xref: /openbmc/linux/rust/alloc/vec/mod.rs (revision 71de0a05)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55 
56 #![stable(feature = "rust1", since = "1.0.0")]
57 
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::convert::TryFrom;
62 use core::fmt;
63 use core::hash::{Hash, Hasher};
64 use core::intrinsics::{arith_offset, assume};
65 use core::iter;
66 #[cfg(not(no_global_oom_handling))]
67 use core::iter::FromIterator;
68 use core::marker::PhantomData;
69 use core::mem::{self, ManuallyDrop, MaybeUninit};
70 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71 use core::ptr::{self, NonNull};
72 use core::slice::{self, SliceIndex};
73 
74 use crate::alloc::{Allocator, Global};
75 #[cfg(not(no_borrow))]
76 use crate::borrow::{Cow, ToOwned};
77 use crate::boxed::Box;
78 use crate::collections::TryReserveError;
79 use crate::raw_vec::RawVec;
80 
81 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
82 pub use self::drain_filter::DrainFilter;
83 
84 mod drain_filter;
85 
86 #[cfg(not(no_global_oom_handling))]
87 #[stable(feature = "vec_splice", since = "1.21.0")]
88 pub use self::splice::Splice;
89 
90 #[cfg(not(no_global_oom_handling))]
91 mod splice;
92 
93 #[stable(feature = "drain", since = "1.6.0")]
94 pub use self::drain::Drain;
95 
96 mod drain;
97 
98 #[cfg(not(no_borrow))]
99 #[cfg(not(no_global_oom_handling))]
100 mod cow;
101 
102 #[cfg(not(no_global_oom_handling))]
103 pub(crate) use self::in_place_collect::AsVecIntoIter;
104 #[stable(feature = "rust1", since = "1.0.0")]
105 pub use self::into_iter::IntoIter;
106 
107 mod into_iter;
108 
109 #[cfg(not(no_global_oom_handling))]
110 use self::is_zero::IsZero;
111 
112 mod is_zero;
113 
114 #[cfg(not(no_global_oom_handling))]
115 mod in_place_collect;
116 
117 mod partial_eq;
118 
119 #[cfg(not(no_global_oom_handling))]
120 use self::spec_from_elem::SpecFromElem;
121 
122 #[cfg(not(no_global_oom_handling))]
123 mod spec_from_elem;
124 
125 #[cfg(not(no_global_oom_handling))]
126 use self::set_len_on_drop::SetLenOnDrop;
127 
128 #[cfg(not(no_global_oom_handling))]
129 mod set_len_on_drop;
130 
131 #[cfg(not(no_global_oom_handling))]
132 use self::in_place_drop::InPlaceDrop;
133 
134 #[cfg(not(no_global_oom_handling))]
135 mod in_place_drop;
136 
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter_nested::SpecFromIterNested;
139 
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter_nested;
142 
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_from_iter::SpecFromIter;
145 
146 #[cfg(not(no_global_oom_handling))]
147 mod spec_from_iter;
148 
149 #[cfg(not(no_global_oom_handling))]
150 use self::spec_extend::SpecExtend;
151 
152 #[cfg(not(no_global_oom_handling))]
153 mod spec_extend;
154 
155 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
156 ///
157 /// # Examples
158 ///
159 /// ```
160 /// let mut vec = Vec::new();
161 /// vec.push(1);
162 /// vec.push(2);
163 ///
164 /// assert_eq!(vec.len(), 2);
165 /// assert_eq!(vec[0], 1);
166 ///
167 /// assert_eq!(vec.pop(), Some(2));
168 /// assert_eq!(vec.len(), 1);
169 ///
170 /// vec[0] = 7;
171 /// assert_eq!(vec[0], 7);
172 ///
173 /// vec.extend([1, 2, 3].iter().copied());
174 ///
175 /// for x in &vec {
176 ///     println!("{x}");
177 /// }
178 /// assert_eq!(vec, [7, 1, 2, 3]);
179 /// ```
180 ///
181 /// The [`vec!`] macro is provided for convenient initialization:
182 ///
183 /// ```
184 /// let mut vec1 = vec![1, 2, 3];
185 /// vec1.push(4);
186 /// let vec2 = Vec::from([1, 2, 3, 4]);
187 /// assert_eq!(vec1, vec2);
188 /// ```
189 ///
190 /// It can also initialize each element of a `Vec<T>` with a given value.
191 /// This may be more efficient than performing allocation and initialization
192 /// in separate steps, especially when initializing a vector of zeros:
193 ///
194 /// ```
195 /// let vec = vec![0; 5];
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 ///
198 /// // The following is equivalent, but potentially slower:
199 /// let mut vec = Vec::with_capacity(5);
200 /// vec.resize(5, 0);
201 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
202 /// ```
203 ///
204 /// For more information, see
205 /// [Capacity and Reallocation](#capacity-and-reallocation).
206 ///
207 /// Use a `Vec<T>` as an efficient stack:
208 ///
209 /// ```
210 /// let mut stack = Vec::new();
211 ///
212 /// stack.push(1);
213 /// stack.push(2);
214 /// stack.push(3);
215 ///
216 /// while let Some(top) = stack.pop() {
217 ///     // Prints 3, 2, 1
218 ///     println!("{top}");
219 /// }
220 /// ```
221 ///
222 /// # Indexing
223 ///
224 /// The `Vec` type allows to access values by index, because it implements the
225 /// [`Index`] trait. An example will be more explicit:
226 ///
227 /// ```
228 /// let v = vec![0, 2, 4, 6];
229 /// println!("{}", v[1]); // it will display '2'
230 /// ```
231 ///
232 /// However be careful: if you try to access an index which isn't in the `Vec`,
233 /// your software will panic! You cannot do this:
234 ///
235 /// ```should_panic
236 /// let v = vec![0, 2, 4, 6];
237 /// println!("{}", v[6]); // it will panic!
238 /// ```
239 ///
240 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
241 /// the `Vec`.
242 ///
243 /// # Slicing
244 ///
245 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
246 /// To get a [slice][prim@slice], use [`&`]. Example:
247 ///
248 /// ```
249 /// fn read_slice(slice: &[usize]) {
250 ///     // ...
251 /// }
252 ///
253 /// let v = vec![0, 1];
254 /// read_slice(&v);
255 ///
256 /// // ... and that's all!
257 /// // you can also do it like this:
258 /// let u: &[usize] = &v;
259 /// // or like this:
260 /// let u: &[_] = &v;
261 /// ```
262 ///
263 /// In Rust, it's more common to pass slices as arguments rather than vectors
264 /// when you just want to provide read access. The same goes for [`String`] and
265 /// [`&str`].
266 ///
267 /// # Capacity and reallocation
268 ///
269 /// The capacity of a vector is the amount of space allocated for any future
270 /// elements that will be added onto the vector. This is not to be confused with
271 /// the *length* of a vector, which specifies the number of actual elements
272 /// within the vector. If a vector's length exceeds its capacity, its capacity
273 /// will automatically be increased, but its elements will have to be
274 /// reallocated.
275 ///
276 /// For example, a vector with capacity 10 and length 0 would be an empty vector
277 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
278 /// vector will not change its capacity or cause reallocation to occur. However,
279 /// if the vector's length is increased to 11, it will have to reallocate, which
280 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
281 /// whenever possible to specify how big the vector is expected to get.
282 ///
283 /// # Guarantees
284 ///
285 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
286 /// about its design. This ensures that it's as low-overhead as possible in
287 /// the general case, and can be correctly manipulated in primitive ways
288 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
289 /// If additional type parameters are added (e.g., to support custom allocators),
290 /// overriding their defaults may change the behavior.
291 ///
292 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
293 /// triplet. No more, no less. The order of these fields is completely
294 /// unspecified, and you should use the appropriate methods to modify these.
295 /// The pointer will never be null, so this type is null-pointer-optimized.
296 ///
297 /// However, the pointer might not actually point to allocated memory. In particular,
298 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
299 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
300 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
301 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
302 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
303 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
304 /// details are very subtle --- if you intend to allocate memory using a `Vec`
305 /// and use it for something else (either to pass to unsafe code, or to build your
306 /// own memory-backed collection), be sure to deallocate this memory by using
307 /// `from_raw_parts` to recover the `Vec` and then dropping it.
308 ///
309 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
310 /// (as defined by the allocator Rust is configured to use by default), and its
311 /// pointer points to [`len`] initialized, contiguous elements in order (what
312 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
313 /// logically uninitialized, contiguous elements.
314 ///
315 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
316 /// visualized as below. The top part is the `Vec` struct, it contains a
317 /// pointer to the head of the allocation in the heap, length and capacity.
318 /// The bottom part is the allocation on the heap, a contiguous memory block.
319 ///
320 /// ```text
321 ///             ptr      len  capacity
322 ///        +--------+--------+--------+
323 ///        | 0x0123 |      2 |      4 |
324 ///        +--------+--------+--------+
325 ///             |
326 ///             v
327 /// Heap   +--------+--------+--------+--------+
328 ///        |    'a' |    'b' | uninit | uninit |
329 ///        +--------+--------+--------+--------+
330 /// ```
331 ///
332 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
333 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
334 ///   layout (including the order of fields).
335 ///
336 /// `Vec` will never perform a "small optimization" where elements are actually
337 /// stored on the stack for two reasons:
338 ///
339 /// * It would make it more difficult for unsafe code to correctly manipulate
340 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
341 ///   only moved, and it would be more difficult to determine if a `Vec` had
342 ///   actually allocated memory.
343 ///
344 /// * It would penalize the general case, incurring an additional branch
345 ///   on every access.
346 ///
347 /// `Vec` will never automatically shrink itself, even if completely empty. This
348 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
349 /// and then filling it back up to the same [`len`] should incur no calls to
350 /// the allocator. If you wish to free up unused memory, use
351 /// [`shrink_to_fit`] or [`shrink_to`].
352 ///
353 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
354 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
355 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
356 /// accurate, and can be relied on. It can even be used to manually free the memory
357 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
358 /// when not necessary.
359 ///
360 /// `Vec` does not guarantee any particular growth strategy when reallocating
361 /// when full, nor when [`reserve`] is called. The current strategy is basic
362 /// and it may prove desirable to use a non-constant growth factor. Whatever
363 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
364 ///
365 /// `vec![x; n]`, `vec![a, b, c, d]`, and
366 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
367 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
368 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
369 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
370 ///
371 /// `Vec` will not specifically overwrite any data that is removed from it,
372 /// but also won't specifically preserve it. Its uninitialized memory is
373 /// scratch space that it may use however it wants. It will generally just do
374 /// whatever is most efficient or otherwise easy to implement. Do not rely on
375 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
376 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
377 /// first, that might not actually happen because the optimizer does not consider
378 /// this a side-effect that must be preserved. There is one case which we will
379 /// not break, however: using `unsafe` code to write to the excess capacity,
380 /// and then increasing the length to match, is always valid.
381 ///
382 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
383 /// The order has changed in the past and may change again.
384 ///
385 /// [`get`]: ../../std/vec/struct.Vec.html#method.get
386 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
387 /// [`String`]: crate::string::String
388 /// [`&str`]: type@str
389 /// [`shrink_to_fit`]: Vec::shrink_to_fit
390 /// [`shrink_to`]: Vec::shrink_to
391 /// [capacity]: Vec::capacity
392 /// [`capacity`]: Vec::capacity
393 /// [mem::size_of::\<T>]: core::mem::size_of
394 /// [len]: Vec::len
395 /// [`len`]: Vec::len
396 /// [`push`]: Vec::push
397 /// [`insert`]: Vec::insert
398 /// [`reserve`]: Vec::reserve
399 /// [`MaybeUninit`]: core::mem::MaybeUninit
400 /// [owned slice]: Box
401 #[stable(feature = "rust1", since = "1.0.0")]
402 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
403 #[rustc_insignificant_dtor]
404 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
405     buf: RawVec<T, A>,
406     len: usize,
407 }
408 
409 ////////////////////////////////////////////////////////////////////////////////
410 // Inherent methods
411 ////////////////////////////////////////////////////////////////////////////////
412 
413 impl<T> Vec<T> {
414     /// Constructs a new, empty `Vec<T>`.
415     ///
416     /// The vector will not allocate until elements are pushed onto it.
417     ///
418     /// # Examples
419     ///
420     /// ```
421     /// # #![allow(unused_mut)]
422     /// let mut vec: Vec<i32> = Vec::new();
423     /// ```
424     #[inline]
425     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
426     #[stable(feature = "rust1", since = "1.0.0")]
427     #[must_use]
428     pub const fn new() -> Self {
429         Vec { buf: RawVec::NEW, len: 0 }
430     }
431 
432     /// Constructs a new, empty `Vec<T>` with the specified capacity.
433     ///
434     /// The vector will be able to hold exactly `capacity` elements without
435     /// reallocating. If `capacity` is 0, the vector will not allocate.
