as_mut_ptr(); 571 /// let len = v.len(); 572 /// let cap = v.capacity(); 573 /// 574 /// unsafe { 575 /// // Overwrite memory with 4, 5, 6 576 /// for i in 0..len as isize { 577 /// ptr::write(p.offset(i), 4 + i); 578 /// } 579 /// 580 /// // Put everything back together into a Vec 581 /// let rebuilt = Vec::from_raw_parts(p, len, cap); 582 /// assert_eq!(rebuilt, [4, 5, 6]); 583 /// } 584 /// ``` 585 #[inline] 586 #[stable(feature = "rust1", since = "1.0.0")] 587 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { 588 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) } 589 } 590 } 591 592 impl<T, A: Allocator> Vec<T, A> { 593 /// Constructs a new, empty `Vec<T, A>`. 594 /// 595 /// The vector will not allocate until elements are pushed onto it. 596 /// 597 /// # Examples 598 /// 599 /// ``` 600 /// #![feature(allocator_api)] 601 /// 602 /// use std::alloc::System; 603 /// 604 /// # #[allow(unused_mut)] 605 /// let mut vec: Vec<i32, _> = Vec::new_in(System); 606 /// ``` 607 #[inline] 608 #[unstable(feature = "allocator_api", issue = "32838")] 609 pub const fn new_in(alloc: A) -> Self { 610 Vec { buf: RawVec::new_in(alloc), len: 0 } 611 } 612 613 /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided 614 /// allocator. 615 /// 616 /// The vector will be able to hold exactly `capacity` elements without 617 /// reallocating. If `capacity` is 0, the vector will not allocate. 618 /// 619 /// It is important to note that although the returned vector has the 620 /// *capacity* specified, the vector will have a zero *length*. For an 621 /// explanation of the difference between length and capacity, see 622 /// *[Capacity and reallocation]*. 623 /// 624 /// [Capacity and reallocation]: #capacity-and-reallocation 625 /// 626 /// # Panics 627 /// 628 /// Panics if the new capacity exceeds `isize::MAX` bytes. 629 /// 630 /// # Examples 631 /// 632 /// ``` 633 /// #![feature(allocator_api)] 634 /// 635 /// use std::alloc::System; 636 /// 637 /// let mut vec = Vec::with_capacity_in(10, System); 638 /// 639 /// // The vector contains no items, even though it has capacity for more 640 /// assert_eq!(vec.len(), 0); 641 /// assert_eq!(vec.capacity(), 10); 642 /// 643 /// // These are all done without reallocating... 644 /// for i in 0..10 { 645 /// vec.push(i); 646 /// } 647 /// assert_eq!(vec.len(), 10); 648 /// assert_eq!(vec.capacity(), 10); 649 /// 650 /// // ...but this may make the vector reallocate 651 /// vec.push(11); 652 /// assert_eq!(vec.len(), 11); 653 /// assert!(vec.capacity() >= 11); 654 /// ``` 655 #[cfg(not(no_global_oom_handling))] 656 #[inline] 657 #[unstable(feature = "allocator_api", issue = "32838")] 658 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { 659 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 } 660 } 661 662 /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity 663 /// with the provided allocator. 664 /// 665 /// The vector will be able to hold exactly `capacity` elements without 666 /// reallocating. If `capacity` is 0, the vector will not allocate. 667 /// 668 /// It is important to note that although the returned vector has the 669 /// *capacity* specified, the vector will have a zero *length*. For an 670 /// explanation of the difference between length and capacity, see 671 /// *[Capacity and reallocation]*. 672 /// 673 /// [Capacity and reallocation]: #capacity-and-reallocation 674 /// 675 /// # Examples 676 /// 677 /// ``` 678 /// #![feature(allocator_api)] 679 /// 680 /// use std::alloc::System; 681 /// 682 /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap(); 683 /// 684 /// // The vector contains no items, even though it has capacity for more 685 /// assert_eq!(vec.len(), 0); 686 /// assert_eq!(vec.capacity(), 10); 687 /// 688 /// // These are all done without reallocating... 689 /// for i in 0..10 { 690 /// vec.push(i); 691 /// } 692 /// assert_eq!(vec.len(), 10); 693 /// assert_eq!(vec.capacity(), 10); 694 /// 695 /// // ...but this may make the vector reallocate 696 /// vec.push(11); 697 /// assert_eq!(vec.len(), 11); 698 /// assert!(vec.capacity() >= 11); 699 /// 700 /// let mut result = Vec::try_with_capacity_in(usize::MAX, System); 701 /// assert!(result.is_err()); 702 /// ``` 703 #[inline] 704 #[stable(feature = "kernel", since = "1.0.0")] 705 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { 706 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 }) 707 } 708 709 /// Creates a `Vec<T, A>` directly from the raw components of another vector. 710 /// 711 /// # Safety 712 /// 713 /// This is highly unsafe, due to the number of invariants that aren't 714 /// checked: 715 /// 716 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>` 717 /// (at least, it's highly likely to be incorrect if it wasn't). 718 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with. 719 /// (`T` having a less strict alignment is not sufficient, the alignment really 720 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be 721 /// allocated and deallocated with the same layout.) 722 /// * `length` needs to be less than or equal to `capacity`. 723 /// * `capacity` needs to be the capacity that the pointer was allocated with. 724 /// 725 /// Violating these may cause problems like corrupting the allocator's 726 /// internal data structures. For example it is **not** safe 727 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. 728 /// It's also not safe to build one from a `Vec<u16>` and its length, because 729 /// the allocator cares about the alignment, and these two types have different 730 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after 731 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. 732 /// 733 /// The ownership of `ptr` is effectively transferred to the 734 /// `Vec<T>` which may then deallocate, reallocate or change the 735 /// contents of memory pointed to by the pointer at will. Ensure 736 /// that nothing else uses the pointer after calling this 737 /// function. 738 /// 739 /// [`String`]: crate::string::String 740 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc 741 /// 742 /// # Examples 743 /// 744 /// ``` 745 /// #![feature(allocator_api)] 746 /// 747 /// use std::alloc::System; 748 /// 749 /// use std::ptr; 750 /// use std::mem; 751 /// 752 /// let mut v = Vec::with_capacity_in(3, System); 753 /// v.push(1); 754 /// v.push(2); 755 /// v.push(3); 756 /// 757 // FIXME Update this when vec_into_raw_parts is stabilized 758 /// // Prevent running `v`'s destructor so we are in complete control 759 /// // of the allocation. 760 /// let mut v = mem::ManuallyDrop::new(v); 761 /// 762 /// // Pull out the various important pieces of information about `v` 763 /// let p = v.as_mut_ptr(); 764 /// let len = v.len(); 765 /// let cap = v.capacity(); 766 /// let alloc = v.allocator(); 767 /// 768 /// unsafe { 769 /// // Overwrite memory with 4, 5, 6 770 /// for i in 0..len as isize { 771 /// ptr::write(p.offset(i), 4 + i); 772 /// } 773 /// 774 /// // Put everything back together into a Vec 775 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone()); 776 /// assert_eq!(rebuilt, [4, 5, 6]); 777 /// } 778 /// ``` 779 #[inline] 780 #[unstable(feature = "allocator_api", issue = "32838")] 781 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self { 782 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } } 783 } 784 785 /// Decomposes a `Vec<T>` into its raw components. 786 /// 787 /// Returns the raw pointer to the underlying data, the length of 788 /// the vector (in elements), and the allocated capacity of the 789 /// data (in elements). These are the same arguments in the same 790 /// order as the arguments to [`from_raw_parts`]. 791 /// 792 /// After calling this function, the caller is responsible for the 793 /// memory previously managed by the `Vec`. The only way to do 794 /// this is to convert the raw pointer, length, and capacity back 795 /// into a `Vec` with the [`from_raw_parts`] function, allowing 796 /// the destructor to perform the cleanup. 797 /// 798 /// [`from_raw_parts`]: Vec::from_raw_parts 799 /// 800 /// # Examples 801 /// 802 /// ``` 803 /// #![feature(vec_into_raw_parts)] 804 /// let v: Vec<i32> = vec![-1, 0, 1]; 805 /// 806 /// let (ptr, len, cap) = v.into_raw_parts(); 807 /// 808 /// let rebuilt = unsafe { 809 /// // We can now make changes to the components, such as 810 /// // transmuting the raw pointer to a compatible type. 811 /// let ptr = ptr as *mut u32; 812 /// 813 /// Vec::from_raw_parts(ptr, len, cap) 814 /// }; 815 /// assert_eq!(rebuilt, [4294967295, 0, 1]); 816 /// ``` 817 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] 818 pub fn into_raw_parts(self) -> (*mut T, usize, usize) { 819 let mut me = ManuallyDrop::new(self); 820 (me.as_mut_ptr(), me.len(), me.capacity()) 821 } 822 823 /// Decomposes a `Vec<T>` into its raw components. 824 /// 825 /// Returns the raw pointer to the underlying data, the length of the vector (in elements), 826 /// the allocated capacity of the data (in elements), and the allocator. These are the same 827 /// arguments in the same order as the arguments to [`from_raw_parts_in`]. 828 /// 829 /// After calling this function, the caller is responsible for the 830 /// memory previously managed by the `Vec`. The only way to do 831 /// this is to convert the raw pointer, length, and capacity back 832 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing 833 /// the destructor to perform the cleanup. 834 /// 835 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in 836 /// 837 /// # Examples 838 /// 839 /// ``` 840 /// #![feature(allocator_api, vec_into_raw_parts)] 841 /// 842 /// use std::alloc::System; 843 /// 844 /// let mut v: Vec<i32, System> = Vec::new_in(System); 845 /// v.push(-1); 846 /// v.push(0); 847 /// v.push(1); 848 /// 849 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); 850 /// 851 /// let rebuilt = unsafe { 852 /// // We can now make changes to the components, such as 853 /// // transmuting the raw pointer to a compatible type. 854 /// let ptr = ptr as *mut u32; 855 /// 856 /// Vec::from_raw_parts_in(ptr, len, cap, alloc) 857 /// }; 858 /// assert_eq!(rebuilt, [4294967295, 0, 1]); 859 /// ``` 860 #[unstable(feature = "allocator_api", issue = "32838")] 861 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] 862 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) { 863 let mut me = ManuallyDrop::new(self); 864 let len = me.len(); 865 let capacity = me.capacity(); 866 let ptr = me.as_mut_ptr(); 867 let alloc = unsafe { ptr::read(me.allocator()) }; 868 (ptr, len, capacity, alloc) 869 } 870 871 /// Returns the number of elements the vector can hold without 872 /// reallocating. 873 /// 874 /// # Examples 875 /// 876 /// ``` 877 /// let vec: Vec<i32> = Vec::with_capacity(10); 878 /// assert_eq!