xref: /openbmc/linux/rust/alloc/vec/mod.rs (revision 21ab7031)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55 
56 #![stable(feature = "rust1", since = "1.0.0")]
57 
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::convert::TryFrom;
62 use core::fmt;
63 use core::hash::{Hash, Hasher};
64 use core::intrinsics::{arith_offset, assume};
65 use core::iter;
66 #[cfg(not(no_global_oom_handling))]
67 use core::iter::FromIterator;
68 use core::marker::PhantomData;
69 use core::mem::{self, ManuallyDrop, MaybeUninit};
70 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71 use core::ptr::{self, NonNull};
72 use core::slice::{self, SliceIndex};
73 
74 use crate::alloc::{Allocator, Global};
75 use crate::borrow::{Cow, ToOwned};
76 use crate::boxed::Box;
77 use crate::collections::TryReserveError;
78 use crate::raw_vec::RawVec;
79 
80 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
81 pub use self::drain_filter::DrainFilter;
82 
83 mod drain_filter;
84 
85 #[cfg(not(no_global_oom_handling))]
86 #[stable(feature = "vec_splice", since = "1.21.0")]
87 pub use self::splice::Splice;
88 
89 #[cfg(not(no_global_oom_handling))]
90 mod splice;
91 
92 #[stable(feature = "drain", since = "1.6.0")]
93 pub use self::drain::Drain;
94 
95 mod drain;
96 
97 #[cfg(not(no_global_oom_handling))]
98 mod cow;
99 
100 #[cfg(not(no_global_oom_handling))]
101 pub(crate) use self::in_place_collect::AsVecIntoIter;
102 #[stable(feature = "rust1", since = "1.0.0")]
103 pub use self::into_iter::IntoIter;
104 
105 mod into_iter;
106 
107 #[cfg(not(no_global_oom_handling))]
108 use self::is_zero::IsZero;
109 
110 mod is_zero;
111 
112 #[cfg(not(no_global_oom_handling))]
113 mod in_place_collect;
114 
115 mod partial_eq;
116 
117 #[cfg(not(no_global_oom_handling))]
118 use self::spec_from_elem::SpecFromElem;
119 
120 #[cfg(not(no_global_oom_handling))]
121 mod spec_from_elem;
122 
123 #[cfg(not(no_global_oom_handling))]
124 use self::set_len_on_drop::SetLenOnDrop;
125 
126 #[cfg(not(no_global_oom_handling))]
127 mod set_len_on_drop;
128 
129 #[cfg(not(no_global_oom_handling))]
130 use self::in_place_drop::InPlaceDrop;
131 
132 #[cfg(not(no_global_oom_handling))]
133 mod in_place_drop;
134 
135 #[cfg(not(no_global_oom_handling))]
136 use self::spec_from_iter_nested::SpecFromIterNested;
137 
138 #[cfg(not(no_global_oom_handling))]
139 mod spec_from_iter_nested;
140 
141 #[cfg(not(no_global_oom_handling))]
142 use self::spec_from_iter::SpecFromIter;
143 
144 #[cfg(not(no_global_oom_handling))]
145 mod spec_from_iter;
146 
147 #[cfg(not(no_global_oom_handling))]
148 use self::spec_extend::SpecExtend;
149 
150 #[cfg(not(no_global_oom_handling))]
151 mod spec_extend;
152 
153 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
154 ///
155 /// # Examples
156 ///
157 /// ```
158 /// let mut vec = Vec::new();
159 /// vec.push(1);
160 /// vec.push(2);
161 ///
162 /// assert_eq!(vec.len(), 2);
163 /// assert_eq!(vec[0], 1);
164 ///
165 /// assert_eq!(vec.pop(), Some(2));
166 /// assert_eq!(vec.len(), 1);
167 ///
168 /// vec[0] = 7;
169 /// assert_eq!(vec[0], 7);
170 ///
171 /// vec.extend([1, 2, 3].iter().copied());
172 ///
173 /// for x in &vec {
174 ///     println!("{x}");
175 /// }
176 /// assert_eq!(vec, [7, 1, 2, 3]);
177 /// ```
178 ///
179 /// The [`vec!`] macro is provided for convenient initialization:
180 ///
181 /// ```
182 /// let mut vec1 = vec![1, 2, 3];
183 /// vec1.push(4);
184 /// let vec2 = Vec::from([1, 2, 3, 4]);
185 /// assert_eq!(vec1, vec2);
186 /// ```
187 ///
188 /// It can also initialize each element of a `Vec<T>` with a given value.