436     ///
437     /// It is important to note that although the returned vector has the
438     /// *capacity* specified, the vector will have a zero *length*. For an
439     /// explanation of the difference between length and capacity, see
440     /// *[Capacity and reallocation]*.
441     ///
442     /// [Capacity and reallocation]: #capacity-and-reallocation
443     ///
444     /// # Panics
445     ///
446     /// Panics if the new capacity exceeds `isize::MAX` bytes.
447     ///
448     /// # Examples
449     ///
450     /// ```
451     /// let mut vec = Vec::with_capacity(10);
452     ///
453     /// // The vector contains no items, even though it has capacity for more
454     /// assert_eq!(vec.len(), 0);
455     /// assert_eq!(vec.capacity(), 10);
456     ///
457     /// // These are all done without reallocating...
458     /// for i in 0..10 {
459     ///     vec.push(i);
460     /// }
461     /// assert_eq!(vec.len(), 10);
462     /// assert_eq!(vec.capacity(), 10);
463     ///
464     /// // ...but this may make the vector reallocate
465     /// vec.push(11);
466     /// assert_eq!(vec.len(), 11);
467     /// assert!(vec.capacity() >= 11);
468     /// ```
469     #[cfg(not(no_global_oom_handling))]
470     #[inline]
471     #[stable(feature = "rust1", since = "1.0.0")]
472     #[must_use]
473     pub fn with_capacity(capacity: usize) -> Self {
474         Self::with_capacity_in(capacity, Global)
475     }
476 
477     /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
478     ///
479     /// The vector will be able to hold exactly `capacity` elements without
480     /// reallocating. If `capacity` is 0, the vector will not allocate.
481     ///
482     /// It is important to note that although the returned vector has the
483     /// *capacity* specified, the vector will have a zero *length*. For an
484     /// explanation of the difference between length and capacity, see
485     /// *[Capacity and reallocation]*.
486     ///
487     /// [Capacity and reallocation]: #capacity-and-reallocation
488     ///
489     /// # Examples
490     ///
491     /// ```
492     /// let mut vec = Vec::try_with_capacity(10).unwrap();
493     ///
494     /// // The vector contains no items, even though it has capacity for more
495     /// assert_eq!(vec.len(), 0);
496     /// assert_eq!(vec.capacity(), 10);
497     ///
498     /// // These are all done without reallocating...
499     /// for i in 0..10 {
500     ///     vec.push(i);
501     /// }
502     /// assert_eq!(vec.len(), 10);
503     /// assert_eq!(vec.capacity(), 10);
504     ///
505     /// // ...but this may make the vector reallocate
506     /// vec.push(11);
507     /// assert_eq!(vec.len(), 11);
508     /// assert!(vec.capacity() >= 11);
509     ///
510     /// let mut result = Vec::try_with_capacity(usize::MAX);
511     /// assert!(result.is_err());
512     /// ```
513     #[inline]
514     #[stable(feature = "kernel", since = "1.0.0")]
515     pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
516         Self::try_with_capacity_in(capacity, Global)
517     }
518 
519     /// Creates a `Vec<T>` directly from the raw components of another vector.
520     ///
521     /// # Safety
522     ///
523     /// This is highly unsafe, due to the number of invariants that aren't
524     /// checked:
525     ///
526     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
527     ///   (at least, it's highly likely to be incorrect if it wasn't).
528     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
529     ///   (`T` having a less strict alignment is not sufficient, the alignment really
530     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
531     ///   allocated and deallocated with the same layout.)
532     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
533     ///   to be the same size as the pointer was allocated with. (Because similar to
534     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
535     /// * `length` needs to be less than or equal to `capacity`.
536     ///
537     /// Violating these may cause problems like corrupting the allocator's
538     /// internal data structures. For example it is normally **not** safe
539     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
540     /// `size_t`, doing so is only safe if the array was initially allocated by
541     /// a `Vec` or `String`.
542     /// It's also not safe to build one from a `Vec<u16>` and its length, because
543     /// the allocator cares about the alignment, and these two types have different
544     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
545     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
546     /// these issues, it is often preferable to do casting/transmuting using
547     /// [`slice::from_raw_parts`] instead.
548     ///
549     /// The ownership of `ptr` is effectively transferred to the
550     /// `Vec<T>` which may then deallocate, reallocate or change the
551     /// contents of memory pointed to by the pointer at will. Ensure
552     /// that nothing else uses the pointer after calling this
553     /// function.
554     ///
555     /// [`String`]: crate::string::String
556     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
557     ///
558     /// # Examples
559     ///
560     /// ```
561     /// use std::ptr;
562     /// use std::mem;
563     ///
564     /// let v = vec![1, 2, 3];
565     ///
566     // FIXME Update this when vec_into_raw_parts is stabilized
567     /// // Prevent running `v`'s destructor so we are in complete control
568     /// // of the allocation.
569     /// let mut v = mem::ManuallyDrop::new(v);
570     ///
571     /// // Pull out the various important pieces of information about `v`
572     /// let p = v.as_mut_ptr();
573     /// let len = v.len();
574     /// let cap = v.capacity();
575     ///
576     /// unsafe {
577     ///     // Overwrite memory with 4, 5, 6
578     ///     for i in 0..len as isize {
579     ///         ptr::write(p.offset(i), 4 + i);
580     ///     }
581     ///
582     ///     // Put everything back together into a Vec
583     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
584     ///     assert_eq!(rebuilt, [4, 5, 6]);
585     /// }
586     /// ```
587     #[inline]
588     #[stable(feature = "rust1", since = "1.0.0")]
589     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
590         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
591     }
592 }
593 
594 impl<T, A: Allocator> Vec<T, A> {
595     /// Constructs a new, empty `Vec<T, A>`.
596     ///
597     /// The vector will not allocate until elements are pushed onto it.
598     ///
599     /// # Examples
600     ///
601     /// ```
602     /// #![feature(allocator_api)]
603     ///
604     /// use std::alloc::System;
605     ///
606     /// # #[allow(unused_mut)]
607     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
608     /// ```
609     #[inline]
610     #[unstable(feature = "allocator_api", issue = "32838")]
611     pub const fn new_in(alloc: A) -> Self {
612         Vec { buf: RawVec::new_in(alloc), len: 0 }
613     }
614 
615     /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
616     /// allocator.
617     ///
618     /// The vector will be able to hold exactly `capacity` elements without
619     /// reallocating. If `capacity` is 0, the vector will not allocate.
620     ///
621     /// It is important to note that although the returned vector has the
622     /// *capacity* specified, the vector will have a zero *length*. For an
623     /// explanation of the difference between length and capacity, see
624     /// *[Capacity and reallocation]*.
625     ///
626     /// [Capacity and reallocation]: #capacity-and-reallocation
627     ///
628     /// # Panics
629     ///
630     /// Panics if the new capacity exceeds `isize::MAX` bytes.
631     ///
632     /// # Examples
633     ///
634     /// ```
635     /// #![feature(allocator_api)]
636     ///
637     /// use std::alloc::System;
638     ///
639     /// let mut vec = Vec::with_capacity_in(10, System);
640     ///
641     /// // The vector contains no items, even though it has capacity for more
642     /// assert_eq!(vec.len(), 0);
643     /// assert_eq!(vec.capacity(), 10);
644     ///
645     /// // These are all done without reallocating...
646     /// for i in 0..10 {
647     ///     vec.push(i);
648     /// }
649     /// assert_eq!(vec.len(), 10);
650     /// assert_eq!(vec.capacity(), 10);
651     ///
652     /// // ...but this may make the vector reallocate
653     /// vec.push(11);
654     /// assert_eq!(vec.len(), 11);
655     /// assert!(vec.capacity() >= 11);
656     /// ```
657     #[cfg(not(no_global_oom_handling))]
658     #[inline]
659     #[unstable(feature = "allocator_api", issue = "32838")]
660     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
661         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
662     }
663 
664     /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
665     /// with the provided allocator.
666     ///
667     /// The vector will be able to hold exactly `capacity` elements without
668     /// reallocating. If `capacity` is 0, the vector will not allocate.
669     ///
670     /// It is important to note that although the returned vector has the
671     /// *capacity* specified, the vector will have a zero *length*. For an
672     /// explanation of the difference between length and capacity, see
673     /// *[Capacity and reallocation]*.
674     ///
675     /// [Capacity and reallocation]: #capacity-and-reallocation
676     ///
677     /// # Examples
678     ///
679     /// ```
680     /// #![feature(allocator_api)]
681     ///
682     /// use std::alloc::System;
683     ///
684     /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
685     ///
686     /// // The vector contains no items, even though it has capacity for more
687     /// assert_eq!(vec.len(), 0);
688     /// assert_eq!(vec.capacity(), 10);
689     ///
690     /// // These are all done without reallocating...
691     /// for i in 0..10 {
692     ///     vec.push(i);
693     /// }
694     /// assert_eq!(vec.len(), 10);
695     /// assert_eq!(vec.capacity(), 10);
696     ///
697     /// // ...but this may make the vector reallocate
698     /// vec.push(11);
699     /// assert_eq!(vec.len(), 11);
700     /// assert!(vec.capacity() >= 11);
701     ///
702     /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
703     /// assert!(result.is_err());
704     /// ```
705     #[inline]
706     #[stable(feature = "kernel", since = "1.0.0")]
707     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
708         Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
709     }
710 
711     /// Creates a `Vec<T, A>` directly from the raw components of another vector.
712     ///
713     /// # Safety
714     ///
715     /// This is highly unsafe, due to the number of invariants that aren't
716     /// checked:
717     ///
718     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
719     ///   (at least, it's highly likely to be incorrect if it wasn't).
720     /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
721     ///   (`T` having a less strict alignment is not sufficient, the alignment really
722     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
723     ///   allocated and deallocated with the same layout.)
724     /// * `length` needs to be less than or equal to `capacity`.
725     /// * `capacity` needs to be the capacity that the pointer was allocated with.
726     ///
727     /// Violating these may cause problems like corrupting the allocator's
728     /// internal data structures. For example it is **not** safe
729     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
730     /// It's also not safe to build one from a `Vec<u16>` and its length, because
731     /// the allocator cares about the alignment, and these two types have different
732     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
733     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
734     ///
735     /// The ownership of `ptr` is effectively transferred to the
736     /// `Vec<T>` which may then deallocate, reallocate or change the
737     /// contents of memory pointed to by the pointer at will. Ensure
738     /// that nothing else uses the pointer after calling this
739     /// function.
740     ///
741     /// [`String`]: crate::string::String
742     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
743     ///
744     /// # Examples
745     ///
746     /// ```
747     /// #![feature(allocator_api)]
748     ///
749     /// use std::alloc::System;
750     ///
751     /// use std::ptr;
752     /// use std::mem;
753     ///
754     /// let mut v = Vec::with_capacity_in(3, System);
755     /// v.push(1);
756     /// v.push(2);
757     /// v.push(3);
758     ///
759     // FIXME Update this when vec_into_raw_parts is stabilized
760     /// // Prevent running `v`'s destructor so we are in complete control
761     /// // of the allocation.
762     /// let mut v = mem::ManuallyDrop::new(v);
763     ///
764     /// // Pull out the various important pieces of information about `v`
765     /// let p = v.as_mut_ptr();
766     /// let len = v.len();
767     /// let cap = v.capacity();
768     /// let alloc = v.allocator();
769     ///
770     /// unsafe {
771     ///     // Overwrite memory with 4, 5, 6
772     ///     for i in 0..len as isize {
773     ///         ptr::write(p.offset(i), 4 + i);
774     ///     }
775     ///
776     ///     // Put everything back together into a Vec
777     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
778     ///     assert_eq!(rebuilt, [4, 5, 6]);
779     /// }
780     /// ```
781     #[inline]
782     #[unstable(feature = "allocator_api", issue = "32838")]
783     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
784         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
785     }
786 
787     /// Decomposes a `Vec<T>` into its raw components.
788     ///
789     /// Returns the raw pointer to the underlying data, the length of
790     /// the vector (in elements), and the allocated capacity of the
791     /// data (in elements). These are the same arguments in the same
792     /// order as the arguments to [`from_raw_parts`].
793     ///
794     /// After calling this function, the caller is responsible for the
795     /// memory previously managed by the `Vec`. The only way to do
796     /// this is to convert the raw pointer, length, and capacity back
797     /// into a `Vec` with the [`from_raw_parts`] function, allowing
798     /// the destructor to perform the cleanup.
799     ///
800     /// [`from_raw_parts`]: Vec::from_raw_parts
801     ///
802     /// # Examples
803     ///
804     /// ```
805     /// #![feature(vec_into_raw_parts)]
806     /// let v: Vec<i32> = vec![-1, 0, 1];
807     ///
808     /// let (ptr, len, cap) = v.into_raw_parts();
809     ///
810     /// let rebuilt = unsafe {
811     ///     // We can now make changes to the components, such as
812     ///     // transmuting the raw pointer to a compatible type.