(vec.capacity(), 10); 879 /// ``` 880 #[inline] 881 #[stable(feature = "rust1", since = "1.0.0")] 882 pub fn capacity(&self) -> usize { 883 self.buf.capacity() 884 } 885 886 /// Reserves capacity for at least `additional` more elements to be inserted 887 /// in the given `Vec<T>`. The collection may reserve more space to avoid 888 /// frequent reallocations. After calling `reserve`, capacity will be 889 /// greater than or equal to `self.len() + additional`. Does nothing if 890 /// capacity is already sufficient. 891 /// 892 /// # Panics 893 /// 894 /// Panics if the new capacity exceeds `isize::MAX` bytes. 895 /// 896 /// # Examples 897 /// 898 /// ``` 899 /// let mut vec = vec![1]; 900 /// vec.reserve(10); 901 /// assert!(vec.capacity() >= 11); 902 /// ``` 903 #[cfg(not(no_global_oom_handling))] 904 #[stable(feature = "rust1", since = "1.0.0")] 905 pub fn reserve(&mut self, additional: usize) { 906 self.buf.reserve(self.len, additional); 907 } 908 909 /// Reserves the minimum capacity for exactly `additional` more elements to 910 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`, 911 /// capacity will be greater than or equal to `self.len() + additional`. 912 /// Does nothing if the capacity is already sufficient. 913 /// 914 /// Note that the allocator may give the collection more space than it 915 /// requests. Therefore, capacity can not be relied upon to be precisely 916 /// minimal. Prefer [`reserve`] if future insertions are expected. 917 /// 918 /// [`reserve`]: Vec::reserve 919 /// 920 /// # Panics 921 /// 922 /// Panics if the new capacity exceeds `isize::MAX` bytes. 923 /// 924 /// # Examples 925 /// 926 /// ``` 927 /// let mut vec = vec![1]; 928 /// vec.reserve_exact(10); 929 /// assert!(vec.capacity() >= 11); 930 /// ``` 931 #[cfg(not(no_global_oom_handling))] 932 #[stable(feature = "rust1", since = "1.0.0")] 933 pub fn reserve_exact(&mut self, additional: usize) { 934 self.buf.reserve_exact(self.len, additional); 935 } 936 937 /// Tries to reserve capacity for at least `additional` more elements to be inserted 938 /// in the given `Vec<T>`. The collection may reserve more space to avoid 939 /// frequent reallocations. After calling `try_reserve`, capacity will be 940 /// greater than or equal to `self.len() + additional`. Does nothing if 941 /// capacity is already sufficient. 942 /// 943 /// # Errors 944 /// 945 /// If the capacity overflows, or the allocator reports a failure, then an error 946 /// is returned. 947 /// 948 /// # Examples 949 /// 950 /// ``` 951 /// use std::collections::TryReserveError; 952 /// 953 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { 954 /// let mut output = Vec::new(); 955 /// 956 /// // Pre-reserve the memory, exiting if we can't 957 /// output.try_reserve(data.len())?; 958 /// 959 /// // Now we know this can't OOM in the middle of our complex work 960 /// output.extend(data.iter().map(|&val| { 961 /// val * 2 + 5 // very complicated 962 /// })); 963 /// 964 /// Ok(output) 965 /// } 966 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); 967 /// ``` 968 #[stable(feature = "try_reserve", since = "1.57.0")] 969 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { 970 self.buf.try_reserve(self.len, additional) 971 } 972 973 /// Tries to reserve the minimum capacity for exactly `additional` 974 /// elements to be inserted in the given `Vec<T>`. After calling 975 /// `try_reserve_exact`, capacity will be greater than or equal to 976 /// `self.len() + additional` if it returns `Ok(())`. 977 /// Does nothing if the capacity is already sufficient. 978 /// 979 /// Note that the allocator may give the collection more space than it 980 /// requests. Therefore, capacity can not be relied upon to be precisely 981 /// minimal. Prefer [`try_reserve`] if future insertions are expected. 982 /// 983 /// [`try_reserve`]: Vec::try_reserve 984 /// 985 /// # Errors 986 /// 987 /// If the capacity overflows, or the allocator reports a failure, then an error 988 /// is returned. 989 /// 990 /// # Examples 991 /// 992 /// ``` 993 /// use std::collections::TryReserveError; 994 /// 995 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { 996 /// let mut output = Vec::new(); 997 /// 998 /// // Pre-reserve the memory, exiting if we can't 999 /// output.try_reserve_exact(data.len())?; 1000 /// 1001 /// // Now we know this can't OOM in the middle of our complex work 1002 /// output.extend(data.iter().map(|&val| { 1003 /// val * 2 + 5 // very complicated 1004 /// })); 1005 /// 1006 /// Ok(output) 1007 /// } 1008 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); 1009 /// ``` 1010 #[stable(feature = "try_reserve", since = "1.57.0")] 1011 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { 1012 self.buf.try_reserve_exact(self.len, additional) 1013 } 1014 1015 /// Shrinks the capacity of the vector as much as possible. 1016 /// 1017 /// It will drop down as close as possible to the length but the allocator 1018 /// may still inform the vector that there is space for a few more elements. 1019 /// 1020 /// # Examples 1021 /// 1022 /// ``` 1023 /// let mut vec = Vec::with_capacity(10); 1024 /// vec.extend([1, 2, 3]); 1025 /// assert_eq!(vec.capacity(), 10); 1026 /// vec.shrink_to_fit(); 1027 /// assert!(vec.capacity() >= 3); 1028 /// ``` 1029 #[cfg(not(no_global_oom_handling))] 1030 #[stable(feature = "rust1", since = "1.0.0")] 1031 pub fn shrink_to_fit(&mut self) { 1032 // The capacity is never less than the length, and there's nothing to do when 1033 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit` 1034 // by only calling it with a greater capacity. 1035 if self.capacity() > self.len { 1036 self.buf.shrink_to_fit(self.len); 1037 } 1038 } 1039 1040 /// Shrinks the capacity of the vector with a lower bound. 1041 /// 1042 /// The capacity will remain at least as large as both the length 1043 /// and the supplied value. 1044 /// 1045 /// If the current capacity is less than the lower limit, this is a no-op. 1046 /// 1047 /// # Examples 1048 /// 1049 /// ``` 1050 /// let mut vec = Vec::with_capacity(10); 1051 /// vec.extend([1, 2, 3]); 1052 /// assert_eq!(vec.capacity(), 10); 1053 /// vec.shrink_to(4); 1054 /// assert!(vec.capacity() >= 4); 1055 /// vec.shrink_to(0); 1056 /// assert!(vec.capacity() >= 3); 1057 /// ``` 1058 #[cfg(not(no_global_oom_handling))] 1059 #[stable(feature = "shrink_to", since = "1.56.0")] 1060 pub fn shrink_to(&mut self, min_capacity: usize) { 1061 if self.capacity() > min_capacity { 1062 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity)); 1063 } 1064 } 1065 1066 /// Converts the vector into [`Box<[T]>`][owned slice]. 1067 /// 1068 /// Note that this will drop any excess capacity. 1069 /// 1070 /// [owned slice]: Box 1071 /// 1072 /// # Examples 1073 /// 1074 /// ``` 1075 /// let v = vec![1, 2, 3]; 1076 /// 1077 /// let slice = v.into_boxed_slice(); 1078 /// ``` 1079 /// 1080 /// Any excess capacity is removed: 1081 /// 1082 /// ``` 1083 /// let mut vec = Vec::with_capacity(10); 1084 /// vec.extend([1, 2, 3]); 1085 /// 1086 /// assert_eq!(vec.capacity(), 10); 1087 /// let slice = vec.into_boxed_slice(); 1088 /// assert_eq!(slice.into_vec().capacity(), 3); 1089 /// ``` 1090 #[cfg(not(no_global_oom_handling))] 1091 #[stable(feature = "rust1", since = "1.0.0")] 1092 pub fn into_boxed_slice(mut self) -> Box<[T], A> { 1093 unsafe { 1094 self.shrink_to_fit(); 1095 let me = ManuallyDrop::new(self); 1096 let buf = ptr::read(&me.buf); 1097 let len = me.len(); 1098 buf.into_box(len).assume_init() 1099 } 1100 } 1101 1102 /// Shortens the vector, keeping the first `len` elements and dropping 1103 /// the rest. 1104 /// 1105 /// If `len` is greater than the vector's current length, this has no 1106 /// effect. 1107 /// 1108 /// The [`drain`] method can emulate `truncate`, but causes the excess 1109 /// elements to be returned instead of dropped. 1110 /// 1111 /// Note that this method has no effect on the allocated capacity 1112 /// of the vector. 1113 /// 1114 /// # Examples 1115 /// 1116 /// Truncating a five element vector to two elements: 1117 /// 1118 /// ``` 1119 /// let mut vec = vec![1, 2, 3, 4, 5]; 1120 /// vec.truncate(2); 1121 /// assert_eq!(vec, [1, 2]); 1122 /// ``` 1123 /// 1124 /// No truncation occurs when `len` is greater than the vector's current 1125 /// length: 1126 /// 1127 /// ``` 1128 /// let mut vec = vec![1, 2, 3]; 1129 /// vec.truncate(8); 1130 /// assert_eq!(vec, [1, 2, 3]); 1131 /// ``` 1132 /// 1133 /// Truncating when `len == 0` is equivalent to calling the [`clear`] 1134 /// method. 1135 /// 1136 /// ``` 1137 /// let mut vec = vec![1, 2, 3]; 1138 /// vec.truncate(0); 1139 /// assert_eq!(vec, []); 1140 /// ``` 1141 /// 1142 /// [`clear`]: Vec::clear 1143 /// [`drain`]: Vec::drain 1144 #[stable(feature = "rust1", since = "1.0.0")] 1145 pub fn truncate(&mut self, len: usize) { 1146 // This is safe because: 1147 // 1148 // * the slice passed to `drop_in_place` is valid; the `len > self.len` 1149 // case avoids creating an invalid slice, and 1150 // * the `len` of the vector is shrunk before calling `drop_in_place`, 1151 // such that no value will be dropped twice in case `drop_in_place` 1152 // were to panic once (if it panics twice, the program aborts). 1153 unsafe { 1154 // Note: It's intentional that this is `>` and not `>=`. 1155 // Changing it to `>=` has negative performance 1156 // implications in some cases. See #78884 for more. 1157 if len > self.len { 1158 return; 1159 } 1160 let remaining_len = self.len - len; 1161 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len); 1162 self.len = len; 1163 ptr::drop_in_place(s); 1164 } 1165 } 1166 1167 /// Extracts a slice containing the entire vector. 1168 /// 1169 /// Equivalent to `&s[..]`. 1170 /// 1171 /// # Examples 1172 /// 1173 /// ``` 1174 /// use std::io::{self, Write}; 1175 /// let buffer = vec![1, 2, 3, 5, 8]; 1176 /// io::sink().write(buffer.as_slice()).unwrap(); 1177 /// ``` 1178 #[inline] 1179 #[stable(feature = "vec_as_slice", since = "1.7.0")] 1180 pub fn as_slice(&self) -> &[T] { 1181 self 1182 } 1183 1184 /// Extracts a mutable slice of the entire vector. 1185 /// 1186 /// Equivalent to `&mut s[..]`. 1187 /// 1188 /// # Examples 1189 /// 1190 /// ``` 1191 /// use std::io::{self, Read}; 1192 /// let mut buffer = vec![0; 3]; 1193 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); 1194 /// ``` 1195 #[inline] 1196 #[stable(feature = "vec_as_slice", since = "1.7.0")] 1197 pub fn as_mut_slice(&mut self) -> &mut [T] { 1198 self 1199 } 1200 1201 /// Returns a raw pointer to the vector's buffer. 1202 /// 1203 /// The caller must ensure that the vector outlives the pointer this 1204 /// function returns, or else it will end up pointing to garbage. 1205 /// Modifying the vector may cause its buffer to be reallocated, 1206 /// which would also make any pointers to it invalid. 