189 /// This may be more efficient than performing allocation and initialization
190 /// in separate steps, especially when initializing a vector of zeros:
191 ///
192 /// ```
193 /// let vec = vec![0; 5];
194 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
195 ///
196 /// // The following is equivalent, but potentially slower:
197 /// let mut vec = Vec::with_capacity(5);
198 /// vec.resize(5, 0);
199 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
200 /// ```
201 ///
202 /// For more information, see
203 /// [Capacity and Reallocation](#capacity-and-reallocation).
204 ///
205 /// Use a `Vec<T>` as an efficient stack:
206 ///
207 /// ```
208 /// let mut stack = Vec::new();
209 ///
210 /// stack.push(1);
211 /// stack.push(2);
212 /// stack.push(3);
213 ///
214 /// while let Some(top) = stack.pop() {
215 ///     // Prints 3, 2, 1
216 ///     println!("{top}");
217 /// }
218 /// ```
219 ///
220 /// # Indexing
221 ///
222 /// The `Vec` type allows to access values by index, because it implements the
223 /// [`Index`] trait. An example will be more explicit:
224 ///
225 /// ```
226 /// let v = vec![0, 2, 4, 6];
227 /// println!("{}", v[1]); // it will display '2'
228 /// ```
229 ///
230 /// However be careful: if you try to access an index which isn't in the `Vec`,
231 /// your software will panic! You cannot do this:
232 ///
233 /// ```should_panic
234 /// let v = vec![0, 2, 4, 6];
235 /// println!("{}", v[6]); // it will panic!
236 /// ```
237 ///
238 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
239 /// the `Vec`.
240 ///
241 /// # Slicing
242 ///
243 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
244 /// To get a [slice][prim@slice], use [`&`]. Example:
245 ///
246 /// ```
247 /// fn read_slice(slice: &[usize]) {
248 ///     // ...
249 /// }
250 ///
251 /// let v = vec![0, 1];
252 /// read_slice(&v);
253 ///
254 /// // ... and that's all!
255 /// // you can also do it like this:
256 /// let u: &[usize] = &v;
257 /// // or like this:
258 /// let u: &[_] = &v;
259 /// ```
260 ///
261 /// In Rust, it's more common to pass slices as arguments rather than vectors
262 /// when you just want to provide read access. The same goes for [`String`] and
263 /// [`&str`].
264 ///
265 /// # Capacity and reallocation
266 ///
267 /// The capacity of a vector is the amount of space allocated for any future
268 /// elements that will be added onto the vector. This is not to be confused with
269 /// the *length* of a vector, which specifies the number of actual elements
270 /// within the vector. If a vector's length exceeds its capacity, its capacity
271 /// will automatically be increased, but its elements will have to be
272 /// reallocated.
273 ///
274 /// For example, a vector with capacity 10 and length 0 would be an empty vector
275 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
276 /// vector will not change its capacity or cause reallocation to occur. However,
277 /// if the vector's length is increased to 11, it will have to reallocate, which
278 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
279 /// whenever possible to specify how big the vector is expected to get.
280 ///
281 /// # Guarantees
282 ///
283 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
284 /// about its design. This ensures that it's as low-overhead as possible in
285 /// the general case, and can be correctly manipulated in primitive ways
286 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
287 /// If additional type parameters are added (e.g., to support custom allocators),
288 /// overriding their defaults may change the behavior.
289 ///
290 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
291 /// triplet. No more, no less. The order of these fields is completely
292 /// unspecified, and you should use the appropriate methods to modify these.
293 /// The pointer will never be null, so this type is null-pointer-optimized.
294 ///
295 /// However, the pointer might not actually point to allocated memory. In particular,
296 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
297 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
298 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
299 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
300 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
301 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
302 /// details are very subtle --- if you intend to allocate memory using a `Vec`
303 /// and use it for something else (either to pass to unsafe code, or to build your
304 /// own memory-backed collection), be sure to deallocate this memory by using
305 /// `from_raw_parts` to recover the `Vec` and then dropping it.
306 ///
307 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
308 /// (as defined by the allocator Rust is configured to use by default), and its
309 /// pointer points to [`len`] initialized, contiguous elements in order (what
310 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
311 /// logically uninitialized, contiguous elements.
312 ///
313 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
314 /// visualized as below. The top part is the `Vec` struct, it contains a
315 /// pointer to the head of the allocation in the heap, length and capacity.
316 /// The bottom part is the allocation on the heap, a contiguous memory block.
317 ///
318 /// ```text
319 ///             ptr      len  capacity
320 ///        +--------+--------+--------+
321 ///        | 0x0123 |      2 |      4 |
322 ///        +--------+--------+--------+
323 ///             |
324 ///             v
325 /// Heap   +--------+--------+--------+--------+
326 ///        |    'a' |    'b' | uninit | uninit |
327 ///        +--------+--------+--------+--------+
328 /// ```
329 ///
330 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
331 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
332 ///   layout (including the order of fields).