813     ///     let ptr = ptr as *mut u32;
814     ///
815     ///     Vec::from_raw_parts(ptr, len, cap)
816     /// };
817     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
818     /// ```
819     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
820     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
821         let mut me = ManuallyDrop::new(self);
822         (me.as_mut_ptr(), me.len(), me.capacity())
823     }
824 
825     /// Decomposes a `Vec<T>` into its raw components.
826     ///
827     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
828     /// the allocated capacity of the data (in elements), and the allocator. These are the same
829     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
830     ///
831     /// After calling this function, the caller is responsible for the
832     /// memory previously managed by the `Vec`. The only way to do
833     /// this is to convert the raw pointer, length, and capacity back
834     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
835     /// the destructor to perform the cleanup.
836     ///
837     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
838     ///
839     /// # Examples
840     ///
841     /// ```
842     /// #![feature(allocator_api, vec_into_raw_parts)]
843     ///
844     /// use std::alloc::System;
845     ///
846     /// let mut v: Vec<i32, System> = Vec::new_in(System);
847     /// v.push(-1);
848     /// v.push(0);
849     /// v.push(1);
850     ///
851     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
852     ///
853     /// let rebuilt = unsafe {
854     ///     // We can now make changes to the components, such as
855     ///     // transmuting the raw pointer to a compatible type.
856     ///     let ptr = ptr as *mut u32;
857     ///
858     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
859     /// };
860     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
861     /// ```
862     #[unstable(feature = "allocator_api", issue = "32838")]
863     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
864     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
865         let mut me = ManuallyDrop::new(self);
866         let len = me.len();
867         let capacity = me.capacity();
868         let ptr = me.as_mut_ptr();
869         let alloc = unsafe { ptr::read(me.allocator()) };
870         (ptr, len, capacity, alloc)
871     }
872 
873     /// Returns the number of elements the vector can hold without
874     /// reallocating.
875     ///
876     /// # Examples
877     ///
878     /// ```
879     /// let vec: Vec<i32> = Vec::with_capacity(10);
880     /// assert_eq!(vec.capacity(), 10);
881     /// ```
882     #[inline]
883     #[stable(feature = "rust1", since = "1.0.0")]
884     pub fn capacity(&self) -> usize {
885         self.buf.capacity()
886     }
887 
888     /// Reserves capacity for at least `additional` more elements to be inserted
889     /// in the given `Vec<T>`. The collection may reserve more space to avoid
890     /// frequent reallocations. After calling `reserve`, capacity will be
891     /// greater than or equal to `self.len() + additional`. Does nothing if
892     /// capacity is already sufficient.
893     ///
894     /// # Panics
895     ///
896     /// Panics if the new capacity exceeds `isize::MAX` bytes.
897     ///
898     /// # Examples
899     ///
900     /// ```
901     /// let mut vec = vec![1];
902     /// vec.reserve(10);
903     /// assert!(vec.capacity() >= 11);
904     /// ```
905     #[cfg(not(no_global_oom_handling))]
906     #[stable(feature = "rust1", since = "1.0.0")]
907     pub fn reserve(&mut self, additional: usize) {
908         self.buf.reserve(self.len, additional);
909     }
910 
911     /// Reserves the minimum capacity for exactly `additional` more elements to
912     /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
913     /// capacity will be greater than or equal to `self.len() + additional`.
914     /// Does nothing if the capacity is already sufficient.
915     ///
916     /// Note that the allocator may give the collection more space than it
917     /// requests. Therefore, capacity can not be relied upon to be precisely
918     /// minimal. Prefer [`reserve`] if future insertions are expected.
919     ///
920     /// [`reserve`]: Vec::reserve
921     ///
922     /// # Panics
923     ///
924     /// Panics if the new capacity exceeds `isize::MAX` bytes.
925     ///
926     /// # Examples
927     ///
928     /// ```
929     /// let mut vec = vec![1];
930     /// vec.reserve_exact(10);
931     /// assert!(vec.capacity() >= 11);
932     /// ```
933     #[cfg(not(no_global_oom_handling))]
934     #[stable(feature = "rust1", since = "1.0.0")]
935     pub fn reserve_exact(&mut self, additional: usize) {
936         self.buf.reserve_exact(self.len, additional);
937     }
938 
939     /// Tries to reserve capacity for at least `additional` more elements to be inserted
940     /// in the given `Vec<T>`. The collection may reserve more space to avoid
941     /// frequent reallocations. After calling `try_reserve`, capacity will be
942     /// greater than or equal to `self.len() + additional`. Does nothing if
943     /// capacity is already sufficient.
944     ///
945     /// # Errors
946     ///
947     /// If the capacity overflows, or the allocator reports a failure, then an error
948     /// is returned.
949     ///
950     /// # Examples
951     ///
952     /// ```
953     /// use std::collections::TryReserveError;
954     ///
955     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
956     ///     let mut output = Vec::new();
957     ///
958     ///     // Pre-reserve the memory, exiting if we can't
959     ///     output.try_reserve(data.len())?;
960     ///
961     ///     // Now we know this can't OOM in the middle of our complex work
962     ///     output.extend(data.iter().map(|&val| {
963     ///         val * 2 + 5 // very complicated
964     ///     }));
965     ///
966     ///     Ok(output)
967     /// }
968     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
969     /// ```
970     #[stable(feature = "try_reserve", since = "1.57.0")]
971     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
972         self.buf.try_reserve(self.len, additional)
973     }
974 
975     /// Tries to reserve the minimum capacity for exactly `additional`
976     /// elements to be inserted in the given `Vec<T>`. After calling
977     /// `try_reserve_exact`, capacity will be greater than or equal to
978     /// `self.len() + additional` if it returns `Ok(())`.
979     /// Does nothing if the capacity is already sufficient.
980     ///
981     /// Note that the allocator may give the collection more space than it
982     /// requests. Therefore, capacity can not be relied upon to be precisely
983     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
984     ///
985     /// [`try_reserve`]: Vec::try_reserve
986     ///
987     /// # Errors
988     ///
989     /// If the capacity overflows, or the allocator reports a failure, then an error
990     /// is returned.
991     ///
992     /// # Examples
993     ///
994     /// ```
995     /// use std::collections::TryReserveError;
996     ///
997     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
998     ///     let mut output = Vec::new();
999     ///
1000     ///     // Pre-reserve the memory, exiting if we can't
1001     ///     output.try_reserve_exact(data.len())?;
1002     ///
1003     ///     // Now we know this can't OOM in the middle of our complex work
1004     ///     output.extend(data.iter().map(|&val| {
1005     ///         val * 2 + 5 // very complicated
1006     ///     }));
1007     ///
1008     ///     Ok(output)
1009     /// }
1010     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1011     /// ```
1012     #[stable(feature = "try_reserve", since = "1.57.0")]
1013     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1014         self.buf.try_reserve_exact(self.len, additional)
1015     }
1016 
1017     /// Shrinks the capacity of the vector as much as possible.
1018     ///
1019     /// It will drop down as close as possible to the length but the allocator
1020     /// may still inform the vector that there is space for a few more elements.
1021     ///
1022     /// # Examples
1023     ///
1024     /// ```
1025     /// let mut vec = Vec::with_capacity(10);
1026     /// vec.extend([1, 2, 3]);
1027     /// assert_eq!(vec.capacity(), 10);
1028     /// vec.shrink_to_fit();
1029     /// assert!(vec.capacity() >= 3);
1030     /// ```
1031     #[cfg(not(no_global_oom_handling))]
1032     #[stable(feature = "rust1", since = "1.0.0")]
1033     pub fn shrink_to_fit(&mut self) {
1034         // The capacity is never less than the length, and there's nothing to do when
1035         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1036         // by only calling it with a greater capacity.
1037         if self.capacity() > self.len {
1038             self.buf.shrink_to_fit(self.len);
1039         }
1040     }
1041 
1042     /// Shrinks the capacity of the vector with a lower bound.
1043     ///
1044     /// The capacity will remain at least as large as both the length
1045     /// and the supplied value.
1046     ///
1047     /// If the current capacity is less than the lower limit, this is a no-op.
1048     ///
1049     /// # Examples
1050     ///
1051     /// ```
1052     /// let mut vec = Vec::with_capacity(10);
1053     /// vec.extend([1, 2, 3]);
1054     /// assert_eq!(vec.capacity(), 10);
1055     /// vec.shrink_to(4);
1056     /// assert!(vec.capacity() >= 4);
1057     /// vec.shrink_to(0);
1058     /// assert!(vec.capacity() >= 3);
1059     /// ```
1060     #[cfg(not(no_global_oom_handling))]
1061     #[stable(feature = "shrink_to", since = "1.56.0")]
1062     pub fn shrink_to(&mut self, min_capacity: usize) {
1063         if self.capacity() > min_capacity {
1064             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1065         }
1066     }
1067 
1068     /// Converts the vector into [`Box<[T]>`][owned slice].
1069     ///
1070     /// Note that this will drop any excess capacity.
1071     ///
1072     /// [owned slice]: Box
1073     ///
1074     /// # Examples
1075     ///
1076     /// ```
1077     /// let v = vec![1, 2, 3];
1078     ///
1079     /// let slice = v.into_boxed_slice();
1080     /// ```
1081     ///
1082     /// Any excess capacity is removed:
1083     ///
1084     /// ```
1085     /// let mut vec = Vec::with_capacity(10);
1086     /// vec.extend([1, 2, 3]);
1087     ///
1088     /// assert_eq!(vec.capacity(), 10);
1089     /// let slice = vec.into_boxed_slice();
1090     /// assert_eq!(slice.into_vec().capacity(), 3);
1091     /// ```
1092     #[cfg(not(no_global_oom_handling))]
1093     #[stable(feature = "rust1", since = "1.0.0")]
1094     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1095         unsafe {
1096             self.shrink_to_fit();
1097             let me = ManuallyDrop::new(self);
1098             let buf = ptr::read(&me.buf);
1099             let len = me.len();
1100             buf.into_box(len).assume_init()
1101         }
1102     }
1103 
1104     /// Shortens the vector, keeping the first `len` elements and dropping
1105     /// the rest.
1106     ///
1107     /// If `len` is greater than the vector's current length, this has no
1108     /// effect.
1109     ///
1110     /// The [`drain`] method can emulate `truncate`, but causes the excess
1111     /// elements to be returned instead of dropped.
1112     ///
1113     /// Note that this method has no effect on the allocated capacity
1114     /// of the vector.
1115     ///
1116     /// # Examples
1117     ///
1118     /// Truncating a five element vector to two elements:
1119     ///
1120     /// ```
1121     /// let mut vec = vec![1, 2, 3, 4, 5];
1122     /// vec.truncate(2);
1123     /// assert_eq!(vec, [1, 2]);
1124     /// ```
1125     ///
1126     /// No truncation occurs when `len` is greater than the vector's current
1127     /// length:
1128     ///
1129     /// ```
1130     /// let mut vec = vec![1, 2, 3];
1131     /// vec.truncate(8);
1132     /// assert_eq!(vec, [1, 2, 3]);
1133     /// ```
1134     ///
1135     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1136     /// method.
1137     ///
1138     /// ```
1139     /// let mut vec = vec![1, 2, 3];
1140     /// vec.truncate(0);
1141     /// assert_eq!(vec, []);
1142     /// ```
1143     ///
1144     /// [`clear`]: Vec::clear
1145     /// [`drain`]: Vec::drain
1146     #[stable(feature = "rust1", since = "1.0.0")]
1147     pub fn truncate(&mut self, len: usize) {
1148         // This is safe because:
1149         //
1150         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1151         //   case avoids creating an invalid slice, and
1152         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1153         //   such that no value will be dropped twice in case `drop_in_place`
1154         //   were to panic once (if it panics twice, the program aborts).
1155         unsafe {
1156             // Note: It's intentional that this is `>` and not `>=`.
1157             //       Changing it to `>=` has negative performance
1158             //       implications in some cases. See #78884 for more.
1159             if len > self.len {
1160                 return;
1161             }
1162             let remaining_len = self.len - len;
1163             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1164             self.len = len;
1165             ptr::drop_in_place(s);
1166         }
1167     }
1168 
1169     /// Extracts a slice containing the entire vector.
1170     ///
1171     /// Equivalent to `&s[..]`.
1172     ///
1173     /// # Examples
1174     ///
1175     /// ```
1176     /// use std::io::{self, Write};
1177     /// let buffer = vec![1, 2, 3, 5, 8];
1178     /// io::sink().write(buffer.as_slice()).unwrap();
1179     /// ```
1180     #[inline]
1181     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1182     pub fn as_slice(&self) -> &[T] {
1183         self
1184     }
1185 
1186     /// Extracts a mutable slice of the entire vector.
1187     ///
1188     /// Equivalent to `&mut s[..]`.