1207 /// 1208 /// The caller must also ensure that the memory the pointer (non-transitively) points to 1209 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer 1210 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. 1211 /// 1212 /// # Examples 1213 /// 1214 /// ``` 1215 /// let x = vec![1, 2, 4]; 1216 /// let x_ptr = x.as_ptr(); 1217 /// 1218 /// unsafe { 1219 /// for i in 0..x.len() { 1220 /// assert_eq!(*x_ptr.add(i), 1 << i); 1221 /// } 1222 /// } 1223 /// ``` 1224 /// 1225 /// [`as_mut_ptr`]: Vec::as_mut_ptr 1226 #[stable(feature = "vec_as_ptr", since = "1.37.0")] 1227 #[inline] 1228 pub fn as_ptr(&self) -> *const T { 1229 // We shadow the slice method of the same name to avoid going through 1230 // `deref`, which creates an intermediate reference. 1231 let ptr = self.buf.ptr(); 1232 unsafe { 1233 assume(!ptr.is_null()); 1234 } 1235 ptr 1236 } 1237 1238 /// Returns an unsafe mutable pointer to the vector's buffer. 1239 /// 1240 /// The caller must ensure that the vector outlives the pointer this 1241 /// function returns, or else it will end up pointing to garbage. 1242 /// Modifying the vector may cause its buffer to be reallocated, 1243 /// which would also make any pointers to it invalid. 1244 /// 1245 /// # Examples 1246 /// 1247 /// ``` 1248 /// // Allocate vector big enough for 4 elements. 1249 /// let size = 4; 1250 /// let mut x: Vec<i32> = Vec::with_capacity(size); 1251 /// let x_ptr = x.as_mut_ptr(); 1252 /// 1253 /// // Initialize elements via raw pointer writes, then set length. 1254 /// unsafe { 1255 /// for i in 0..size { 1256 /// *x_ptr.add(i) = i as i32; 1257 /// } 1258 /// x.set_len(size); 1259 /// } 1260 /// assert_eq!(&*x, &[0, 1, 2, 3]); 1261 /// ``` 1262 #[stable(feature = "vec_as_ptr", since = "1.37.0")] 1263 #[inline] 1264 pub fn as_mut_ptr(&mut self) -> *mut T { 1265 // We shadow the slice method of the same name to avoid going through 1266 // `deref_mut`, which creates an intermediate reference. 1267 let ptr = self.buf.ptr(); 1268 unsafe { 1269 assume(!ptr.is_null()); 1270 } 1271 ptr 1272 } 1273 1274 /// Returns a reference to the underlying allocator. 1275 #[unstable(feature = "allocator_api", issue = "32838")] 1276 #[inline] 1277 pub fn allocator(&self) -> &A { 1278 self.buf.allocator() 1279 } 1280 1281 /// Forces the length of the vector to `new_len`. 1282 /// 1283 /// This is a low-level operation that maintains none of the normal 1284 /// invariants of the type. Normally changing the length of a vector 1285 /// is done using one of the safe operations instead, such as 1286 /// [`truncate`], [`resize`], [`extend`], or [`clear`]. 1287 /// 1288 /// [`truncate`]: Vec::truncate 1289 /// [`resize`]: Vec::resize 1290 /// [`extend`]: Extend::extend 1291 /// [`clear`]: Vec::clear 1292 /// 1293 /// # Safety 1294 /// 1295 /// - `new_len` must be less than or equal to [`capacity()`]. 1296 /// - The elements at `old_len..new_len` must be initialized. 1297 /// 1298 /// [`capacity()`]: Vec::capacity 1299 /// 1300 /// # Examples 1301 /// 1302 /// This method can be useful for situations in which the vector 1303 /// is serving as a buffer for other code, particularly over FFI: 1304 /// 1305 /// ```no_run 1306 /// # #![allow(dead_code)] 1307 /// # // This is just a minimal skeleton for the doc example; 1308 /// # // don't use this as a starting point for a real library. 1309 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void } 1310 /// # const Z_OK: i32 = 0; 1311 /// # extern "C" { 1312 /// # fn deflateGetDictionary( 1313 /// # strm: *mut std::ffi::c_void, 1314 /// # dictionary: *mut u8, 1315 /// # dictLength: *mut usize, 1316 /// # ) -> i32; 1317 /// # } 1318 /// # impl StreamWrapper { 1319 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> { 1320 /// // Per the FFI method's docs, "32768 bytes is always enough". 1321 /// let mut dict = Vec::with_capacity(32_768); 1322 /// let mut dict_length = 0; 1323 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: 1324 /// // 1. `dict_length` elements were initialized. 1325 /// // 2. `dict_length` <= the capacity (32_768) 1326 /// // which makes `set_len` safe to call. 1327 /// unsafe { 1328 /// // Make the FFI call... 1329 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); 1330 /// if r == Z_OK { 1331 /// // ...and update the length to what was initialized. 1332 /// dict.set_len(dict_length); 1333 /// Some(dict) 1334 /// } else { 1335 /// None 1336 /// } 1337 /// } 1338 /// } 1339 /// # } 1340 /// ``` 1341 /// 1342 /// While the following example is sound, there is a memory leak since 1343 /// the inner vectors were not freed prior to the `set_len` call: 1344 /// 1345 /// ``` 1346 /// let mut vec = vec![vec![1, 0, 0], 1347 /// vec![0, 1, 0], 1348 /// vec![0, 0, 1]]; 1349 /// // SAFETY: 1350 /// // 1. `old_len..0` is empty so no elements need to be initialized. 1351 /// // 2. `0 <= capacity` always holds whatever `capacity` is. 1352 /// unsafe { 1353 /// vec.set_len(0); 1354 /// } 1355 /// ``` 1356 /// 1357 /// Normally, here, one would use [`clear`] instead to correctly drop 1358 /// the contents and thus not leak memory. 1359 #[inline] 1360 #[stable(feature = "rust1", since = "1.0.0")] 1361 pub unsafe fn set_len(&mut self, new_len: usize) { 1362 debug_assert!(new_len <= self.capacity()); 1363 1364 self.len = new_len; 1365 } 1366 1367 /// Removes an element from the vector and returns it. 1368 /// 1369 /// The removed element is replaced by the last element of the vector. 1370 /// 1371 /// This does not preserve ordering, but is *O*(1). 1372 /// If you need to preserve the element order, use [`remove`] instead. 1373 /// 1374 /// [`remove`]: Vec::remove 1375 /// 1376 /// # Panics 1377 /// 1378 /// Panics if `index` is out of bounds. 1379 /// 1380 /// # Examples 1381 /// 1382 /// ``` 1383 /// let mut v = vec!["foo", "bar", "baz", "qux"]; 1384 /// 1385 /// assert_eq!(v.swap_remove(1), "bar"); 1386 /// assert_eq!(v, ["foo", "qux", "baz"]); 1387 /// 1388 /// assert_eq!(v.swap_remove(0), "foo"); 1389 /// assert_eq!(v, ["baz", "qux"]); 1390 /// ``` 1391 #[inline] 1392 #[stable(feature = "rust1", since = "1.0.0")] 1393 pub fn swap_remove(&mut self, index: usize) -> T { 1394 #[cold] 1395 #[inline(never)] 1396 fn assert_failed(index: usize, len: usize) -> ! { 1397 panic!("swap_remove index (is {index}) should be < len (is {len})"); 1398 } 1399 1400 let len = self.len(); 1401 if index >= len { 1402 assert_failed(index, len); 1403 } 1404 unsafe { 1405 // We replace self[index] with the last element. Note that if the 1406 // bounds check above succeeds there must be a last element (which 1407 // can be self[index] itself). 1408 let value = ptr::read(self.as_ptr().add(index)); 1409 let base_ptr = self.as_mut_ptr(); 1410 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1); 1411 self.set_len(len - 1); 1412 value 1413 } 1414 } 1415 1416 /// Inserts an element at position `index` within the vector, shifting all 1417 /// elements after it to the right. 1418 /// 1419 /// # Panics 1420 /// 1421 /// Panics if `index > len`. 1422 /// 1423 /// # Examples 1424 /// 1425 /// ``` 1426 /// let mut vec = vec![1, 2, 3]; 1427 /// vec.insert(1, 4); 1428 /// assert_eq!(vec, [1, 4, 2, 3]); 1429 /// vec.insert(4, 5); 1430 /// assert_eq!(vec, [1, 4, 2, 3, 5]); 1431 /// ``` 1432 #[cfg(not(no_global_oom_handling))] 1433 #[stable(feature = "rust1", since = "1.0.0")] 1434 pub fn insert(&mut self, index: usize, element: T) { 1435 #[cold] 1436 #[inline(never)] 1437 fn assert_failed(index: usize, len: usize) -> ! { 1438 panic!("insertion index (is {index}) should be <= len (is {len})"); 1439 } 1440 1441 let len = self.len(); 1442 if index > len { 1443 assert_failed(index, len); 1444 } 1445 1446 // space for the new element 1447 if len == self.buf.capacity() { 1448 self.reserve(1); 1449 } 1450 1451 unsafe { 1452 // infallible 1453 // The spot to put the new value 1454 { 1455 let p = self.as_mut_ptr().add(index); 1456 // Shift everything over to make space. (Duplicating the 1457 // `index`th element into two consecutive places.) 1458 ptr::copy(p, p.offset(1), len - index); 1459 // Write it in, overwriting the first copy of the `index`th 1460 // element. 1461 ptr::write(p, element); 1462 } 1463 self.set_len(len + 1); 1464 } 1465 } 1466 1467 /// Removes and returns the element at position `index` within the vector, 1468 /// shifting all elements after it to the left. 1469 /// 1470 /// Note: Because this shifts over the remaining elements, it has a 1471 /// worst-case performance of *O*(*n*). If you don't need the order of elements 1472 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove 1473 /// elements from the beginning of the `Vec`, consider using 1474 /// [`VecDeque::pop_front`] instead. 1475 /// 1476 /// [`swap_remove`]: Vec::swap_remove 1477 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front 1478 /// 1479 /// # Panics 1480 /// 1481 /// Panics if `index` is out of bounds. 1482 /// 1483 /// # Examples 1484 /// 1485 /// ``` 1486 /// let mut v = vec![1, 2, 3]; 1487 /// assert_eq!(v.remove(1), 2); 1488 /// assert_eq!(v, [1, 3]); 1489 /// ``` 1490 #[stable(feature = "rust1", since = "1.0.0")] 1491 #[track_caller] 1492 pub fn remove(&mut self, index: usize) -> T { 1493 #[cold] 1494 #[inline(never)] 1495 #[track_caller] 1496 fn assert_failed(index: usize, len: usize) -> ! { 1497 panic!("removal index (is {index}) should be < len (is {len})"); 1498 } 1499 1500 let len = self.len(); 1501 if index >= len { 1502 assert_failed(index, len); 1503 } 1504 unsafe { 1505 // infallible 1506 let ret; 1507 { 1508 // the place we are taking from. 1509 let ptr = self.as_mut_ptr().add(index); 1510 // copy it out, unsafely having a copy of the value on 1511 // the stack and in the vector at the same time. 1512 ret = ptr::read(ptr); 1513 1514 // Shift everything down to fill in that spot. 1515 ptr::copy(ptr.offset(1), ptr, len - index - 1); 1516 } 1517 self.set_len(len - 1); 1518 ret 1519 } 1520 } 1521 1522 /// Retains only the elements specified by the predicate. 1523 /// 1524 /// In other words, remove all elements `e` for which `f(&e)` returns `false`. 1525 /// This method operates in place, visiting each element exactly once in the 1526 /// original order, and preserves the order of the retained elements. 1527 /// 1528 /// # Examples 1529 /// 1530 /// ``` 1531 /// let mut vec = vec![1, 2, 3, 4]; 1532 /// vec.retain(|&x| x % 2 == 0); 1533 /// assert_eq!(vec, [2, 4]); 1534 /// ``` 1535 /// 1536 /// Because the elements are visited exactly once in the original order, 1537 /// external state may be used to decide which elements to keep. 1538 /// 1539 /// ``` 1540 /// let mut vec = vec![1, 2, 3, 4, 5]; 1541 /// let keep = [false, true, true, false, true]; 1542 /// let mut iter = keep.iter(); 1543 /// vec.retain(|_| *iter.next().unwrap()); 1544 /// assert_eq!(vec, [2, 3, 5]); 1545 /// ``` 1546 #[stable(feature = "rust1", since = "1.0.0")] 1547 pub fn retain<F>(&mut self, mut f: F) 1548 where 1549 F: FnMut(&T) -> bool, 1550 { 1551 self.retain_mut(|elem| f(elem)); 1552 } 1553 1554 /// Retains only the elements specified by the predicate, passing a mutable reference to it. 1555 /// 1556 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`. 1557 /// This method operates in place, visiting each element exactly once in the 1558 /// original order, and preserves the order of the retained elements. 1559 /// 1560 /// # Examples 1561 /// 1562 /// ``` 1563 /// let mut vec = vec![1, 2, 3, 4]; 1564 /// vec.retain_mut(|x| if *x > 3 { 1565 /// false 1566 /// } else { 1567 /// *x += 1; 1568 /// true 1569 /// }); 1570 /// assert_eq!(vec, [2, 3, 4]); 1571 /// ``` 1572 #[stable(feature = "vec_retain_mut", since = "1.61.0")] 1573 pub fn retain_mut<F>(&mut self, mut f: F) 1574 where 1575 F: FnMut(&mut T) -> bool, 1576 { 1577 let original_len = self.len(); 1578 // Avoid double drop if the drop guard is not executed, 1579 // since we may make some holes during the process. 1580 unsafe { self.set_len(0) }; 1581 1582 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked] 1583 // |<- processed len ->| ^- next to check 1584 // |<- deleted cnt ->| 1585 // |<- original_len ->| 1586 // Kept: Elements which predicate returns true on. 1587 // Hole: Moved or dropped element slot. 1588 // Unchecked: Unchecked valid elements. 1589 // 1590 // This drop guard will be invoked when predicate or `drop` of element panicked. 1591 // It shifts unchecked elements to cover holes and `set_len` to the correct length. 1592 // In cases when predicate and `drop` never panick, it will be optimized out. 1593 struct BackshiftOnDrop<'a, T, A: Allocator> { 1594 v: &'a mut Vec<T, A>, 1595 processed_len: usize, 1596 deleted_cnt: usize, 1597 original_len: usize, 1598 } 1599 1600 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> { 1601 fn drop(&mut self) { 1602 if self.deleted_cnt > 0 { 1603 // SAFETY: Trailing unchecked items must be valid since we never touch them. 1604 unsafe { 1605 ptr::copy( 1606 self.v.as_ptr().add(self.processed_len), 1607 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt), 1608 self.original_len - self.processed_len, 1609 ); 1610 } 1611 } 1612 // SAFETY: After filling holes, all items are in contiguous memory. 1613 unsafe { 1614 self.v.set_len(self.original_len - self.deleted_cnt); 1615 } 1616 } 1617 } 1618 1619 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len }; 1620 1621 fn process_loop<F, T, A: Allocator, const DELETED: bool>( 1622 original_len: usize, 1623 f: &mut F, 1624 g: &mut BackshiftOnDrop<'_, T, A>, 1625 ) where 1626 F: FnMut(&mut T) -> bool, 1627 { 1628 while g.processed_len != original_len { 1629 // SAFETY: Unchecked element must be valid. 1630 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) }; 1631 if !f(cur) { 1632 // Advance early to avoid double drop if `drop_in_place` panicked. 1633 g.processed_len += 1; 1634 g.deleted_cnt += 1; 1635 // SAFETY: We never touch this element again after dropped. 1636 unsafe { ptr::drop_in_place(cur) }; 1637 // We already advanced the counter. 1638 if DELETED { 1639 continue; 1640 } else { 1641 break; 1642 } 1643 } 1644 if DELETED { 1645 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element. 1646 // We use copy for move, and never touch this element again. 1647 unsafe { 1648 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt); 1649 ptr::copy_nonoverlapping(cur, hole_slot, 1); 1650 } 1651 } 1652 g.processed_len += 1; 1653 } 1654 } 1655 1656 // Stage 1: Nothing was deleted. 1657 process_loop::<F, T, A, false>(original_len, &mut f, &mut g); 1658 1659 // Stage 2: Some elements were deleted. 1660 process_loop::<F, T, A, true>(original_len, &mut f, &mut g); 1661 1662 // All item are processed. This can be optimized to `set_len` by LLVM. 1663 drop(g); 1664 } 1665 1666 /// Removes all but the first of consecutive elements in the vector that resolve to the same 1667 /// key. 1668 /// 1669 /// If the vector is sorted, this removes all duplicates. 1670 /// 1671 /// # Examples 1672 /// 1673 /// ``` 1674 /// let mut vec = vec![10, 20, 21, 30, 20]; 1675 /// 1676 /// vec.dedup_by_key(|i| *i / 10); 1677 /// 1678 /// assert_eq!(vec, [10, 20, 30, 20]); 1679 /// ``` 1680 #[stable(feature = "dedup_by", since = "1.16.0")] 1681 #[inline] 1682 pub fn dedup_by_key<F, K>(&mut self, mut key: F) 1683 where 1684 F: FnMut(&mut T) -> K, 1685 K: PartialEq, 1686 { 1687 self.dedup_by(|a, b| key(a) == key(b)) 1688 } 1689 1690 /// Removes all but the first of consecutive elements in the vector satisfying a given equality 1691 /// relation. 1692 /// 1693 /// The `same_bucket` function is passed references to two elements from the vector and 1694 /// must determine if the elements compare equal. The elements are passed in opposite order 1695 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. 1696 /// 1697 /// If the vector is sorted, this removes all duplicates. 1698 /// 1699 /// # Examples 1700 /// 1701 /// ``` 1702 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; 1703 /// 1704 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); 1705 /// 1706 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]); 1707 /// ``` 1708 #[stable(feature = "dedup_by", since = "1.16.0")] 1709 pub fn dedup_by<F>(&mut self, mut same_bucket: F) 1710 where 1711 F: FnMut(&mut T, &mut T) -> bool, 1712 { 1713 let len = self.len(); 1714 if len <= 1 { 1715 return; 1716 } 1717 1718 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */ 1719 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> { 1720 /* Offset of the element we want to check if it is duplicate */ 1721 read: usize, 1722 1723 /* Offset of the place where we want to place the non-duplicate 1724 * when we find it. */ 1725 write: usize, 1726 1727 /* The Vec that would need correction if `same_bucket` panicked */ 1728 vec: &'a mut Vec<T, A>, 1729 } 1730 1731 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> { 1732 fn drop(&mut self) { 1733 /* This code gets executed when `same_bucket` panics */ 1734 1735 /* SAFETY: invariant guarantees that `read - write` 1736 * and `len - read` never overflow and that the copy is always 1737 * in-bounds. */ 1738 unsafe { 1739 let ptr = self.vec.as_mut_ptr(); 1740 let len = self.vec.len(); 1741 1742 /* How many items were left when `same_bucket` panicked. 1743 * Basically vec[read..].len() */ 1744 let items_left = len.wrapping_sub(self.read); 1745 1746 /* Pointer to first item in vec[write..write+items_left] slice */ 1747 let dropped_ptr = ptr.add(self.write); 1748 /* Pointer to first item in vec[read..] slice */ 1749 let valid_ptr = ptr.add(self.read); 1750 1751 /* Copy `vec[read..]` to `vec[write..write+items_left]`. 1752 * The slices can overlap, so `copy_nonoverlapping` cannot be used */ 1753 ptr::copy(valid_ptr, dropped_ptr, items_left); 1754 1755 /* How many items have been already dropped 1756 * Basically vec[read..write].len() */ 1757 let dropped = self.read.wrapping_sub(self.write); 1758 1759 self.vec.set_len(len - dropped); 1760 } 1761 } 1762 } 1763 1764 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self }; 1765 let ptr = gap.vec.as_mut_ptr(); 1766 1767 /* Drop items while going through Vec, it should be more efficient than 1768 * doing slice partition_dedup + truncate */ 1769 1770 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr 1771 * are always in-bounds and read_ptr never aliases prev_ptr */ 1772 unsafe { 1773 while gap.read < len { 1774 let read_ptr = ptr.add(gap.read); 1775 let prev_ptr = ptr.add(gap.write.wrapping_sub(1)); 1776 1777 if same_bucket(&mut *read_ptr, &mut *prev_ptr) { 1778 // Increase `gap.read` now since the drop may panic. 1779 gap.read += 1; 1780 /* We have found duplicate, drop it in-place */ 1781 ptr::drop_in_place(read_ptr); 1782 } else { 1783 let write_ptr = ptr.add(gap.write); 1784 1785 /* Because `read_ptr` can be equal to `write_ptr`, we either 1786 * have to use `copy` or conditional `copy_nonoverlapping`. 1787 * Looks like the first option is faster. */ 1788 ptr::copy(read_ptr, write_ptr, 1); 1789 1790 /* We have filled that place, so go further */ 1791 gap.write += 1; 1792 gap.read += 1; 1793 } 1794 } 1795 1796 /* Technically we could let `gap` clean up with its Drop, but 1797 * when `same_bucket` is guaranteed to not panic, this bloats a little 1798 * the codegen, so we just do it manually */ 1799 gap.vec.set_len(gap.write); 1800 mem::forget(gap); 1801 } 1802 } 1803 1804 /// Appends an element to the back of a collection. 1805 /// 1806 /// # Panics 1807 /// 1808 /// Panics if the new capacity exceeds `isize::MAX` bytes. 1809 /// 1810 /// # Examples 1811 /// 1812 /// ``` 1813 /// let mut vec = vec![1, 2]; 1814 /// vec.push(3); 1815 /// assert_eq!(vec, [1, 2, 3]); 1816 /// ``` 1817 #[cfg(not(no_global_oom_handling))] 1818 #[inline] 1819 #[stable(feature = "rust1", since = "1.0.0")] 1820 pub fn push(&mut self, value: T) { 1821 // This will panic or abort if we would allocate > isize::MAX bytes 1822 // or if the length increment would overflow for zero-sized types. 1823 if self.len == self.buf.capacity() { 1824 self.buf.reserve_for_push(self.len); 1825 } 1826 unsafe { 1827 let end = self.as_mut_ptr().add(self.len); 1828 ptr::write(end, value); 1829 self.len += 1; 1830 } 1831 } 1832 1833 /// Tries to append an element to the back of a collection. 1834 /// 1835 /// # Examples 1836 /// 1837 /// ``` 1838 /// let mut vec = vec![1, 2]; 1839 /// vec.try_push(3).unwrap(); 1840 /// assert_eq!(vec, [1, 2, 3]); 1841 /// ``` 1842 #[inline] 1843 #[stable(feature = "kernel", since = "1.0.0")] 1844 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> { 1845 if self.len == self.buf.capacity() { 1846 self.buf.try_reserve_for_push(self.len)?; 1847 } 1848 unsafe { 1849 let end = self.as_mut_ptr().add(self.len); 1850 ptr::write(end, value); 1851 self.len += 1; 1852 } 1853 Ok(()) 1854 } 1855 1856 /// Removes the last element from a vector and returns it, or [`None`] if it 1857 /// is empty. 1858 /// 1859 /// If you'd like to pop the first element, consider using 1860 /// [`VecDeque::pop_front`] instead. 1861 /// 1862 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front 1863 /// 1864 /// # Examples 1865 /// 1866 /// ``` 1867 /// let mut vec = vec![1, 2, 3]; 1868 /// assert_eq!(vec.pop(), Some(3)); 1869 /// assert_eq!(vec, [1, 2]); 1870 /// ``` 1871 #[inline] 1872 #[stable(feature = "rust1", since = "1.0.0")] 1873 pub fn pop(&mut self) -> Option<T> { 1874 if self.len == 0 { 1875 None 1876 } else { 1877 unsafe { 1878 self.len -= 1; 1879 Some(ptr::read(self.as_ptr().add(self.len()))) 1880 } 1881 } 1882 } 1883 1884 /// Moves all the elements of `other` into `self`, leaving `other` empty. 1885 /// 1886 /// # Panics 1887 /// 1888 /// Panics if the number of elements in the vector overflows a `usize`. 