1189     ///
1190     /// # Examples
1191     ///
1192     /// ```
1193     /// use std::io::{self, Read};
1194     /// let mut buffer = vec![0; 3];
1195     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1196     /// ```
1197     #[inline]
1198     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1199     pub fn as_mut_slice(&mut self) -> &mut [T] {
1200         self
1201     }
1202 
1203     /// Returns a raw pointer to the vector's buffer.
1204     ///
1205     /// The caller must ensure that the vector outlives the pointer this
1206     /// function returns, or else it will end up pointing to garbage.
1207     /// Modifying the vector may cause its buffer to be reallocated,
1208     /// which would also make any pointers to it invalid.
1209     ///
1210     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1211     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1212     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1213     ///
1214     /// # Examples
1215     ///
1216     /// ```
1217     /// let x = vec![1, 2, 4];
1218     /// let x_ptr = x.as_ptr();
1219     ///
1220     /// unsafe {
1221     ///     for i in 0..x.len() {
1222     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1223     ///     }
1224     /// }
1225     /// ```
1226     ///
1227     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1228     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1229     #[inline]
1230     pub fn as_ptr(&self) -> *const T {
1231         // We shadow the slice method of the same name to avoid going through
1232         // `deref`, which creates an intermediate reference.
1233         let ptr = self.buf.ptr();
1234         unsafe {
1235             assume(!ptr.is_null());
1236         }
1237         ptr
1238     }
1239 
1240     /// Returns an unsafe mutable pointer to the vector's buffer.
1241     ///
1242     /// The caller must ensure that the vector outlives the pointer this
1243     /// function returns, or else it will end up pointing to garbage.
1244     /// Modifying the vector may cause its buffer to be reallocated,
1245     /// which would also make any pointers to it invalid.
1246     ///
1247     /// # Examples
1248     ///
1249     /// ```
1250     /// // Allocate vector big enough for 4 elements.
1251     /// let size = 4;
1252     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1253     /// let x_ptr = x.as_mut_ptr();
1254     ///
1255     /// // Initialize elements via raw pointer writes, then set length.
1256     /// unsafe {
1257     ///     for i in 0..size {
1258     ///         *x_ptr.add(i) = i as i32;
1259     ///     }
1260     ///     x.set_len(size);
1261     /// }
1262     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1263     /// ```
1264     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1265     #[inline]
1266     pub fn as_mut_ptr(&mut self) -> *mut T {
1267         // We shadow the slice method of the same name to avoid going through
1268         // `deref_mut`, which creates an intermediate reference.
1269         let ptr = self.buf.ptr();
1270         unsafe {
1271             assume(!ptr.is_null());
1272         }
1273         ptr
1274     }
1275 
1276     /// Returns a reference to the underlying allocator.
1277     #[unstable(feature = "allocator_api", issue = "32838")]
1278     #[inline]
1279     pub fn allocator(&self) -> &A {
1280         self.buf.allocator()
1281     }
1282 
1283     /// Forces the length of the vector to `new_len`.
1284     ///
1285     /// This is a low-level operation that maintains none of the normal
1286     /// invariants of the type. Normally changing the length of a vector
1287     /// is done using one of the safe operations instead, such as
1288     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1289     ///
1290     /// [`truncate`]: Vec::truncate
1291     /// [`resize`]: Vec::resize
1292     /// [`extend`]: Extend::extend
1293     /// [`clear`]: Vec::clear
1294     ///
1295     /// # Safety
1296     ///
1297     /// - `new_len` must be less than or equal to [`capacity()`].
1298     /// - The elements at `old_len..new_len` must be initialized.
1299     ///
1300     /// [`capacity()`]: Vec::capacity
1301     ///
1302     /// # Examples
1303     ///
1304     /// This method can be useful for situations in which the vector
1305     /// is serving as a buffer for other code, particularly over FFI:
1306     ///
1307     /// ```no_run
1308     /// # #![allow(dead_code)]
1309     /// # // This is just a minimal skeleton for the doc example;
1310     /// # // don't use this as a starting point for a real library.
1311     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1312     /// # const Z_OK: i32 = 0;
1313     /// # extern "C" {
1314     /// #     fn deflateGetDictionary(
1315     /// #         strm: *mut std::ffi::c_void,
1316     /// #         dictionary: *mut u8,
1317     /// #         dictLength: *mut usize,
1318     /// #     ) -> i32;
1319     /// # }
1320     /// # impl StreamWrapper {
1321     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1322     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1323     ///     let mut dict = Vec::with_capacity(32_768);
1324     ///     let mut dict_length = 0;
1325     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1326     ///     // 1. `dict_length` elements were initialized.
1327     ///     // 2. `dict_length` <= the capacity (32_768)
1328     ///     // which makes `set_len` safe to call.
1329     ///     unsafe {
1330     ///         // Make the FFI call...
1331     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1332     ///         if r == Z_OK {
1333     ///             // ...and update the length to what was initialized.
1334     ///             dict.set_len(dict_length);
1335     ///             Some(dict)
1336     ///         } else {
1337     ///             None
1338     ///         }
1339     ///     }
1340     /// }
1341     /// # }
1342     /// ```
1343     ///
1344     /// While the following example is sound, there is a memory leak since
1345     /// the inner vectors were not freed prior to the `set_len` call:
1346     ///
1347     /// ```
1348     /// let mut vec = vec![vec![1, 0, 0],
1349     ///                    vec![0, 1, 0],
1350     ///                    vec![0, 0, 1]];
1351     /// // SAFETY:
1352     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1353     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1354     /// unsafe {
1355     ///     vec.set_len(0);
1356     /// }
1357     /// ```
1358     ///
1359     /// Normally, here, one would use [`clear`] instead to correctly drop
1360     /// the contents and thus not leak memory.
1361     #[inline]
1362     #[stable(feature = "rust1", since = "1.0.0")]
1363     pub unsafe fn set_len(&mut self, new_len: usize) {
1364         debug_assert!(new_len <= self.capacity());
1365 
1366         self.len = new_len;
1367     }
1368 
1369     /// Removes an element from the vector and returns it.
1370     ///
1371     /// The removed element is replaced by the last element of the vector.
1372     ///
1373     /// This does not preserve ordering, but is *O*(1).
1374     /// If you need to preserve the element order, use [`remove`] instead.
1375     ///
1376     /// [`remove`]: Vec::remove
1377     ///
1378     /// # Panics
1379     ///
1380     /// Panics if `index` is out of bounds.
1381     ///
1382     /// # Examples
1383     ///
1384     /// ```
1385     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1386     ///
1387     /// assert_eq!(v.swap_remove(1), "bar");
1388     /// assert_eq!(v, ["foo", "qux", "baz"]);
1389     ///
1390     /// assert_eq!(v.swap_remove(0), "foo");
1391     /// assert_eq!(v, ["baz", "qux"]);
1392     /// ```
1393     #[inline]
1394     #[stable(feature = "rust1", since = "1.0.0")]
1395     pub fn swap_remove(&mut self, index: usize) -> T {
1396         #[cold]
1397         #[inline(never)]
1398         fn assert_failed(index: usize, len: usize) -> ! {
1399             panic!("swap_remove index (is {index}) should be < len (is {len})");
1400         }
1401 
1402         let len = self.len();
1403         if index >= len {
1404             assert_failed(index, len);
1405         }
1406         unsafe {
1407             // We replace self[index] with the last element. Note that if the
1408             // bounds check above succeeds there must be a last element (which
1409             // can be self[index] itself).
1410             let value = ptr::read(self.as_ptr().add(index));
1411             let base_ptr = self.as_mut_ptr();
1412             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1413             self.set_len(len - 1);
1414             value
1415         }
1416     }
1417 
1418     /// Inserts an element at position `index` within the vector, shifting all
1419     /// elements after it to the right.
1420     ///
1421     /// # Panics
1422     ///
1423     /// Panics if `index > len`.
1424     ///
1425     /// # Examples
1426     ///
1427     /// ```
1428     /// let mut vec = vec![1, 2, 3];
1429     /// vec.insert(1, 4);
1430     /// assert_eq!(vec, [1, 4, 2, 3]);
1431     /// vec.insert(4, 5);
1432     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1433     /// ```
1434     #[cfg(not(no_global_oom_handling))]
1435     #[stable(feature = "rust1", since = "1.0.0")]
1436     pub fn insert(&mut self, index: usize, element: T) {
1437         #[cold]
1438         #[inline(never)]
1439         fn assert_failed(index: usize, len: usize) -> ! {
1440             panic!("insertion index (is {index}) should be <= len (is {len})");
1441         }
1442 
1443         let len = self.len();
1444         if index > len {
1445             assert_failed(index, len);
1446         }
1447 
1448         // space for the new element
1449         if len == self.buf.capacity() {
1450             self.reserve(1);
1451         }
1452 
1453         unsafe {
1454             // infallible
1455             // The spot to put the new value
1456             {
1457                 let p = self.as_mut_ptr().add(index);
1458                 // Shift everything over to make space. (Duplicating the
1459                 // `index`th element into two consecutive places.)
1460                 ptr::copy(p, p.offset(1), len - index);
1461                 // Write it in, overwriting the first copy of the `index`th
1462                 // element.
1463                 ptr::write(p, element);
1464             }
1465             self.set_len(len + 1);
1466         }
1467     }
1468 
1469     /// Removes and returns the element at position `index` within the vector,
1470     /// shifting all elements after it to the left.
1471     ///
1472     /// Note: Because this shifts over the remaining elements, it has a
1473     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1474     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1475     /// elements from the beginning of the `Vec`, consider using
1476     /// [`VecDeque::pop_front`] instead.
1477     ///
1478     /// [`swap_remove`]: Vec::swap_remove
1479     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1480     ///
1481     /// # Panics
1482     ///
1483     /// Panics if `index` is out of bounds.
1484     ///
1485     /// # Examples
1486     ///
1487     /// ```
1488     /// let mut v = vec![1, 2, 3];
1489     /// assert_eq!(v.remove(1), 2);
1490     /// assert_eq!(v, [1, 3]);
1491     /// ```
1492     #[stable(feature = "rust1", since = "1.0.0")]
1493     #[track_caller]
1494     pub fn remove(&mut self, index: usize) -> T {
1495         #[cold]
1496         #[inline(never)]
1497         #[track_caller]
1498         fn assert_failed(index: usize, len: usize) -> ! {
1499             panic!("removal index (is {index}) should be < len (is {len})");
1500         }
1501 
1502         let len = self.len();
1503         if index >= len {
1504             assert_failed(index, len);
1505         }
1506         unsafe {
1507             // infallible
1508             let ret;
1509             {
1510                 // the place we are taking from.
1511                 let ptr = self.as_mut_ptr().add(index);
1512                 // copy it out, unsafely having a copy of the value on
1513                 // the stack and in the vector at the same time.
1514                 ret = ptr::read(ptr);
1515 
1516                 // Shift everything down to fill in that spot.
1517                 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1518             }
1519             self.set_len(len - 1);
1520             ret
1521         }
1522     }
1523 
1524     /// Retains only the elements specified by the predicate.
1525     ///
1526     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1527     /// This method operates in place, visiting each element exactly once in the
1528     /// original order, and preserves the order of the retained elements.
1529     ///
1530     /// # Examples
1531     ///
1532     /// ```
1533     /// let mut vec = vec![1, 2, 3, 4];
1534     /// vec.retain(|&x| x % 2 == 0);
1535     /// assert_eq!(vec, [2, 4]);
1536     /// ```
1537     ///
1538     /// Because the elements are visited exactly once in the original order,
1539     /// external state may be used to decide which elements to keep.
1540     ///
1541     /// ```
1542     /// let mut vec = vec![1, 2, 3, 4, 5];
1543     /// let keep = [false, true, true, false, true];
1544     /// let mut iter = keep.iter();
1545     /// vec.retain(|_| *iter.next().unwrap());
1546     /// assert_eq!(vec, [2, 3, 5]);
1547     /// ```
1548     #[stable(feature = "rust1", since = "1.0.0")]
1549     pub fn retain<F>(&mut self, mut f: F)
1550     where
1551         F: FnMut(&T) -> bool,
1552     {
1553         self.retain_mut(|elem| f(elem));
1554     }
1555 
1556     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1557     ///
1558     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1559     /// This method operates in place, visiting each element exactly once in the
1560     /// original order, and preserves the order of the retained elements.
1561     ///
1562     /// # Examples
1563     ///
1564     /// ```
1565     /// let mut vec = vec![1, 2, 3, 4];
1566     /// vec.retain_mut(|x| if *x > 3 {
1567     ///     false
1568     /// } else {
1569     ///     *x += 1;
1570     ///     true
1571     /// });
1572     /// assert_eq!(vec, [2, 3, 4]);
1573     /// ```
1574     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
1575     pub fn retain_mut<F>(&mut self, mut f: F)
1576     where
1577         F: FnMut(&mut T) -> bool,
1578     {
1579         let original_len = self.len();
1580         // Avoid double drop if the drop guard is not executed,
1581         // since we may make some holes during the process.
1582         unsafe { self.set_len(0) };
1583 
1584         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1585         //      |<-              processed len   ->| ^- next to check
1586         //                  |<-  deleted cnt     ->|
1587         //      |<-              original_len                          ->|
1588         // Kept: Elements which predicate returns true on.
1589         // Hole: Moved or dropped element slot.
1590         // Unchecked: Unchecked valid elements.
1591         //
1592         // This drop guard will be invoked when predicate or `drop` of element panicked.
1593         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1594         // In cases when predicate and `drop` never panick, it will be optimized out.
1595         struct BackshiftOnDrop<'a, T, A: Allocator> {
1596             v: &'a mut Vec<T, A>,
1597             processed_len: usize,
1598             deleted_cnt: usize,
1599             original_len: usize,
1600         }
1601 
1602         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1603             fn drop(&mut self) {
1604                 if self.deleted_cnt > 0 {
1605                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1606                     unsafe {
1607                         ptr::copy(
1608                             self.v.as_ptr().add(self.processed_len),
1609                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1610                             self.original_len - self.processed_len,
1611                         );
1612                     }
1613                 }
1614                 // SAFETY: After filling holes, all items are in contiguous memory.
1615                 unsafe {
1616                     self.v.set_len(self.original_len - self.deleted_cnt);
1617                 }
1618             }
1619         }
1620 
1621         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1622 
1623         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1624             original_len: usize,
1625             f: &mut F,
1626             g: &mut BackshiftOnDrop<'_, T, A>,
1627         ) where
1628             F: FnMut(&mut T) -> bool,
1629         {
1630             while g.processed_len != original_len {
1631                 // SAFETY: Unchecked element must be valid.
1632                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1633                 if !f(cur) {
1634                     // Advance early to avoid double drop if `drop_in_place` panicked.
1635                     g.processed_len += 1;
1636                     g.deleted_cnt += 1;
1637                     // SAFETY: We never touch this element again after dropped.
1638                     unsafe { ptr::drop_in_place(cur) };
1639                     // We already advanced the counter.
1640                     if DELETED {
1641                         continue;
1642                     } else {
1643                         break;
1644                     }
1645                 }
1646                 if DELETED {
1647                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1648                     // We use copy for move, and never touch this element again.
1649                     unsafe {
1650                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1651                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1652                     }
1653                 }
1654                 g.processed_len += 1;
1655             }
1656         }
1657 
1658         // Stage 1: Nothing was deleted.
1659         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1660 
1661         // Stage 2: Some elements were deleted.
1662         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1663 
1664         // All item are processed. This can be optimized to `set_len` by LLVM.
1665         drop(g);
1666     }
1667 
1668     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1669     /// key.
1670     ///
1671     /// If the vector is sorted, this removes all duplicates.
1672     ///
1673     /// # Examples
1674     ///
1675     /// ```
1676     /// let mut vec = vec![10, 20, 21, 30, 20];
1677     ///
1678     /// vec.dedup_by_key(|i| *i / 10);
1679     ///
1680     /// assert_eq!(vec, [10, 20, 30, 20]);
1681     /// ```
1682     #[stable(feature = "dedup_by", since = "1.16.0")]
1683     #[inline]
1684     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1685     where
1686         F: FnMut(&mut T) -> K,
1687         K: PartialEq,
1688     {
1689         self.dedup_by(|a, b| key(a) == key(b))
1690     }
1691 
1692     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1693     /// relation.
1694     ///
1695     /// The `same_bucket` function is passed references to two elements from the vector and
1696     /// must determine if the elements compare equal. The elements are passed in opposite order
1697     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1698     ///
1699     /// If the vector is sorted, this removes all duplicates.
1700     ///
1701     /// # Examples
1702     ///
1703     /// ```
1704     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1705     ///
1706     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1707     ///
1708     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1709     /// ```
1710     #[stable(feature = "dedup_by", since = "1.16.0")]
1711     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1712     where
1713         F: FnMut(&mut T, &mut T) -> bool,
1714     {
1715         let len = self.len();
1716         if len <= 1 {
1717             return;
1718         }
1719 
1720         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1721         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1722             /* Offset of the element we want to check if it is duplicate */
1723             read: usize,
1724 
1725             /* Offset of the place where we want to place the non-duplicate
1726              * when we find it. */
1727             write: usize,
1728 
1729             /* The Vec that would need correction if `same_bucket` panicked */
1730             vec: &'a mut Vec<T, A>,
1731         }
1732 
1733         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1734             fn drop(&mut self) {
1735                 /* This code gets executed when `same_bucket` panics */
1736 
1737                 /* SAFETY: invariant guarantees that `read - write`
1738                  * and `len - read` never overflow and that the copy is always
1739                  * in-bounds. */
1740                 unsafe {
1741                     let ptr = self.vec.as_mut_ptr();
1742                     let len = self.vec.len();
1743 
1744                     /* How many items were left when `same_bucket` panicked.
1745                      * Basically vec[read..].len() */
1746                     let items_left = len.wrapping_sub(self.read);
1747 
1748                     /* Pointer to first item in vec[write..write+items_left] slice */
1749                     let dropped_ptr = ptr.add(self.write);
1750                     /* Pointer to first item in vec[read..] slice */
1751                     let valid_ptr = ptr.add(self.read);
1752 
1753                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1754                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1755                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1756 
1757                     /* How many items have been already dropped
1758                      * Basically vec[read..write].len() */
1759                     let dropped = self.read.wrapping_sub(self.write);
1760 
1761                     self.vec.set_len(len - dropped);
1762                 }
1763             }
1764         }
1765 
1766         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1767         let ptr = gap.vec.as_mut_ptr();
1768 
1769         /* Drop items while going through Vec, it should be more efficient than
1770          * doing slice partition_dedup + truncate */
1771 
1772         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1773          * are always in-bounds and read_ptr never aliases prev_ptr */
1774         unsafe {
1775             while gap.read < len {
1776                 let read_ptr = ptr.add(gap.read);
1777                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1778 
1779                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1780                     // Increase `gap.read` now since the drop may panic.
1781                     gap.read += 1;
1782                     /* We have found duplicate, drop it in-place */
1783                     ptr::drop_in_place(read_ptr);
1784                 } else {
1785                     let write_ptr = ptr.add(gap.write);
1786 
1787                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1788                      * have to use `copy` or conditional `copy_nonoverlapping`.
1789                      * Looks like the first option is faster. */
1790                     ptr::copy(read_ptr, write_ptr, 1);
1791 
1792                     /* We have filled that place, so go further */
1793                     gap.write += 1;
1794                     gap.read += 1;
1795                 }
1796             }
1797 
1798             /* Technically we could let `gap` clean up with its Drop, but
1799              * when `same_bucket` is guaranteed to not panic, this bloats a little
1800              * the codegen, so we just do it manually */
1801             gap.vec.set_len(gap.write);
1802             mem::forget(gap);
1803         }
1804     }
1805 
1806     /// Appends an element to the back of a collection.
1807     ///
1808     /// # Panics
1809     ///
1810     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1811     ///
1812     /// # Examples
1813     ///
1814     /// ```
1815     /// let mut vec = vec![1, 2];
1816     /// vec.push(3);
1817     /// assert_eq!(vec, [1, 2, 3]);
1818     /// ```
1819     #[cfg(not(no_global_oom_handling))]
1820     #[inline]
1821     #[stable(feature = "rust1", since = "1.0.0")]
1822     pub fn push(&mut self, value: T) {
1823         // This will panic or abort if we would allocate > isize::MAX bytes
1824         // or if the length increment would overflow for zero-sized types.
1825         if self.len == self.buf.capacity() {
1826             self.buf.reserve_for_push(self.len);
1827         }
1828         unsafe {
1829             let end = self.as_mut_ptr().add(self.len);
1830             ptr::write(end, value);
1831             self.len += 1;
1832         }
1833     }
1834 
1835     /// Tries to append an element to the back of a collection.
1836     ///
1837     /// # Examples
1838     ///
1839     /// ```
1840     /// let mut vec = vec![1, 2];
1841     /// vec.try_push(3).unwrap();
1842     /// assert_eq!(vec, [1, 2, 3]);
1843     /// ```
1844     #[inline]
1845     #[stable(feature = "kernel", since = "1.0.0")]
1846     pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1847         if self.len == self.buf.capacity() {
1848             self.buf.try_reserve_for_push(self.len)?;
1849         }
1850         unsafe {
1851             let end = self.as_mut_ptr().add(self.len);
1852             ptr::write(end, value);
1853             self.len += 1;
1854         }
1855         Ok(())
1856     }
1857 
1858     /// Removes the last element from a vector and returns it, or [`None`] if it
1859     /// is empty.
1860     ///
1861     /// If you'd like to pop the first element, consider using
1862     /// [`VecDeque::pop_front`] instead.
1863     ///
1864     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1865     ///
1866     /// # Examples
1867     ///
1868     /// ```
1869     /// let mut vec = vec![1, 2, 3];
1870     /// assert_eq!(vec.pop(), Some(3));
1871     /// assert_eq!(vec, [1, 2]);
1872     /// ```
1873     #[inline]
1874     #[stable(feature = "rust1", since = "1.0.0")]
1875     pub fn pop(&mut self) -> Option<T> {
1876         if self.len == 0 {
1877             None
1878         } else {
1879             unsafe {
1880                 self.len -= 1;
1881                 Some(ptr::read(self.as_ptr().add(self.len())))
1882             }
1883         }
1884     }
1885 
1886     /// Moves all the elements of `other` into `self`, leaving `other` empty.
1887     ///
1888     /// # Panics
1889     ///
1890     /// Panics if the number of elements in the vector overflows a `usize`.
1891     ///
1892     /// # Examples
1893     ///
1894     /// ```
1895     /// let mut vec = vec![1, 2, 3];
1896     /// let mut vec2 = vec![4, 5, 6];
1897     /// vec.append(&mut vec2);
1898     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1899     /// assert_eq!(vec2, []);
1900     /// ```
1901     #[cfg(not(no_global_oom_handling))]
1902     #[inline]
1903     #[stable(feature = "append", since = "1.4.0")]
1904     pub fn append(&mut self, other: &mut Self) {
1905         unsafe {
1906             self.append_elements(other.as_slice() as _);
1907             other.set_len(0);
1908         }
1909     }
1910 
1911     /// Appends elements to `self` from other buffer.
1912     #[cfg(not(no_global_oom_handling))]
1913     #[inline]
1914     unsafe fn append_elements(&mut self, other: *const [T]) {
1915         let count = unsafe { (*other).len() };
1916         self.reserve(count);
1917         let len = self.len();
1918         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1919         self.len += count;
1920     }
1921 
1922     /// Removes the specified range from the vector in bulk, returning all
1923     /// removed elements as an iterator. If the iterator is dropped before
1924     /// being fully consumed, it drops the remaining removed elements.
1925     ///
1926     /// The returned iterator keeps a mutable borrow on the vector to optimize
1927     /// its implementation.
1928     ///
1929     /// # Panics
1930     ///
1931     /// Panics if the starting point is greater than the end point or if
1932     /// the end point is greater than the length of the vector.
1933     ///
1934     /// # Leaking
1935     ///
1936     /// If the returned iterator goes out of scope without being dropped (due to
1937     /// [`mem::forget`], for example), the vector may have lost and leaked
1938     /// elements arbitrarily, including elements outside the range.
1939     ///
1940     /// # Examples
1941     ///
1942     /// ```
1943     /// let mut v = vec![1, 2, 3];
1944     /// let u: Vec<_> = v.drain(1..).collect();
1945     /// assert_eq!(v, &[1]);
1946     /// assert_eq!(u, &[2, 3]);
1947     ///
1948     /// // A full range clears the vector, like `clear()` does
1949     /// v.drain(..);
1950     /// assert_eq!(v, &[]);
1951     /// ```
1952     #[stable(feature = "drain", since = "1.6.0")]
1953     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1954     where
1955         R: RangeBounds<usize>,
1956     {
1957         // Memory safety
1958         //
1959         // When the Drain is first created, it shortens the length of
1960         // the source vector to make sure no uninitialized or moved-from elements
1961         // are accessible at all if the Drain's destructor never gets to run.
1962         //
1963         // Drain will ptr::read out the values to remove.
1964         // When finished, remaining tail of the vec is copied back to cover
1965         // the hole, and the vector length is restored to the new length.
1966         //
1967         let len = self.len();
1968         let Range { start, end } = slice::range(range, ..len);
1969 
1970         unsafe {
1971             // set self.vec length's to start, to be safe in case Drain is leaked
1972             self.set_len(start);
1973             // Use the borrow in the IterMut to indicate borrowing behavior of the
1974             // whole Drain iterator (like &mut T).