1889 /// 1890 /// # Examples 1891 /// 1892 /// ``` 1893 /// let mut vec = vec![1, 2, 3]; 1894 /// let mut vec2 = vec![4, 5, 6]; 1895 /// vec.append(&mut vec2); 1896 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); 1897 /// assert_eq!(vec2, []); 1898 /// ``` 1899 #[cfg(not(no_global_oom_handling))] 1900 #[inline] 1901 #[stable(feature = "append", since = "1.4.0")] 1902 pub fn append(&mut self, other: &mut Self) { 1903 unsafe { 1904 self.append_elements(other.as_slice() as _); 1905 other.set_len(0); 1906 } 1907 } 1908 1909 /// Appends elements to `self` from other buffer. 1910 #[cfg(not(no_global_oom_handling))] 1911 #[inline] 1912 unsafe fn append_elements(&mut self, other: *const [T]) { 1913 let count = unsafe { (*other).len() }; 1914 self.reserve(count); 1915 let len = self.len(); 1916 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) }; 1917 self.len += count; 1918 } 1919 1920 /// Removes the specified range from the vector in bulk, returning all 1921 /// removed elements as an iterator. If the iterator is dropped before 1922 /// being fully consumed, it drops the remaining removed elements. 1923 /// 1924 /// The returned iterator keeps a mutable borrow on the vector to optimize 1925 /// its implementation. 1926 /// 1927 /// # Panics 1928 /// 1929 /// Panics if the starting point is greater than the end point or if 1930 /// the end point is greater than the length of the vector. 1931 /// 1932 /// # Leaking 1933 /// 1934 /// If the returned iterator goes out of scope without being dropped (due to 1935 /// [`mem::forget`], for example), the vector may have lost and leaked 1936 /// elements arbitrarily, including elements outside the range. 1937 /// 1938 /// # Examples 1939 /// 1940 /// ``` 1941 /// let mut v = vec![1, 2, 3]; 1942 /// let u: Vec<_> = v.drain(1..).collect(); 1943 /// assert_eq!(v, &[1]); 1944 /// assert_eq!(u, &[2, 3]); 1945 /// 1946 /// // A full range clears the vector, like `clear()` does 1947 /// v.drain(..); 1948 /// assert_eq!(v, &[]); 1949 /// ``` 1950 #[stable(feature = "drain", since = "1.6.0")] 1951 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A> 1952 where 1953 R: RangeBounds<usize>, 1954 { 1955 // Memory safety 1956 // 1957 // When the Drain is first created, it shortens the length of 1958 // the source vector to make sure no uninitialized or moved-from elements 1959 // are accessible at all if the Drain's destructor never gets to run. 1960 // 1961 // Drain will ptr::read out the values to remove. 1962 // When finished, remaining tail of the vec is copied back to cover 1963 // the hole, and the vector length is restored to the new length. 1964 // 1965 let len = self.len(); 1966 let Range { start, end } = slice::range(range, ..len); 1967 1968 unsafe { 1969 // set self.vec length's to start, to be safe in case Drain is leaked 1970 self.set_len(start); 1971 // Use the borrow in the IterMut to indicate borrowing behavior of the 1972 // whole Drain iterator (like &mut T). 1973 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start); 1974 Drain { 1975 tail_start: end, 1976 tail_len: len - end, 1977 iter: range_slice.iter(), 1978 vec: NonNull::from(self), 1979 } 1980 } 1981 } 1982 1983 /// Clears the vector, removing all values. 1984 /// 1985 /// Note that this method has no effect on the allocated capacity 1986 /// of the vector. 1987 /// 1988 /// # Examples 1989 /// 1990 /// ``` 1991 /// let mut v = vec![1, 2, 3]; 1992 /// 1993 /// v.clear(); 1994 /// 1995 /// assert!(v.is_empty()); 1996 /// ``` 1997 #[inline] 1998 #[stable(feature = "rust1", since = "1.0.0")] 1999 pub fn clear(&mut self) { 2000 let elems: *mut [T] = self.as_mut_slice(); 2001 2002 // SAFETY: 2003 // - `elems` comes directly from `as_mut_slice` and is therefore valid. 2004 // - Setting `self.len` before calling `drop_in_place` means that, 2005 // if an element's `Drop` impl panics, the vector's `Drop` impl will 2006 // do nothing (leaking the rest of the elements) instead of dropping 2007 // some twice. 2008 unsafe { 2009 self.len = 0; 2010 ptr::drop_in_place(elems); 2011 } 2012 } 2013 2014 /// Returns the number of elements in the vector, also referred to 2015 /// as its 'length'. 2016 /// 2017 /// # Examples 2018 /// 2019 /// ``` 2020 /// let a = vec![1, 2, 3]; 2021 /// assert_eq!(a.len(), 3); 2022 /// ``` 2023 #[inline] 2024 #[stable(feature = "rust1", since = "1.0.0")] 2025 pub fn len(&self) -> usize { 2026 self.len 2027 } 2028 2029 /// Returns `true` if the vector contains no elements. 2030 /// 2031 /// # Examples 2032 /// 2033 /// ``` 2034 /// let mut v = Vec::new(); 2035 /// assert!(v.is_empty()); 2036 /// 2037 /// v.push(1); 2038 /// assert!(!v.is_empty()); 2039 /// ``` 2040 #[stable(feature = "rust1", since = "1.0.0")] 2041 pub fn is_empty(&self) -> bool { 2042 self.len() == 0 2043 } 2044 2045 /// Splits the collection into two at the given index. 2046 /// 2047 /// Returns a newly allocated vector containing the elements in the range 2048 /// `[at, len)`. After the call, the original vector will be left containing 2049 /// the elements `[0, at)` with its previous capacity unchanged. 2050 /// 2051 /// # Panics 2052 /// 2053 /// Panics if `at > len`. 2054 /// 2055 /// # Examples 2056 /// 2057 /// ``` 2058 /// let mut vec = vec![1, 2, 3]; 2059 /// let vec2 = vec.split_off(1); 2060 /// assert_eq!(vec, [1]); 2061 /// assert_eq!(vec2, [2, 3]); 2062 /// ``` 2063 #[cfg(not(no_global_oom_handling))] 2064 #[inline] 2065 #[must_use = "use `.truncate()` if you don't need the other half"] 2066 #[stable(feature = "split_off", since = "1.4.0")] 2067 pub fn split_off(&mut self, at: usize) -> Self 2068 where 2069 A: Clone, 2070 { 2071 #[cold] 2072 #[inline(never)] 2073 fn assert_failed(at: usize, len: usize) -> ! { 2074 panic!("`at` split index (is {at}) should be <= len (is {len})"); 2075 } 2076 2077 if at > self.len() { 2078 assert_failed(at, self.len()); 2079 } 2080 2081 if at == 0 { 2082 // the new vector can take over the original buffer and avoid the copy 2083 return mem::replace( 2084 self, 2085 Vec::with_capacity_in(self.capacity(), self.allocator().clone()), 2086 ); 2087 } 2088 2089 let other_len = self.len - at; 2090 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone()); 2091 2092 // Unsafely `set_len` and copy items to `other`. 2093 unsafe { 2094 self.set_len(at); 2095 other.set_len(other_len); 2096 2097 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len()); 2098 } 2099 other 2100 } 2101 2102 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. 2103 /// 2104 /// If `new_len` is greater than `len`, the `Vec` is extended by the 2105 /// difference, with each additional slot filled with the result of 2106 /// calling the closure `f`. The return values from `f` will end up 2107 /// in the `Vec` in the order they have been generated. 2108 /// 2109 /// If `new_len` is less than `len`, the `Vec` is simply truncated. 2110 /// 2111 /// This method uses a closure to create new values on every push. If 2112 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you 2113 /// want to use the [`Default`] trait to generate values, you can 2114 /// pass [`Default::default`] as the second argument. 2115 /// 2116 /// # Examples 2117 /// 2118 /// ``` 2119 /// let mut vec = vec![1, 2, 3]; 2120 /// vec.resize_with(5, Default::default); 2121 /// assert_eq!(vec, [1, 2, 3, 0, 0]); 2122 /// 2123 /// let mut vec = vec![]; 2124 /// let mut p = 1; 2125 /// vec.resize_with(4, || { p *= 2; p }); 2126 /// assert_eq!(vec, [2, 4, 8, 16]); 2127 /// ``` 2128 #[cfg(not(no_global_oom_handling))] 2129 #[stable(feature = "vec_resize_with", since = "1.33.0")] 2130 pub fn resize_with<F>(&mut self, new_len: usize, f: F) 2131 where 2132 F: FnMut() -> T, 2133 { 2134 let len = self.len(); 2135 if new_len > len { 2136 self.extend_with(new_len - len, ExtendFunc(f)); 2137 } else { 2138 self.truncate(new_len); 2139 } 2140 } 2141 2142 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents, 2143 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime 2144 /// `'a`. If the type has only static references, or none at all, then this 2145 /// may be chosen to be `'static`. 2146 /// 2147 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`, 2148 /// so the leaked allocation may include unused capacity that is not part 2149 /// of the returned slice. 2150 /// 2151 /// This function is mainly useful for data that lives for the remainder of 2152 /// the program's life. Dropping the returned reference will cause a memory 2153 /// leak. 2154 /// 2155 /// # Examples 2156 /// 2157 /// Simple usage: 2158 /// 2159 /// ``` 2160 /// let x = vec![1, 2, 3]; 2161 /// let static_ref: &'static mut [usize] = x.leak(); 2162 /// static_ref[0] += 1; 2163 /// assert_eq!(static_ref, &[2, 2, 3]); 2164 /// ``` 2165 #[cfg(not(no_global_oom_handling))] 2166 #[stable(feature = "vec_leak", since = "1.47.0")] 2167 #[inline] 2168 pub fn leak<'a>(self) -> &'a mut [T] 2169 where 2170 A: 'a, 2171 { 2172 let mut me = ManuallyDrop::new(self); 2173 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) } 2174 } 2175 2176 /// Returns the remaining spare capacity of the vector as a slice of 2177 /// `MaybeUninit<T>`. 2178 /// 2179 /// The returned slice can be used to fill the vector with data (e.g. by 2180 /// reading from a file) before marking the data as initialized using the 2181 /// [`set_len`] method. 2182 /// 2183 /// [`set_len`]: Vec::set_len 2184 /// 2185 /// # Examples 2186 /// 2187 /// ``` 2188 /// // Allocate vector big enough for 10 elements. 2189 /// let mut v = Vec::with_capacity(10); 2190 /// 2191 /// // Fill in the first 3 elements. 2192 /// let uninit = v.spare_capacity_mut(); 2193 /// uninit[0].write(0); 2194 /// uninit[1].write(1); 2195 /// uninit[2].write(2); 2196 /// 2197 /// // Mark the first 3 elements of the vector as being initialized. 2198 /// unsafe { 2199 /// v.set_len(3); 2200 /// } 2201 /// 2202 /// assert_eq!(&v, &[0, 1, 2]); 2203 /// ``` 2204 #[stable(feature = "vec_spare_capacity", since = "1.60.0")] 2205 #[inline] 2206 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { 2207 // Note: 2208 // This method is not implemented in terms of `split_at_spare_mut`, 2209 // to prevent invalidation of pointers to the buffer. 2210 unsafe { 2211 slice::from_raw_parts_mut( 2212 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, 2213 self.buf.capacity() - self.len, 2214 ) 2215 } 2216 } 2217 2218 /// Returns vector content as a slice of `T`, along with the remaining spare 2219 /// capacity of the vector as a slice of `MaybeUninit<T>`. 2220 /// 2221 /// The returned spare capacity slice can be used to fill the vector with data 2222 /// (e.g. by reading from a file) before marking the data as initialized using 2223 /// the [`set_len`] method. 2224 /// 2225 /// [`set_len`]: Vec::set_len 2226 /// 2227 /// Note that this is a low-level API, which should be used with care for 2228 /// optimization purposes. If you need to append data to a `Vec` 2229 /// you can use [`push`], [`extend`], [`extend_from_slice`], 2230 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or 2231 /// [`resize_with`], depending on your exact needs. 