1975             let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1976             Drain {
1977                 tail_start: end,
1978                 tail_len: len - end,
1979                 iter: range_slice.iter(),
1980                 vec: NonNull::from(self),
1981             }
1982         }
1983     }
1984 
1985     /// Clears the vector, removing all values.
1986     ///
1987     /// Note that this method has no effect on the allocated capacity
1988     /// of the vector.
1989     ///
1990     /// # Examples
1991     ///
1992     /// ```
1993     /// let mut v = vec![1, 2, 3];
1994     ///
1995     /// v.clear();
1996     ///
1997     /// assert!(v.is_empty());
1998     /// ```
1999     #[inline]
2000     #[stable(feature = "rust1", since = "1.0.0")]
2001     pub fn clear(&mut self) {
2002         let elems: *mut [T] = self.as_mut_slice();
2003 
2004         // SAFETY:
2005         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2006         // - Setting `self.len` before calling `drop_in_place` means that,
2007         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2008         //   do nothing (leaking the rest of the elements) instead of dropping
2009         //   some twice.
2010         unsafe {
2011             self.len = 0;
2012             ptr::drop_in_place(elems);
2013         }
2014     }
2015 
2016     /// Returns the number of elements in the vector, also referred to
2017     /// as its 'length'.
2018     ///
2019     /// # Examples
2020     ///
2021     /// ```
2022     /// let a = vec![1, 2, 3];
2023     /// assert_eq!(a.len(), 3);
2024     /// ```
2025     #[inline]
2026     #[stable(feature = "rust1", since = "1.0.0")]
2027     pub fn len(&self) -> usize {
2028         self.len
2029     }
2030 
2031     /// Returns `true` if the vector contains no elements.
2032     ///
2033     /// # Examples
2034     ///
2035     /// ```
2036     /// let mut v = Vec::new();
2037     /// assert!(v.is_empty());
2038     ///
2039     /// v.push(1);
2040     /// assert!(!v.is_empty());
2041     /// ```
2042     #[stable(feature = "rust1", since = "1.0.0")]
2043     pub fn is_empty(&self) -> bool {
2044         self.len() == 0
2045     }
2046 
2047     /// Splits the collection into two at the given index.
2048     ///
2049     /// Returns a newly allocated vector containing the elements in the range
2050     /// `[at, len)`. After the call, the original vector will be left containing
2051     /// the elements `[0, at)` with its previous capacity unchanged.
2052     ///
2053     /// # Panics
2054     ///
2055     /// Panics if `at > len`.
2056     ///
2057     /// # Examples
2058     ///
2059     /// ```
2060     /// let mut vec = vec![1, 2, 3];
2061     /// let vec2 = vec.split_off(1);
2062     /// assert_eq!(vec, [1]);
2063     /// assert_eq!(vec2, [2, 3]);
2064     /// ```
2065     #[cfg(not(no_global_oom_handling))]
2066     #[inline]
2067     #[must_use = "use `.truncate()` if you don't need the other half"]
2068     #[stable(feature = "split_off", since = "1.4.0")]
2069     pub fn split_off(&mut self, at: usize) -> Self
2070     where
2071         A: Clone,
2072     {
2073         #[cold]
2074         #[inline(never)]
2075         fn assert_failed(at: usize, len: usize) -> ! {
2076             panic!("`at` split index (is {at}) should be <= len (is {len})");
2077         }
2078 
2079         if at > self.len() {
2080             assert_failed(at, self.len());
2081         }
2082 
2083         if at == 0 {
2084             // the new vector can take over the original buffer and avoid the copy
2085             return mem::replace(
2086                 self,
2087                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2088             );
2089         }
2090 
2091         let other_len = self.len - at;
2092         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2093 
2094         // Unsafely `set_len` and copy items to `other`.
2095         unsafe {
2096             self.set_len(at);
2097             other.set_len(other_len);
2098 
2099             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2100         }
2101         other
2102     }
2103 
2104     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2105     ///
2106     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2107     /// difference, with each additional slot filled with the result of
2108     /// calling the closure `f`. The return values from `f` will end up
2109     /// in the `Vec` in the order they have been generated.
2110     ///
2111     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2112     ///
2113     /// This method uses a closure to create new values on every push. If
2114     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2115     /// want to use the [`Default`] trait to generate values, you can
2116     /// pass [`Default::default`] as the second argument.
2117     ///
2118     /// # Examples
2119     ///
2120     /// ```
2121     /// let mut vec = vec![1, 2, 3];
2122     /// vec.resize_with(5, Default::default);
2123     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2124     ///
2125     /// let mut vec = vec![];
2126     /// let mut p = 1;
2127     /// vec.resize_with(4, || { p *= 2; p });
2128     /// assert_eq!(vec, [2, 4, 8, 16]);
2129     /// ```
2130     #[cfg(not(no_global_oom_handling))]
2131     #[stable(feature = "vec_resize_with", since = "1.33.0")]
2132     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2133     where
2134         F: FnMut() -> T,
2135     {
2136         let len = self.len();
2137         if new_len > len {
2138             self.extend_with(new_len - len, ExtendFunc(f));
2139         } else {
2140             self.truncate(new_len);
2141         }
2142     }
2143 
2144     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2145     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2146     /// `'a`. If the type has only static references, or none at all, then this
2147     /// may be chosen to be `'static`.
2148     ///
2149     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2150     /// so the leaked allocation may include unused capacity that is not part
2151     /// of the returned slice.
2152     ///
2153     /// This function is mainly useful for data that lives for the remainder of
2154     /// the program's life. Dropping the returned reference will cause a memory
2155     /// leak.
2156     ///
2157     /// # Examples
2158     ///
2159     /// Simple usage:
2160     ///
2161     /// ```
2162     /// let x = vec![1, 2, 3];
2163     /// let static_ref: &'static mut [usize] = x.leak();
2164     /// static_ref[0] += 1;
2165     /// assert_eq!(static_ref, &[2, 2, 3]);
2166     /// ```
2167     #[cfg(not(no_global_oom_handling))]
2168     #[stable(feature = "vec_leak", since = "1.47.0")]
2169     #[inline]
2170     pub fn leak<'a>(self) -> &'a mut [T]
2171     where
2172         A: 'a,
2173     {
2174         let mut me = ManuallyDrop::new(self);
2175         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2176     }
2177 
2178     /// Returns the remaining spare capacity of the vector as a slice of
2179     /// `MaybeUninit<T>`.
2180     ///
2181     /// The returned slice can be used to fill the vector with data (e.g. by
2182     /// reading from a file) before marking the data as initialized using the
2183     /// [`set_len`] method.
2184     ///
2185     /// [`set_len`]: Vec::set_len
2186     ///
2187     /// # Examples
2188     ///
2189     /// ```
2190     /// // Allocate vector big enough for 10 elements.
2191     /// let mut v = Vec::with_capacity(10);
2192     ///
2193     /// // Fill in the first 3 elements.
2194     /// let uninit = v.spare_capacity_mut();
2195     /// uninit[0].write(0);
2196     /// uninit[1].write(1);
2197     /// uninit[2].write(2);
2198     ///
2199     /// // Mark the first 3 elements of the vector as being initialized.
2200     /// unsafe {
2201     ///     v.set_len(3);
2202     /// }
2203     ///
2204     /// assert_eq!(&v, &[0, 1, 2]);
2205     /// ```
2206     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2207     #[inline]
2208     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2209         // Note:
2210         // This method is not implemented in terms of `split_at_spare_mut`,
2211         // to prevent invalidation of pointers to the buffer.
2212         unsafe {
2213             slice::from_raw_parts_mut(
2214                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2215                 self.buf.capacity() - self.len,
2216             )
2217         }
2218     }
2219 
2220     /// Returns vector content as a slice of `T`, along with the remaining spare
2221     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2222     ///
2223     /// The returned spare capacity slice can be used to fill the vector with data
2224     /// (e.g. by reading from a file) before marking the data as initialized using
2225     /// the [`set_len`] method.
2226     ///
2227     /// [`set_len`]: Vec::set_len
2228     ///
2229     /// Note that this is a low-level API, which should be used with care for
2230     /// optimization purposes. If you need to append data to a `Vec`
2231     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2232     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2233     /// [`resize_with`], depending on your exact needs.
2234     ///
2235     /// [`push`]: Vec::push
2236     /// [`extend`]: Vec::extend
2237     /// [`extend_from_slice`]: Vec::extend_from_slice
2238     /// [`extend_from_within`]: Vec::extend_from_within
2239     /// [`insert`]: Vec::insert
2240     /// [`append`]: Vec::append
2241     /// [`resize`]: Vec::resize
2242     /// [`resize_with`]: Vec::resize_with
2243     ///
2244     /// # Examples
2245     ///
2246     /// ```
2247     /// #![feature(vec_split_at_spare)]
2248     ///
2249     /// let mut v = vec![1, 1, 2];
2250     ///
2251     /// // Reserve additional space big enough for 10 elements.
2252     /// v.reserve(10);
2253     ///
2254     /// let (init, uninit) = v.split_at_spare_mut();
2255     /// let sum = init.iter().copied().sum::<u32>();
2256     ///
2257     /// // Fill in the next 4 elements.
2258     /// uninit[0].write(sum);
2259     /// uninit[1].write(sum * 2);
2260     /// uninit[2].write(sum * 3);
2261     /// uninit[3].write(sum * 4);
2262     ///
2263     /// // Mark the 4 elements of the vector as being initialized.
2264     /// unsafe {
2265     ///     let len = v.len();
2266     ///     v.set_len(len + 4);
2267     /// }
2268     ///
2269     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2270     /// ```
2271     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2272     #[inline]
2273     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2274         // SAFETY:
2275         // - len is ignored and so never changed
2276         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2277         (init, spare)
2278     }
2279 
2280     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2281     ///
2282     /// This method provides unique access to all vec parts at once in `extend_from_within`.
2283     unsafe fn split_at_spare_mut_with_len(
2284         &mut self,
2285     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2286         let ptr = self.as_mut_ptr();
2287         // SAFETY:
2288         // - `ptr` is guaranteed to be valid for `self.len` elements
2289         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2290         // uninitialized
2291         let spare_ptr = unsafe { ptr.add(self.len) };
2292         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2293         let spare_len = self.buf.capacity() - self.len;
2294 
2295         // SAFETY:
2296         // - `ptr` is guaranteed to be valid for `self.len` elements
2297         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2298         unsafe {
2299             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2300             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2301 
2302             (initialized, spare, &mut self.len)
2303         }
2304     }
2305 }
2306 
2307 impl<T: Clone, A: Allocator> Vec<T, A> {
2308     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2309     ///
2310     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2311     /// difference, with each additional slot filled with `value`.
2312     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2313     ///
2314     /// This method requires `T` to implement [`Clone`],
2315     /// in order to be able to clone the passed value.
2316     /// If you need more flexibility (or want to rely on [`Default`] instead of
2317     /// [`Clone`]), use [`Vec::resize_with`].
2318     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2319     ///
2320     /// # Examples
2321     ///
2322     /// ```
2323     /// let mut vec = vec!["hello"];
2324     /// vec.resize(3, "world");
2325     /// assert_eq!(vec, ["hello", "world", "world"]);
2326     ///
2327     /// let mut vec = vec![1, 2, 3, 4];
2328     /// vec.resize(2, 0);
2329     /// assert_eq!(vec, [1, 2]);
2330     /// ```
2331     #[cfg(not(no_global_oom_handling))]
2332     #[stable(feature = "vec_resize", since = "1.5.0")]
2333     pub fn resize(&mut self, new_len: usize, value: T) {
2334         let len = self.len();
2335 
2336         if new_len > len {
2337             self.extend_with(new_len - len, ExtendElement(value))
2338         } else {
2339             self.truncate(new_len);
2340         }
2341     }
2342 
2343     /// Clones and appends all elements in a slice to the `Vec`.
2344     ///
2345     /// Iterates over the slice `other`, clones each element, and then appends
2346     /// it to this `Vec`. The `other` slice is traversed in-order.
2347     ///
2348     /// Note that this function is same as [`extend`] except that it is
2349     /// specialized to work with slices instead. If and when Rust gets
2350     /// specialization this function will likely be deprecated (but still
2351     /// available).
2352     ///
2353     /// # Examples
2354     ///
2355     /// ```
2356     /// let mut vec = vec![1];
2357     /// vec.extend_from_slice(&[2, 3, 4]);
2358     /// assert_eq!(vec, [1, 2, 3, 4]);
2359     /// ```
2360     ///
2361     /// [`extend`]: Vec::extend
2362     #[cfg(not(no_global_oom_handling))]
2363     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2364     pub fn extend_from_slice(&mut self, other: &[T]) {
2365         self.spec_extend(other.iter())
2366     }
2367 
2368     /// Copies elements from `src` range to the end of the vector.
2369     ///
2370     /// # Panics
2371     ///
2372     /// Panics if the starting point is greater than the end point or if
2373     /// the end point is greater than the length of the vector.
2374     ///
2375     /// # Examples
2376     ///
2377     /// ```
2378     /// let mut vec = vec![0, 1, 2, 3, 4];
2379     ///
2380     /// vec.extend_from_within(2..);
2381     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2382     ///
2383     /// vec.extend_from_within(..2);
2384     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2385     ///
2386     /// vec.extend_from_within(4..8);
2387     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2388     /// ```
2389     #[cfg(not(no_global_oom_handling))]
2390     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
2391     pub fn extend_from_within<R>(&mut self, src: R)
2392     where
2393         R: RangeBounds<usize>,
2394     {
2395         let range = slice::range(src, ..self.len());
2396         self.reserve(range.len());
2397 
2398         // SAFETY:
2399         // - `slice::range` guarantees  that the given range is valid for indexing self
2400         unsafe {
2401             self.spec_extend_from_within(range);
2402         }
2403     }
2404 }
2405 
2406 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2407     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2408     ///
2409     /// # Panics
2410     ///
2411     /// Panics if the length of the resulting vector would overflow a `usize`.
2412     ///
2413     /// This is only possible when flattening a vector of arrays of zero-sized
2414     /// types, and thus tends to be irrelevant in practice. If
2415     /// `size_of::<T>() > 0`, this will never panic.
2416     ///
2417     /// # Examples
2418     ///
2419     /// ```
2420     /// #![feature(slice_flatten)]
2421     ///
2422     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2423     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2424     ///
2425     /// let mut flattened = vec.into_flattened();
2426     /// assert_eq!(flattened.pop(), Some(6));
2427     /// ```
2428     #[unstable(feature = "slice_flatten", issue = "95629")]
2429     pub fn into_flattened(self) -> Vec<T, A> {
2430         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2431         let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2432             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2433         } else {
2434             // SAFETY:
2435             // - `cap * N` cannot overflow because the allocation is already in
2436             // the address space.
2437             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2438             // valid elements in the allocation.
2439             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2440         };
2441         // SAFETY:
2442         // - `ptr` was allocated by `self`
2443         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2444         // - `new_cap` refers to the same sized allocation as `cap` because
2445         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2446         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2447         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2448     }
2449 }
2450 
2451 // This code generalizes `extend_with_{element,default}`.
2452 trait ExtendWith<T> {
2453     fn next(&mut self) -> T;
2454     fn last(self) -> T;
2455 }
2456 
2457 struct ExtendElement<T>(T);
2458 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
2459     fn next(&mut self) -> T {
2460         self.0.clone()
2461     }
2462     fn last(self) -> T {
2463         self.0
2464     }
2465 }
2466 
2467 struct ExtendFunc<F>(F);
2468 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
2469     fn next(&mut self) -> T {
2470         (self.0)()
2471     }
2472     fn last(mut self) -> T {
2473         (self.0)()
2474     }
2475 }
2476 
2477 impl<T, A: Allocator> Vec<T, A> {
2478     #[cfg(not(no_global_oom_handling))]
2479     /// Extend the vector by `n` values, using the given generator.
2480     fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2481         self.reserve(n);
2482 
2483         unsafe {
2484             let mut ptr = self.as_mut_ptr().add(self.len());
2485             // Use SetLenOnDrop to work around bug where compiler
2486             // might not realize the store through `ptr` through self.set_len()
2487             // don't alias.
2488             let mut local_len = SetLenOnDrop::new(&mut self.len);
2489 
2490             // Write all elements except the last one
2491             for _ in 1..n {
2492                 ptr::write(ptr, value.next());
2493                 ptr = ptr.offset(1);
2494                 // Increment the length in every step in case next() panics
2495                 local_len.increment_len(1);
2496             }
2497 
2498             if n > 0 {
2499                 // We can write the last element directly without cloning needlessly
2500                 ptr::write(ptr, value.last());
2501                 local_len.increment_len(1);
2502             }
2503 
2504             // len set by scope guard
2505         }
2506     }
2507 }
2508 
2509 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2510     /// Removes consecutive repeated elements in the vector according to the
2511     /// [`PartialEq`] trait implementation.
2512     ///
2513     /// If the vector is sorted, this removes all duplicates.
2514     ///
2515     /// # Examples
2516     ///
2517     /// ```
2518     /// let mut vec = vec![1, 2, 2, 3, 2];
2519     ///
2520     /// vec.dedup();
2521     ///
2522     /// assert_eq!(vec, [1, 2, 3, 2]);
2523     /// ```
2524     #[stable(feature = "rust1", since = "1.0.0")]
2525     #[inline]
2526     pub fn dedup(&mut self) {
2527         self.dedup_by(|a, b| a == b)
2528     }
2529 }
2530 
2531 ////////////////////////////////////////////////////////////////////////////////
2532 // Internal methods and functions
2533 ////////////////////////////////////////////////////////////////////////////////
2534 
2535 #[doc(hidden)]
2536 #[cfg(not(no_global_oom_handling))]
2537 #[stable(feature = "rust1", since = "1.0.0")]
2538 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2539     <T as SpecFromElem>::from_elem(elem, n, Global)
2540 }
2541 
2542 #[doc(hidden)]
2543 #[cfg(not(no_global_oom_handling))]
2544 #[unstable(feature = "allocator_api", issue = "32838")]
2545 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2546     <T as SpecFromElem>::from_elem(elem, n, alloc)
2547 }
2548 
2549 trait ExtendFromWithinSpec {
2550     /// # Safety
2551     ///
2552     /// - `src` needs to be valid index
2553     /// - `self.capacity() - self.len()` must be `>= src.len()`
2554     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2555 }
2556 
2557 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2558     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2559         // SAFETY:
2560         // - len is increased only after initializing elements
2561         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2562 
2563         // SAFETY:
2564         // - caller guaratees that src is a valid index
2565         let to_clone = unsafe { this.get_unchecked(src) };
2566 
2567         iter::zip(to_clone, spare)
2568             .map(|(src, dst)| dst.write(src.clone()))
2569             // Note:
2570             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2571             // - len is increased after each element to prevent leaks (see issue #82533)
2572             .for_each(|_| *len += 1);
2573     }
2574 }
2575 
2576 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2577     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2578         let count = src.len();
2579         {
2580             let (init, spare) = self.split_at_spare_mut();
2581 
2582             // SAFETY:
2583             // - caller guaratees that `src` is a valid index
2584             let source = unsafe { init.get_unchecked(src) };
2585 
2586             // SAFETY:
2587             // - Both pointers are created from unique slice references (`&mut [_]`)
2588             //   so they are valid and do not overlap.
2589             // - Elements are :Copy so it's OK to to copy them, without doing
2590             //   anything with the original values
2591             // - `count` is equal to the len of `source`, so source is valid for
2592             //   `count` reads
2593             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2594             //   is valid for `count` writes
2595             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2596         }
2597 
2598         // SAFETY:
2599         // - The elements were just initialized by `copy_nonoverlapping`
2600         self.len += count;
2601     }
2602 }
2603 
2604 ////////////////////////////////////////////////////////////////////////////////
2605 // Common trait implementations for Vec
2606 ////////////////////////////////////////////////////////////////////////////////
2607 
2608 #[stable(feature = "rust1", since = "1.0.0")]
2609 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2610     type Target = [T];
2611 
2612     fn deref(&self) -> &[T] {
2613         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2614     }
2615 }
2616 
2617 #[stable(feature = "rust1", since = "1.0.0")]
2618 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2619     fn deref_mut(&mut self) -> &mut [T] {
2620         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2621     }
2622 }
2623 
2624 #[cfg(not(no_global_oom_handling))]
2625 trait SpecCloneFrom {
2626     fn clone_from(this: &mut Self, other: &Self);
2627 }
2628 
2629 #[cfg(not(no_global_oom_handling))]
2630 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
2631     default fn clone_from(this: &mut Self, other: &Self) {
2632         // drop anything that will not be overwritten
2633         this.truncate(other.len());
2634 
2635         // self.len <= other.len due to the truncate above, so the
2636         // slices here are always in-bounds.
2637         let (init, tail) = other.split_at(this.len());
2638 
2639         // reuse the contained values' allocations/resources.
2640         this.clone_from_slice(init);
2641         this.extend_from_slice(tail);
2642     }
2643 }
2644 
2645 #[cfg(not(no_global_oom_handling))]
2646 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
2647     fn clone_from(this: &mut Self, other: &Self) {
2648         this.clear();
2649         this.extend_from_slice(other);
2650     }
2651 }
2652 
2653 #[cfg(not(no_global_oom_handling))]
2654 #[stable(feature = "rust1", since = "1.0.0")]
2655 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2656     #[cfg(not(test))]
2657     fn clone(&self) -> Self {
2658         let alloc = self.allocator().clone();
2659         <[T]>::to_vec_in(&**self, alloc)
2660     }
2661 
2662     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2663     // required for this method definition, is not available. Instead use the
2664     // `slice::to_vec`  function which is only available with cfg(test)
2665     // NB see the slice::hack module in slice.rs for more information
2666     #[cfg(test)]
2667     fn clone(&self) -> Self {
2668         let alloc = self.allocator().clone();
2669         crate::slice::to_vec(&**self, alloc)
2670     }
2671 
2672     fn clone_from(&mut self, other: &Self) {
2673         SpecCloneFrom::clone_from(self, other)
2674     }
2675 }
2676 
2677 /// The hash of a vector is the same as that of the corresponding slice,
2678 /// as required by the `core::borrow::Borrow` implementation.
2679 ///
2680 /// ```
2681 /// #![feature(build_hasher_simple_hash_one)]
2682 /// use std::hash::BuildHasher;
2683 ///
2684 /// let b = std::collections::hash_map::RandomState::new();
2685 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2686 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2687 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2688 /// ```
2689 #[stable(feature = "rust1", since = "1.0.0")]
2690 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2691     #[inline]
2692     fn hash<H: Hasher>(&self, state: &mut H) {
2693         Hash::hash(&**self, state)
2694     }
2695 }
2696 
2697 #[stable(feature = "rust1", since = "1.0.0")]
2698 #[rustc_on_unimplemented(
2699     message = "vector indices are of type `usize` or ranges of `usize`",
2700     label = "vector indices are of type `usize` or ranges of `usize`"
2701 )]
2702 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2703     type Output = I::Output;
2704 
2705     #[inline]
2706     fn index(&self, index: I) -> &Self::Output {
2707         Index::index(&**self, index)
2708     }
2709 }
2710 
2711 #[stable(feature = "rust1", since = "1.0.0")]
2712 #[rustc_on_unimplemented(
2713     message = "vector indices are of type `usize` or ranges of `usize`",
2714     label = "vector indices are of type `usize` or ranges of `usize`"
2715 )]
2716 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2717     #[inline]
2718     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2719         IndexMut::index_mut(&mut **self, index)
2720     }
2721 }
2722 
2723 #[cfg(not(no_global_oom_handling))]
2724 #[stable(feature = "rust1", since = "1.0.0")]
2725 impl<T> FromIterator<T> for Vec<T> {
2726     #[inline]
2727     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2728         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2729     }
2730 }
2731 
2732 #[stable(feature = "rust1", since = "1.0.0")]
2733 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2734     type Item = T;
2735     type IntoIter = IntoIter<T, A>;
2736 
2737     /// Creates a consuming iterator, that is, one that moves each value out of
2738     /// the vector (from start to end). The vector cannot be used after calling
2739     /// this.
2740     ///
2741     /// # Examples
2742     ///
2743     /// ```
2744     /// let v = vec!["a".to_string(), "b".to_string()];
2745     /// for s in v.into_iter() {
2746     ///     // s has type String, not &String
2747     ///     println!("{s}");
2748     /// }
2749     /// ```
2750     #[inline]
2751     fn into_iter(self) -> IntoIter<T, A> {
2752         unsafe {
2753             let mut me = ManuallyDrop::new(self);
2754             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2755             let begin = me.as_mut_ptr();
2756             let end = if mem::size_of::<T>() == 0 {
2757                 arith_offset(begin as *const i8, me.len() as isize) as *const T
2758             } else {
2759                 begin.add(me.len()) as *const T
2760             };
2761             let cap = me.buf.capacity();
2762             IntoIter {
2763                 buf: NonNull::new_unchecked(begin),
2764                 phantom: PhantomData,
2765                 cap,
2766                 alloc,
2767                 ptr: begin,
2768                 end,
2769             }
2770         }
2771     }
2772 }
2773 
2774 #[stable(feature = "rust1", since = "1.0.0")]
2775 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2776     type Item = &'a T;
2777     type IntoIter = slice::Iter<'a, T>;
2778 
2779     fn into_iter(self) -> slice::Iter<'a, T> {
2780         self.iter()
2781     }
2782 }
2783 
2784 #[stable(feature = "rust1", since = "1.0.0")]
2785 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2786     type Item = &'a mut T;
2787     type IntoIter = slice::IterMut<'a, T>;
2788 
2789     fn into_iter(self) -> slice::IterMut<'a, T> {
2790         self.iter_mut()
2791     }
2792 }
2793 
2794 #[cfg(not(no_global_oom_handling))]
2795 #[stable(feature = "rust1", since = "1.0.0")]
2796 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2797     #[inline]
2798     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2799         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2800     }
2801 
2802     #[inline]
2803     fn extend_one(&mut self, item: T) {
2804         self.push(item);
2805     }
2806 
2807     #[inline]
2808     fn extend_reserve(&mut self, additional: usize) {
2809         self.reserve(additional);
2810     }
2811 }
2812 
2813 impl<T, A: Allocator> Vec<T, A> {
2814     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2815     // they have no further optimizations to apply
2816     #[cfg(not(no_global_oom_handling))]
2817     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2818         // This is the case for a general iterator.