2232 /// 2233 /// [`push`]: Vec::push 2234 /// [`extend`]: Vec::extend 2235 /// [`extend_from_slice`]: Vec::extend_from_slice 2236 /// [`extend_from_within`]: Vec::extend_from_within 2237 /// [`insert`]: Vec::insert 2238 /// [`append`]: Vec::append 2239 /// [`resize`]: Vec::resize 2240 /// [`resize_with`]: Vec::resize_with 2241 /// 2242 /// # Examples 2243 /// 2244 /// ``` 2245 /// #![feature(vec_split_at_spare)] 2246 /// 2247 /// let mut v = vec![1, 1, 2]; 2248 /// 2249 /// // Reserve additional space big enough for 10 elements. 2250 /// v.reserve(10); 2251 /// 2252 /// let (init, uninit) = v.split_at_spare_mut(); 2253 /// let sum = init.iter().copied().sum::<u32>(); 2254 /// 2255 /// // Fill in the next 4 elements. 2256 /// uninit[0].write(sum); 2257 /// uninit[1].write(sum * 2); 2258 /// uninit[2].write(sum * 3); 2259 /// uninit[3].write(sum * 4); 2260 /// 2261 /// // Mark the 4 elements of the vector as being initialized. 2262 /// unsafe { 2263 /// let len = v.len(); 2264 /// v.set_len(len + 4); 2265 /// } 2266 /// 2267 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]); 2268 /// ``` 2269 #[unstable(feature = "vec_split_at_spare", issue = "81944")] 2270 #[inline] 2271 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) { 2272 // SAFETY: 2273 // - len is ignored and so never changed 2274 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() }; 2275 (init, spare) 2276 } 2277 2278 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`. 2279 /// 2280 /// This method provides unique access to all vec parts at once in `extend_from_within`. 2281 unsafe fn split_at_spare_mut_with_len( 2282 &mut self, 2283 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) { 2284 let ptr = self.as_mut_ptr(); 2285 // SAFETY: 2286 // - `ptr` is guaranteed to be valid for `self.len` elements 2287 // - but the allocation extends out to `self.buf.capacity()` elements, possibly 2288 // uninitialized 2289 let spare_ptr = unsafe { ptr.add(self.len) }; 2290 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>(); 2291 let spare_len = self.buf.capacity() - self.len; 2292 2293 // SAFETY: 2294 // - `ptr` is guaranteed to be valid for `self.len` elements 2295 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized` 2296 unsafe { 2297 let initialized = slice::from_raw_parts_mut(ptr, self.len); 2298 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len); 2299 2300 (initialized, spare, &mut self.len) 2301 } 2302 } 2303 } 2304 2305 impl<T: Clone, A: Allocator> Vec<T, A> { 2306 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. 2307 /// 2308 /// If `new_len` is greater than `len`, the `Vec` is extended by the 2309 /// difference, with each additional slot filled with `value`. 2310 /// If `new_len` is less than `len`, the `Vec` is simply truncated. 2311 /// 2312 /// This method requires `T` to implement [`Clone`], 2313 /// in order to be able to clone the passed value. 2314 /// If you need more flexibility (or want to rely on [`Default`] instead of 2315 /// [`Clone`]), use [`Vec::resize_with`]. 2316 /// If you only need to resize to a smaller size, use [`Vec::truncate`]. 2317 /// 2318 /// # Examples 2319 /// 2320 /// ``` 2321 /// let mut vec = vec!["hello"]; 2322 /// vec.resize(3, "world"); 2323 /// assert_eq!(vec, ["hello", "world", "world"]); 2324 /// 2325 /// let mut vec = vec![1, 2, 3, 4]; 2326 /// vec.resize(2, 0); 2327 /// assert_eq!(vec, [1, 2]); 2328 /// ``` 2329 #[cfg(not(no_global_oom_handling))] 2330 #[stable(feature = "vec_resize", since = "1.5.0")] 2331 pub fn resize(&mut self, new_len: usize, value: T) { 2332 let len = self.len(); 2333 2334 if new_len > len { 2335 self.extend_with(new_len - len, ExtendElement(value)) 2336 } else { 2337 self.truncate(new_len); 2338 } 2339 } 2340 2341 /// Clones and appends all elements in a slice to the `Vec`. 2342 /// 2343 /// Iterates over the slice `other`, clones each element, and then appends 2344 /// it to this `Vec`. The `other` slice is traversed in-order. 2345 /// 2346 /// Note that this function is same as [`extend`] except that it is 2347 /// specialized to work with slices instead. If and when Rust gets 2348 /// specialization this function will likely be deprecated (but still 2349 /// available). 2350 /// 2351 /// # Examples 2352 /// 2353 /// ``` 2354 /// let mut vec = vec![1]; 2355 /// vec.extend_from_slice(&[2, 3, 4]); 2356 /// assert_eq!(vec, [1, 2, 3, 4]); 2357 /// ``` 2358 /// 2359 /// [`extend`]: Vec::extend 2360 #[cfg(not(no_global_oom_handling))] 2361 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")] 2362 pub fn extend_from_slice(&mut self, other: &[T]) { 2363 self.spec_extend(other.iter()) 2364 } 2365 2366 /// Copies elements from `src` range to the end of the vector. 2367 /// 2368 /// # Panics 2369 /// 2370 /// Panics if the starting point is greater than the end point or if 2371 /// the end point is greater than the length of the vector. 2372 /// 2373 /// # Examples 2374 /// 2375 /// ``` 2376 /// let mut vec = vec![0, 1, 2, 3, 4]; 2377 /// 2378 /// vec.extend_from_within(2..); 2379 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]); 2380 /// 2381 /// vec.extend_from_within(..2); 2382 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]); 2383 /// 2384 /// vec.extend_from_within(4..8); 2385 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]); 2386 /// ``` 2387 #[cfg(not(no_global_oom_handling))] 2388 #[stable(feature = "vec_extend_from_within", since = "1.53.0")] 2389 pub fn extend_from_within<R>(&mut self, src: R) 2390 where 2391 R: RangeBounds<usize>, 2392 { 2393 let range = slice::range(src, ..self.len()); 2394 self.reserve(range.len()); 2395 2396 // SAFETY: 2397 // - `slice::range` guarantees that the given range is valid for indexing self 2398 unsafe { 2399 self.spec_extend_from_within(range); 2400 } 2401 } 2402 } 2403 2404 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> { 2405 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`. 2406 /// 2407 /// # Panics 2408 /// 2409 /// Panics if the length of the resulting vector would overflow a `usize`. 2410 /// 2411 /// This is only possible when flattening a vector of arrays of zero-sized 2412 /// types, and thus tends to be irrelevant in practice. If 2413 /// `size_of::<T>() > 0`, this will never panic. 2414 /// 2415 /// # Examples 2416 /// 2417 /// ``` 2418 /// #![feature(slice_flatten)] 2419 /// 2420 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]]; 2421 /// assert_eq!(vec.pop(), Some([7, 8, 9])); 2422 /// 2423 /// let mut flattened = vec.into_flattened(); 2424 /// assert_eq!(flattened.pop(), Some(6)); 2425 /// ``` 2426 #[unstable(feature = "slice_flatten", issue = "95629")] 2427 pub fn into_flattened(self) -> Vec<T, A> { 2428 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc(); 2429 let (new_len, new_cap) = if mem::size_of::<T>() == 0 { 2430 (len.checked_mul(N).expect("vec len overflow"), usize::MAX) 2431 } else { 2432 // SAFETY: 2433 // - `cap * N` cannot overflow because the allocation is already in 2434 // the address space. 2435 // - Each `[T; N]` has `N` valid elements, so there are `len * N` 2436 // valid elements in the allocation. 2437 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) } 2438 }; 2439 // SAFETY: 2440 // - `ptr` was allocated by `self` 2441 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`. 2442 // - `new_cap` refers to the same sized allocation as `cap` because 2443 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()` 2444 // - `len` <= `cap`, so `len * N` <= `cap * N`. 2445 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) } 2446 } 2447 } 2448 2449 // This code generalizes `extend_with_{element,default}`. 2450 trait ExtendWith<T> { 2451 fn next(&mut self) -> T; 2452 fn last(self) -> T; 2453 } 2454 2455 struct ExtendElement<T>(T); 2456 impl<T: Clone> ExtendWith<T> for ExtendElement<T> { 2457 fn next(&mut self) -> T { 2458 self.0.clone() 2459 } 2460 fn last(self) -> T { 2461 self.0 2462 } 2463 } 2464 2465 struct ExtendFunc<F>(F); 2466 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> { 2467 fn next(&mut self) -> T { 2468 (self.0)() 2469 } 2470 fn last(mut self) -> T { 2471 (self.0)() 2472 } 2473 } 2474 2475 impl<T, A: Allocator> Vec<T, A> { 2476 #[cfg(not(no_global_oom_handling))] 2477 /// Extend the vector by `n` values, using the given generator. 2478 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) { 2479 self.reserve(n); 2480 2481 unsafe { 2482 let mut ptr = self.as_mut_ptr().add(self.len()); 2483 // Use SetLenOnDrop to work around bug where compiler 2484 // might not realize the store through `ptr` through self.set_len() 2485 // don't alias. 2486 let mut local_len = SetLenOnDrop::new(&mut self.len); 2487 2488 // Write all elements except the last one 2489 for _ in 1..n { 2490 ptr::write(ptr, value.next()); 2491 ptr = ptr.offset(1); 2492 // Increment the length in every step in case next() panics 2493 local_len.increment_len(1); 2494 } 2495 2496 if n > 0 { 2497 // We can write the last element directly without cloning needlessly 2498 ptr::write(ptr, value.last()); 2499 local_len.increment_len(1); 2500 } 2501 2502 // len set by scope guard 2503 } 2504 } 2505 } 2506 2507 impl<T: PartialEq, A: Allocator> Vec<T, A> { 2508 /// Removes consecutive repeated elements in the vector according to the 2509 /// [`PartialEq`] trait implementation. 2510 /// 2511 /// If the vector is sorted, this removes all duplicates. 2512 /// 2513 /// # Examples 2514 /// 2515 /// ``` 2516 /// let mut vec = vec![1, 2, 2, 3, 2]; 2517 /// 2518 /// vec.dedup(); 2519 /// 2520 /// assert_eq!