2819         //
2820         // This function should be the moral equivalent of:
2821         //
2822         //      for item in iterator {
2823         //          self.push(item);
2824         //      }
2825         while let Some(element) = iterator.next() {
2826             let len = self.len();
2827             if len == self.capacity() {
2828                 let (lower, _) = iterator.size_hint();
2829                 self.reserve(lower.saturating_add(1));
2830             }
2831             unsafe {
2832                 ptr::write(self.as_mut_ptr().add(len), element);
2833                 // Since next() executes user code which can panic we have to bump the length
2834                 // after each step.
2835                 // NB can't overflow since we would have had to alloc the address space
2836                 self.set_len(len + 1);
2837             }
2838         }
2839     }
2840 
2841     /// Creates a splicing iterator that replaces the specified range in the vector
2842     /// with the given `replace_with` iterator and yields the removed items.
2843     /// `replace_with` does not need to be the same length as `range`.
2844     ///
2845     /// `range` is removed even if the iterator is not consumed until the end.
2846     ///
2847     /// It is unspecified how many elements are removed from the vector
2848     /// if the `Splice` value is leaked.
2849     ///
2850     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2851     ///
2852     /// This is optimal if:
2853     ///
2854     /// * The tail (elements in the vector after `range`) is empty,
2855     /// * or `replace_with` yields fewer or equal elements than `range`’s length
2856     /// * or the lower bound of its `size_hint()` is exact.
2857     ///
2858     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2859     ///
2860     /// # Panics
2861     ///
2862     /// Panics if the starting point is greater than the end point or if
2863     /// the end point is greater than the length of the vector.
2864     ///
2865     /// # Examples
2866     ///
2867     /// ```
2868     /// let mut v = vec![1, 2, 3, 4];
2869     /// let new = [7, 8, 9];
2870     /// let u: Vec<_> = v.splice(1..3, new).collect();
2871     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
2872     /// assert_eq!(u, &[2, 3]);
2873     /// ```
2874     #[cfg(not(no_global_oom_handling))]
2875     #[inline]
2876     #[stable(feature = "vec_splice", since = "1.21.0")]
2877     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
2878     where
2879         R: RangeBounds<usize>,
2880         I: IntoIterator<Item = T>,
2881     {
2882         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
2883     }
2884 
2885     /// Creates an iterator which uses a closure to determine if an element should be removed.
2886     ///
2887     /// If the closure returns true, then the element is removed and yielded.
2888     /// If the closure returns false, the element will remain in the vector and will not be yielded
2889     /// by the iterator.
2890     ///
2891     /// Using this method is equivalent to the following code:
2892     ///
2893     /// ```
2894     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2895     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
2896     /// let mut i = 0;
2897     /// while i < vec.len() {
2898     ///     if some_predicate(&mut vec[i]) {
2899     ///         let val = vec.remove(i);
2900     ///         // your code here
2901     ///     } else {
2902     ///         i += 1;
2903     ///     }
2904     /// }
2905     ///
2906     /// # assert_eq!(vec, vec![1, 4, 5]);
2907     /// ```
2908     ///
2909     /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2910     /// because it can backshift the elements of the array in bulk.
2911     ///
2912     /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2913     /// regardless of whether you choose to keep or remove it.
2914     ///
2915     /// # Examples
2916     ///
2917     /// Splitting an array into evens and odds, reusing the original allocation:
2918     ///
2919     /// ```
2920     /// #![feature(drain_filter)]
2921     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2922     ///
2923     /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2924     /// let odds = numbers;
2925     ///
2926     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2927     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2928     /// ```
2929     #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2930     pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
2931     where
2932         F: FnMut(&mut T) -> bool,
2933     {
2934         let old_len = self.len();
2935 
2936         // Guard against us getting leaked (leak amplification)
2937         unsafe {
2938             self.set_len(0);
2939         }
2940 
2941         DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
2942     }
2943 }
2944 
2945 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2946 ///
2947 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2948 /// append the entire slice at once.
2949 ///
2950 /// [`copy_from_slice`]: slice::copy_from_slice
2951 #[cfg(not(no_global_oom_handling))]
2952 #[stable(feature = "extend_ref", since = "1.2.0")]
2953 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
2954     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2955         self.spec_extend(iter.into_iter())
2956     }
2957 
2958     #[inline]
2959     fn extend_one(&mut self, &item: &'a T) {
2960         self.push(item);
2961     }
2962 
2963     #[inline]
2964     fn extend_reserve(&mut self, additional: usize) {
2965         self.reserve(additional);
2966     }
2967 }
2968 
2969 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2970 #[stable(feature = "rust1", since = "1.0.0")]
2971 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
2972     #[inline]
2973     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2974         PartialOrd::partial_cmp(&**self, &**other)
2975     }
2976 }
2977 
2978 #[stable(feature = "rust1", since = "1.0.0")]
2979 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
2980 
2981 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2982 #[stable(feature = "rust1", since = "1.0.0")]
2983 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
2984     #[inline]
2985     fn cmp(&self, other: &Self) -> Ordering {
2986         Ord::cmp(&**self, &**other)
2987     }
2988 }
2989 
2990 #[stable(feature = "rust1", since = "1.0.0")]
2991 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
2992     fn drop(&mut self) {
2993         unsafe {
2994             // use drop for [T]
2995             // use a raw slice to refer to the elements of the vector as weakest necessary type;
2996             // could avoid questions of validity in certain cases
2997             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
2998         }
2999         // RawVec handles deallocation
3000     }
3001 }
3002 
3003 #[stable(feature = "rust1", since = "1.0.0")]
3004 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
3005 impl<T> const Default for Vec<T> {
3006     /// Creates an empty `Vec<T>`.
3007     fn default() -> Vec<T> {
3008         Vec::new()
3009     }
3010 }
3011 
3012 #[stable(feature = "rust1", since = "1.0.0")]
3013 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3014     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3015         fmt::Debug::fmt(&**self, f)
3016     }
3017 }
3018 
3019 #[stable(feature = "rust1", since = "1.0.0")]
3020 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3021     fn as_ref(&self) -> &Vec<T, A> {
3022         self
3023     }
3024 }
3025 
3026 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3027 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3028     fn as_mut(&mut self) -> &mut Vec<T, A> {
3029         self
3030     }
3031 }
3032 
3033 #[stable(feature = "rust1", since = "1.0.0")]
3034 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3035     fn as_ref(&self) -> &[T] {
3036         self
3037     }
3038 }
3039 
3040 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3041 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3042     fn as_mut(&mut self) -> &mut [T] {
3043         self
3044     }
3045 }
3046 
3047 #[cfg(not(no_global_oom_handling))]
3048 #[stable(feature = "rust1", since = "1.0.0")]
3049 impl<T: Clone> From<&[T]> for Vec<T> {
3050     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3051     ///
3052     /// # Examples
3053     ///
3054     /// ```
3055     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3056     /// ```
3057     #[cfg(not(test))]
3058     fn from(s: &[T]) -> Vec<T> {
3059         s.to_vec()
3060     }
3061     #[cfg(test)]
3062     fn from(s: &[T]) -> Vec<T> {
3063         crate::slice::to_vec(s, Global)
3064     }
3065 }
3066 
3067 #[cfg(not(no_global_oom_handling))]
3068 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3069 impl<T: Clone> From<&mut [T]> for Vec<T> {
3070     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3071     ///
3072     /// # Examples
3073     ///
3074     /// ```
3075     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3076     /// ```
3077     #[cfg(not(test))]
3078     fn from(s: &mut [T]) -> Vec<T> {
3079         s.to_vec()
3080     }
3081     #[cfg(test)]
3082     fn from(s: &mut [T]) -> Vec<T> {
3083         crate::slice::to_vec(s, Global)
3084     }
3085 }
3086 
3087 #[cfg(not(no_global_oom_handling))]
3088 #[stable(feature = "vec_from_array", since = "1.44.0")]
3089 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3090     /// Allocate a `Vec<T>` and move `s`'s items into it.
3091     ///
3092     /// # Examples
3093     ///
3094     /// ```
3095     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3096     /// ```
3097     #[cfg(not(test))]
3098     fn from(s: [T; N]) -> Vec<T> {
3099         <[T]>::into_vec(box s)
3100     }
3101 
3102     #[cfg(test)]
3103     fn from(s: [T; N]) -> Vec<T> {
3104         crate::slice::into_vec(box s)
3105     }
3106 }
3107 
3108 #[cfg(not(no_borrow))]
3109 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3110 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3111 where
3112     [T]: ToOwned<Owned = Vec<T>>,
3113 {
3114     /// Convert a clone-on-write slice into a vector.
3115     ///
3116     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3117     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3118     /// filled by cloning `s`'s items into it.
3119     ///
3120     /// # Examples
3121     ///
3122     /// ```
3123     /// # use std::borrow::Cow;
3124     /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3125     /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3126     /// assert_eq!(Vec::from(o), Vec::from(b));
3127     /// ```
3128     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3129         s.into_owned()
3130     }
3131 }
3132 
3133 // note: test pulls in libstd, which causes errors here
3134 #[cfg(not(test))]
3135 #[stable(feature = "vec_from_box", since = "1.18.0")]
3136 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3137     /// Convert a boxed slice into a vector by transferring ownership of
3138     /// the existing heap allocation.
3139     ///
3140     /// # Examples
3141     ///
3142     /// ```
3143     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3144     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3145     /// ```
3146     fn from(s: Box<[T], A>) -> Self {
3147         s.into_vec()
3148     }
3149 }
3150 
3151 // note: test pulls in libstd, which causes errors here
3152 #[cfg(not(no_global_oom_handling))]
3153 #[cfg(not(test))]
3154 #[stable(feature = "box_from_vec", since = "1.20.0")]
3155 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3156     /// Convert a vector into a boxed slice.
3157     ///
3158     /// If `v` has excess capacity, its items will be moved into a
3159     /// newly-allocated buffer with exactly the right capacity.
3160     ///
3161     /// # Examples
3162     ///
3163     /// ```
3164     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3165     /// ```
3166     fn from(v: Vec<T, A>) -> Self {
3167         v.into_boxed_slice()
3168     }
3169 }
3170 
3171 #[cfg(not(no_global_oom_handling))]
3172 #[stable(feature = "rust1", since = "1.0.0")]
3173 impl From<&str> for Vec<u8> {
3174     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3175     ///
3176     /// # Examples
3177     ///
3178     /// ```
3179     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3180     /// ```
3181     fn from(s: &str) -> Vec<u8> {
3182         From::from(s.as_bytes())
3183     }
3184 }
3185 
3186 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3187 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3188     type Error = Vec<T, A>;
3189 
3190     /// Gets the entire contents of the `Vec<T>` as an array,
3191     /// if its size exactly matches that of the requested array.
3192     ///
3193     /// # Examples
3194     ///
3195     /// ```
3196     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3197     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3198     /// ```
3199     ///
3200     /// If the length doesn't match, the input comes back in `Err`:
3201     /// ```
3202     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3203     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3204     /// ```
3205     ///
3206     /// If you're fine with just getting a prefix of the `Vec<T>`,
3207     /// you can call [`.truncate(N)`](Vec::truncate) first.
3208     /// ```
3209     /// let mut v = String::from("hello world").into_bytes();
3210     /// v.sort();
3211     /// v.truncate(2);
3212     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3213     /// assert_eq!(a, b' ');
3214     /// assert_eq!(b, b'd');
3215     /// ```
3216     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3217         if vec.len() != N {
3218             return Err(vec);
3219         }
3220 
3221         // SAFETY: `.set_len(0)` is always sound.
3222         unsafe { vec.set_len(0) };
3223 
3224         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3225         // the alignment the array needs is the same as the items.
3226         // We checked earlier that we have sufficient items.
3227         // The items will not double-drop as the `set_len`
3228         // tells the `Vec` not to also drop them.
3229         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3230         Ok(array)
3231     }
3232 }
3233