(vec, [1, 2, 3, 2]); 2521 /// ``` 2522 #[stable(feature = "rust1", since = "1.0.0")] 2523 #[inline] 2524 pub fn dedup(&mut self) { 2525 self.dedup_by(|a, b| a == b) 2526 } 2527 } 2528 2529 //////////////////////////////////////////////////////////////////////////////// 2530 // Internal methods and functions 2531 //////////////////////////////////////////////////////////////////////////////// 2532 2533 #[doc(hidden)] 2534 #[cfg(not(no_global_oom_handling))] 2535 #[stable(feature = "rust1", since = "1.0.0")] 2536 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { 2537 <T as SpecFromElem>::from_elem(elem, n, Global) 2538 } 2539 2540 #[doc(hidden)] 2541 #[cfg(not(no_global_oom_handling))] 2542 #[unstable(feature = "allocator_api", issue = "32838")] 2543 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> { 2544 <T as SpecFromElem>::from_elem(elem, n, alloc) 2545 } 2546 2547 trait ExtendFromWithinSpec { 2548 /// # Safety 2549 /// 2550 /// - `src` needs to be valid index 2551 /// - `self.capacity() - self.len()` must be `>= src.len()` 2552 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>); 2553 } 2554 2555 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { 2556 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { 2557 // SAFETY: 2558 // - len is increased only after initializing elements 2559 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() }; 2560 2561 // SAFETY: 2562 // - caller guaratees that src is a valid index 2563 let to_clone = unsafe { this.get_unchecked(src) }; 2564 2565 iter::zip(to_clone, spare) 2566 .map(|(src, dst)| dst.write(src.clone())) 2567 // Note: 2568 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len 2569 // - len is increased after each element to prevent leaks (see issue #82533) 2570 .for_each(|_| *len += 1); 2571 } 2572 } 2573 2574 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { 2575 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { 2576 let count = src.len(); 2577 { 2578 let (init, spare) = self.split_at_spare_mut(); 2579 2580 // SAFETY: 2581 // - caller guaratees that `src` is a valid index 2582 let source = unsafe { init.get_unchecked(src) }; 2583 2584 // SAFETY: 2585 // - Both pointers are created from unique slice references (`&mut [_]`) 2586 // so they are valid and do not overlap. 2587 // - Elements are :Copy so it's OK to to copy them, without doing 2588 // anything with the original values 2589 // - `count` is equal to the len of `source`, so source is valid for 2590 // `count` reads 2591 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare 2592 // is valid for `count` writes 2593 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) }; 2594 } 2595 2596 // SAFETY: 2597 // - The elements were just initialized by `copy_nonoverlapping` 2598 self.len += count; 2599 } 2600 } 2601 2602 //////////////////////////////////////////////////////////////////////////////// 2603 // Common trait implementations for Vec 2604 //////////////////////////////////////////////////////////////////////////////// 2605 2606 #[stable(feature = "rust1", since = "1.0.0")] 2607 impl<T, A: Allocator> ops::Deref for Vec<T, A> { 2608 type Target = [T]; 2609 2610 fn deref(&self) -> &[T] { 2611 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } 2612 } 2613 } 2614 2615 #[stable(feature = "rust1", since = "1.0.0")] 2616 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> { 2617 fn deref_mut(&mut self) -> &mut [T] { 2618 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } 2619 } 2620 } 2621 2622 #[cfg(not(no_global_oom_handling))] 2623 trait SpecCloneFrom { 2624 fn clone_from(this: &mut Self, other: &Self); 2625 } 2626 2627 #[cfg(not(no_global_oom_handling))] 2628 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> { 2629 default fn clone_from(this: &mut Self, other: &Self) { 2630 // drop anything that will not be overwritten 2631 this.truncate(other.len()); 2632 2633 // self.len <= other.len due to the truncate above, so the 2634 // slices here are always in-bounds. 2635 let (init, tail) = other.split_at(this.len()); 2636 2637 // reuse the contained values' allocations/resources. 2638 this.clone_from_slice(init); 2639 this.extend_from_slice(tail); 2640 } 2641 } 2642 2643 #[cfg(not(no_global_oom_handling))] 2644 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> { 2645 fn clone_from(this: &mut Self, other: &Self) { 2646 this.clear(); 2647 this.extend_from_slice(other); 2648 } 2649 } 2650 2651 #[cfg(not(no_global_oom_handling))] 2652 #[stable(feature = "rust1", since = "1.0.0")] 2653 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> { 2654 #[cfg(not(test))] 2655 fn clone(&self) -> Self { 2656 let alloc = self.allocator().clone(); 2657 <[T]>::to_vec_in(&**self, alloc) 2658 } 2659 2660 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is 2661 // required for this method definition, is not available. Instead use the 2662 // `slice::to_vec` function which is only available with cfg(test) 2663 // NB see the slice::hack module in slice.rs for more information 2664 #[cfg(test)] 2665 fn clone(&self) -> Self { 2666 let alloc = self.allocator().clone(); 2667 crate::slice::to_vec(&**self, alloc) 2668 } 2669 2670 fn clone_from(&mut self, other: &Self) { 2671 SpecCloneFrom::clone_from(self, other) 2672 } 2673 } 2674 2675 /// The hash of a vector is the same as that of the corresponding slice, 2676 /// as required by the `core::borrow::Borrow` implementation. 2677 /// 2678 /// ``` 2679 /// #![feature(build_hasher_simple_hash_one)] 2680 /// use std::hash::BuildHasher; 2681 /// 2682 /// let b = std::collections::hash_map::RandomState::new(); 2683 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09]; 2684 /// let s: &[u8] = &[0xa8, 0x3c, 0x09]; 2685 /// assert_eq!(b.hash_one(v), b.hash_one(s)); 2686 /// ``` 2687 #[stable(feature = "rust1", since = "1.0.0")] 2688 impl<T: Hash, A: Allocator> Hash for Vec<T, A> { 2689 #[inline] 2690 fn hash<H: Hasher>(&self, state: &mut H) { 2691 Hash::hash(&**self, state) 2692 } 2693 } 2694 2695 #[stable(feature = "rust1", since = "1.0.0")] 2696 #[rustc_on_unimplemented( 2697 message = "vector indices are of type `usize` or ranges of `usize`", 2698 label = "vector indices are of type `usize` or ranges of `usize`" 2699 )] 2700 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> { 2701 type Output = I::Output; 2702 2703 #[inline] 2704 fn index(&self, index: I) -> &Self::Output { 2705 Index::index(&**self, index) 2706 } 2707 } 2708 2709 #[stable(feature = "rust1", since = "1.0.0")] 2710 #[rustc_on_unimplemented( 2711 message = "vector indices are of type `usize` or ranges of `usize`", 2712 label = "vector indices are of type `usize` or ranges of `usize`" 2713 )] 2714 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> { 2715 #[inline] 2716 fn index_mut(&mut self, index: I) -> &mut Self::Output { 2717 IndexMut::index_mut(&mut **self, index) 2718 } 2719 } 2720 2721 #[cfg(not(no_global_oom_handling))] 2722 #[stable(feature = "rust1", since = "1.0.0")] 2723 impl<T> FromIterator<T> for Vec<T> { 2724 #[inline] 2725 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { 2726 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter()) 2727 } 2728 } 2729 2730 #[stable(feature = "rust1", since = "1.0.0")] 2731 impl<T, A: Allocator> IntoIterator for Vec<T, A> { 2732 type Item = T; 2733 type IntoIter = IntoIter<T, A>; 2734 2735 /// Creates a consuming iterator, that is, one that moves each value out of 2736 /// the vector (from start to end). The vector cannot be used after calling 2737 /// this. 2738 /// 2739 /// # Examples 2740 /// 2741 /// ``` 2742 /// let v = vec!["a".to_string(), "b".to_string()]; 2743 /// for s in v.into_iter() { 2744 /// // s has type String, not &String 2745 /// println!("{s}"); 2746 /// } 2747 /// ``` 2748 #[inline] 2749 fn into_iter(self) -> IntoIter<T, A> { 2750 unsafe { 2751 let mut me = ManuallyDrop::new(self); 2752 let alloc = ManuallyDrop::new(ptr::read(me.allocator())); 2753 let begin = me.as_mut_ptr(); 2754 let end = if mem::size_of::<T>() == 0 { 2755 arith_offset(begin as *const i8, me.len() as isize) as *const T 2756 } else { 2757 begin.add(me.len()) as *const T 2758 }; 2759 let cap = me.buf.capacity(); 2760 IntoIter { 2761 buf: NonNull::new_unchecked(begin), 2762 phantom: PhantomData, 2763 cap, 2764 alloc, 2765 ptr: begin, 2766 end, 2767 } 2768 } 2769 } 2770 } 2771 2772 #[stable(feature = "rust1", since = "1.0.0")] 2773 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> { 2774 type Item = &'a T; 2775 type IntoIter = slice::Iter<'a, T>; 2776 2777 fn into_iter(self) -> slice::Iter<'a, T> { 2778 self.iter() 2779 } 2780 } 2781 2782 #[stable(feature = "rust1", since = "1.0.0")] 2783 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> { 2784 type Item = &'a mut T; 2785 type IntoIter = slice::IterMut<'a, T>; 2786 2787 fn into_iter(self) -> slice::IterMut<'a, T> { 2788 self.iter_mut() 2789 } 2790 } 2791 2792 #[cfg(not(no_global_oom_handling))] 2793 #[stable(feature = "rust1", since = "1.0.0")] 2794 impl<T, A: Allocator> Extend<T> for Vec<T, A> { 2795 #[inline] 2796 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { 2797 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()) 2798 } 2799 2800 #[inline] 2801 fn extend_one(&mut self, item: T) { 2802 self.push(item); 2803 } 2804 2805 #[inline] 2806 fn extend_reserve(&mut self, additional: usize) { 2807 self.reserve(additional); 2808 } 2809 } 2810 2811 impl<T, A: Allocator> Vec<T, A> { 2812 // leaf method to which various SpecFrom/SpecExtend implementations delegate when 2813 // they have no further optimizations to apply 2814 #[cfg(not(no_global_oom_handling))] 2815 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) { 2816 // This is the case for a general iterator. 2817 // 2818 // This function should be the moral equivalent of: 2819 // 2820 // for item in iterator { 2821 // self.push(item); 2822 // } 2823 while let Some(element) = iterator.next() { 2824 let len = self.len(); 2825 if len == self.capacity() { 2826 let (lower, _) = iterator.size_hint(); 2827 self.reserve(lower.saturating_add(1)); 2828 } 2829 unsafe { 2830 ptr::write(self.as_mut_ptr().add(len), element); 2831 // Since next() executes user code which can panic we have to bump the length 2832 // after each step. 2833 // NB can't overflow since we would have had to alloc the address space 2834 self.set_len(len + 1); 2835 } 2836 } 2837 } 2838 2839 /// Creates a splicing iterator that replaces the specified range in the vector 2840 /// with the given `replace_with` iterator and yields the removed items. 2841 /// `replace_with` does not need to be the same length as `range`. 2842 /// 2843 /// `range` is removed even if the iterator is not consumed until the end. 2844 /// 2845 /// It is unspecified how many elements are removed from the vector 2846 /// if the `Splice` value is leaked. 2847 /// 2848 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped. 2849 /// 2850 /// This is optimal if: 2851 /// 2852 /// * The tail (elements in the vector after `range`) is empty, 2853 /// * or `replace_with` yields fewer or equal elements than `range`’s length 2854 /// * or the lower bound of its `size_hint()` is exact. 2855 /// 2856 /// Otherwise, a temporary vector is allocated and the tail is moved twice. 2857 /// 2858 /// # Panics 2859 /// 2860 /// Panics if the starting point is greater than the end point or if 2861 /// the end point is greater than the length of the vector. 2862 /// 2863 /// # Examples 2864 /// 2865 /// ``` 2866 /// let mut v = vec![1, 2, 3, 4]; 2867 /// let new = [7, 8, 9]; 2868 /// let u: Vec<_> = v.splice(1..3, new).collect(); 2869 /// assert_eq!(v, &[1, 7, 8, 9, 4]); 2870 /// assert_eq!(u, &[2, 3]); 2871 /// ``` 2872 #[cfg(not(no_global_oom_handling))] 2873 #[inline] 2874 #[stable(feature = "vec_splice", since = "1.21.0")] 2875 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> 2876 where 2877 R: RangeBounds<usize>, 2878 I: IntoIterator<Item = T>, 2879 { 2880 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() } 2881 } 2882 2883 /// Creates an iterator which uses a closure to determine if an element should be removed. 2884 /// 2885 /// If the closure returns true, then the element is removed and yielded. 2886 /// If the closure returns false, the element will remain in the vector and will not be yielded 2887 /// by the iterator. 2888 /// 2889 /// Using this method is equivalent to the following code: 2890 /// 2891 /// ``` 2892 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; 2893 /// # let mut vec = vec![1, 2, 3, 4, 5, 6]; 2894 /// let mut i = 0; 2895 /// while i < vec.len() { 2896 /// if some_predicate(&mut vec[i]) { 2897 /// let val = vec.remove(i); 2898 /// // your code here 2899 /// } else { 2900 /// i += 1; 2901 /// } 2902 /// } 2903 /// 2904 /// # assert_eq!(vec, vec![1, 4, 5]); 2905 /// ``` 2906 /// 2907 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient, 2908 /// because it can backshift the elements of the array in bulk. 2909 /// 2910 /// Note that `drain_filter` also lets you mutate every element in the filter closure, 2911 /// regardless of whether you choose to keep or remove it. 2912 /// 2913 /// # Examples 2914 /// 2915 /// Splitting an array into evens and odds, reusing the original allocation: 2916 /// 2917 /// ``` 2918 /// #![feature(drain_filter)] 2919 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; 2920 /// 2921 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>(); 2922 /// let odds = numbers; 2923 /// 2924 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]); 2925 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]); 2926 /// ``` 2927 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] 2928 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A> 2929 where 2930 F: FnMut(&mut T) -> bool, 2931 { 2932 let old_len = self.len(); 2933 2934 // Guard against us getting leaked (leak amplification) 2935 unsafe { 2936 self.set_len(0); 2937 } 2938 2939 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false } 2940 } 2941 } 2942 2943 /// Extend implementation that copies elements out of references before pushing them onto the Vec. 2944 /// 2945 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to 2946 /// append the entire slice at once. 2947 /// 2948 /// [`copy_from_slice`]: slice::copy_from_slice 2949 #[cfg(not(no_global_oom_handling))] 2950 #[stable(feature = "extend_ref", since = "1.2.0")] 2951 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> { 2952 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { 2953 self.spec_extend(iter.into_iter()) 2954 } 2955 2956 #[inline] 2957 fn extend_one(&mut self, &item: &'a T) { 2958 self.push(item); 2959 } 2960 2961 #[inline] 2962 fn extend_reserve(&mut self, additional: usize) { 2963 self.reserve(additional); 2964 } 2965 } 2966 2967 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison). 2968 #[stable(feature = "rust1", since = "1.0.0")] 2969 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> { 2970 #[inline] 2971 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 2972 PartialOrd::partial_cmp(&**self, &**other) 2973 } 2974 } 2975 2976 #[stable(feature = "rust1", since = "1.0.0")] 2977 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {} 2978 2979 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison). 2980 #[stable(feature = "rust1", since = "1.0.0")] 2981 impl<T: Ord, A: Allocator> Ord for Vec<T, A> { 2982 #[inline] 2983 fn cmp(&self, other: &Self) -> Ordering { 2984 Ord::cmp(&**self, &**other) 2985 } 2986 } 2987 2988 #[stable(feature = "rust1", since = "1.0.0")] 2989 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> { 2990 fn drop(&mut self) { 2991 unsafe { 2992 // use drop for [T] 2993 // use a raw slice to refer to the elements of the vector as weakest necessary type; 2994 // could avoid questions of validity in certain cases 2995 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len)) 2996 } 2997 // RawVec handles deallocation 2998 } 2999 } 3000 3001 #[stable(feature = "rust1", since = "1.0.0")] 3002 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] 3003 impl<T> const Default for Vec<T> { 3004 /// Creates an empty `Vec<T>`. 3005 fn default() -> Vec<T> { 3006 Vec::new() 3007 } 3008 } 3009 3010 #[stable(feature = "rust1", since = "1.0.0")] 3011 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { 3012 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 3013 fmt::Debug::fmt(&**self, f) 3014 } 3015 } 3016 3017 #[stable(feature = "rust1", since = "1.0.0")] 3018 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> { 3019 fn as_ref(&self) -> &Vec<T, A> { 3020 self 3021 } 3022 } 3023 3024 #[stable(feature = "vec_as_mut", since = "1.5.0")] 3025 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> { 3026 fn as_mut(&mut self) -> &mut Vec<T, A> { 3027 self 3028 } 3029 } 3030 3031 #[stable(feature = "rust1", since = "1.0.0")] 3032 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> { 3033 fn as_ref(&self) -> &[T] { 3034 self 3035 } 3036 } 3037 3038 #[stable(feature = "vec_as_mut", since = "1.5.0")] 3039 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> { 3040 fn as_mut(&mut self) -> &mut [T] { 3041 self 3042 } 3043 } 3044 3045 #[cfg(not(no_global_oom_handling))] 3046 #[stable(feature = "rust1", since = "1.0.0")] 3047 impl<T: Clone> From<&[T]> for Vec<T> { 3048 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items. 3049 /// 3050 /// # Examples 3051 /// 3052 /// ``` 3053 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]); 3054 /// ``` 3055 #[cfg(not(test))] 3056 fn from(s: &[T]) -> Vec<T> { 3057 s.to_vec() 3058 } 3059 #[cfg(test)] 3060 fn from(s: &[T]) -> Vec<T> { 3061 crate::slice::to_vec(s, Global) 3062 } 3063 } 3064 3065 #[cfg(not(no_global_oom_handling))] 3066 #[stable(feature = "vec_from_mut", since = "1.19.0")] 3067 impl<T: Clone> From<&mut [T]> for Vec<T> { 3068 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items. 3069 /// 3070 /// # Examples 3071 /// 3072 /// ``` 3073 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]); 3074 /// ``` 3075 #[cfg(not(test))] 3076 fn from(s: &mut [T]) -> Vec<T> { 3077 s.to_vec() 3078 } 3079 #[cfg(test)] 3080 fn from(s: &mut [T]) -> Vec<T> { 3081 crate::slice::to_vec(s, Global) 3082 } 3083 } 3084 3085 #[cfg(not(no_global_oom_handling))] 3086 #[stable(feature = "vec_from_array", since = "1.44.0")] 3087 impl<T, const N: usize> From<[T; N]> for Vec<T> { 3088 /// Allocate a `Vec<T>` and move `s`'s items into it. 3089 /// 3090 /// # Examples 3091 /// 3092 /// ``` 3093 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]); 3094 /// ``` 3095 #[cfg(not(test))] 3096 fn from(s: [T; N]) -> Vec<T> { 3097 <[T]>::into_vec(box s) 3098 } 3099 3100 #[cfg(test)] 3101 fn from(s: [T; N]) -> Vec<T> { 3102 crate::slice::into_vec(box s) 3103 } 3104 } 3105 3106 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")] 3107 impl<'a, T> From<Cow<'a, [T]>> for Vec<T> 3108 where 3109 [T]: ToOwned<Owned = Vec<T>>, 3110 { 3111 /// Convert a clone-on-write slice into a vector. 3112 /// 3113 /// If `s` already owns a `Vec<T>`, it will be returned directly. 3114 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and 3115 /// filled by cloning `s`'s items into it. 3116 /// 3117 /// # Examples 3118 /// 3119 /// ``` 3120 /// # use std::borrow::Cow; 3121 /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]); 3122 /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]); 3123 /// assert_eq!(Vec::from(o), Vec::from(b)); 3124 /// ``` 3125 fn from(s: Cow<'a, [T]>) -> Vec<T> { 3126 s.into_owned() 3127 } 3128 } 3129 3130 // note: test pulls in libstd, which causes errors here 3131 #[cfg(not(test))] 3132 #[stable(feature = "vec_from_box", since = "1.18.0")] 3133 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> { 3134 /// Convert a boxed slice into a vector by transferring ownership of 3135 /// the existing heap allocation. 3136 /// 3137 /// # Examples 3138 /// 3139 /// ``` 3140 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice(); 3141 /// assert_eq!(Vec::from(b), vec![1, 2, 3]); 3142 /// ``` 3143 fn from(s: Box<[T], A>) -> Self { 3144 s.into_vec() 3145 } 3146 } 3147 3148 // note: test pulls in libstd, which causes errors here 3149 #[cfg(not(no_global_oom_handling))] 3150 #[cfg(not(test))] 3151 #[stable(feature = "box_from_vec", since = "1.20.0")] 3152 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> { 3153 /// Convert a vector into a boxed slice. 3154 /// 3155 /// If `v` has excess capacity, its items will be moved into a 3156 /// newly-allocated buffer with exactly the right capacity. 3157 /// 3158 /// # Examples 3159 /// 3160 /// ``` 3161 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice()); 3162 /// ``` 3163 fn from(v: Vec<T, A>) -> Self { 3164 v.into_boxed_slice() 3165 } 3166 } 3167 3168 #[cfg(not(no_global_oom_handling))] 3169 #[stable(feature = "rust1", since = "1.0.0")] 3170 impl From<&str> for Vec<u8> { 3171 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string. 3172 /// 3173 /// # Examples 3174 /// 3175 /// ``` 3176 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']); 3177 /// ``` 3178 fn from(s: &str) -> Vec<u8> { 3179 From::from(s.as_bytes()) 3180 } 3181 } 3182 3183 #[stable(feature = "array_try_from_vec", since = "1.48.0")] 3184 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] { 3185 type Error = Vec<T, A>; 3186 3187 /// Gets the entire contents of the `Vec<T>` as an array, 3188 /// if its size exactly matches that of the requested array. 3189 /// 3190 /// # Examples 3191 /// 3192 /// ``` 3193 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3])); 3194 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([])); 3195 /// ``` 3196 /// 3197 /// If the length doesn't match, the input comes back in `Err`: 3198 /// ``` 3199 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into(); 3200 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9])); 3201 /// ``` 3202 /// 3203 /// If you're fine with just getting a prefix of the `Vec<T>`, 3204 /// you can call [`.truncate(N)`](Vec::truncate) first. 3205 /// ``` 3206 /// let mut v = String::from("hello world").into_bytes(); 3207 /// v.sort(); 3208 /// v.truncate(2); 3209 /// let [a, b]: [_; 2] = v.try_into().unwrap(); 3210 /// assert_eq!(a, b' '); 3211 /// assert_eq!(b, b'd'); 3212 /// ``` 3213 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> { 3214 if vec.len() != N { 3215 return Err(vec); 3216 } 3217 3218 // SAFETY: `.set_len(0)` is always sound. 3219 unsafe { vec.set_len(0) }; 3220 3221 // SAFETY: A `Vec`'s pointer is always aligned properly, and 3222 // the alignment the array needs is the same as the items. 3223 // We checked earlier that we have sufficient items. 3224 // The items will not double-drop as the `set_len` 3225 // tells the `Vec` not to also drop them. 3226 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) }; 3227 Ok(array) 3228 } 3229 } 3230