333 ///
334 /// `Vec` will never perform a "small optimization" where elements are actually
335 /// stored on the stack for two reasons:
336 ///
337 /// * It would make it more difficult for unsafe code to correctly manipulate
338 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
339 ///   only moved, and it would be more difficult to determine if a `Vec` had
340 ///   actually allocated memory.
341 ///
342 /// * It would penalize the general case, incurring an additional branch
343 ///   on every access.
344 ///
345 /// `Vec` will never automatically shrink itself, even if completely empty. This
346 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
347 /// and then filling it back up to the same [`len`] should incur no calls to
348 /// the allocator. If you wish to free up unused memory, use
349 /// [`shrink_to_fit`] or [`shrink_to`].
350 ///
351 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
352 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
353 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
354 /// accurate, and can be relied on. It can even be used to manually free the memory
355 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
356 /// when not necessary.
357 ///
358 /// `Vec` does not guarantee any particular growth strategy when reallocating
359 /// when full, nor when [`reserve`] is called. The current strategy is basic
360 /// and it may prove desirable to use a non-constant growth factor. Whatever
361 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
362 ///
363 /// `vec![x; n]`, `vec![a, b, c, d]`, and
364 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
365 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
366 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
367 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
368 ///
369 /// `Vec` will not specifically overwrite any data that is removed from it,
370 /// but also won't specifically preserve it. Its uninitialized memory is
371 /// scratch space that it may use however it wants. It will generally just do
372 /// whatever is most efficient or otherwise easy to implement. Do not rely on
373 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
374 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
375 /// first, that might not actually happen because the optimizer does not consider
376 /// this a side-effect that must be preserved. There is one case which we will
377 /// not break, however: using `unsafe` code to write to the excess capacity,
378 /// and then increasing the length to match, is always valid.
379 ///
380 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
381 /// The order has changed in the past and may change again.
382 ///
383 /// [`get`]: ../../std/vec/struct.Vec.html#method.get
384 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
385 /// [`String`]: crate::string::String
386 /// [`&str`]: type@str
387 /// [`shrink_to_fit`]: Vec::shrink_to_fit
388 /// [`shrink_to`]: Vec::shrink_to
389 /// [capacity]: Vec::capacity
390 /// [`capacity`]: Vec::capacity
391 /// [mem::size_of::\<T>]: core::mem::size_of
392 /// [len]: Vec::len
393 /// [`len`]: Vec::len
394 /// [`push`]: Vec::push
395 /// [`insert`]: Vec::insert
396 /// [`reserve`]: Vec::reserve
397 /// [`MaybeUninit`]: core::mem::MaybeUninit
398 /// [owned slice]: Box
399 #[stable(feature = "rust1", since = "1.0.0")]
400 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
401 #[rustc_insignificant_dtor]
402 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
403     buf: RawVec<T, A>,
404     len: usize,
405 }
406 
407 ////////////////////////////////////////////////////////////////////////////////
408 // Inherent methods
409 ////////////////////////////////////////////////////////////////////////////////
410 
411 impl<T> Vec<T> {
412     /// Constructs a new, empty `Vec<T>`.
413     ///
414     /// The vector will not allocate until elements are pushed onto it.
415     ///
416     /// # Examples
417     ///
418     /// ```
419     /// # #![allow(unused_mut)]
420     /// let mut vec: Vec<i32> = Vec::new();
421     /// ```
422     #[inline]
423     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
424     #[stable(feature = "rust1", since = "1.0.0")]
425     #[must_use]
426     pub const fn new() -> Self {
427         Vec { buf: RawVec::NEW, len: 0 }
428     }
429 
430     /// Constructs a new, empty `Vec<T>` with the specified capacity.
431     ///
432     /// The vector will be able to hold exactly `capacity` elements without
433     /// reallocating. If `capacity` is 0, the vector will not allocate.
434     ///
435     /// It is important to note that although the returned vector has the
436     /// *capacity* specified, the vector will have a zero *length*. For an
437     /// explanation of the difference between length and capacity, see
438     /// *[Capacity and reallocation]*.
439     ///
440     /// [Capacity and reallocation]: #capacity-and-reallocation
441     ///
442     /// # Panics
443     ///
444     /// Panics if the new capacity exceeds `isize::MAX` bytes.
445     ///
446     /// # Examples
447     ///
448     /// ```
449     /// let mut vec = Vec::with_capacity(10);
450     ///
451     /// // The vector contains no items, even though it has capacity for more
452     /// assert_eq!(vec.len(), 0);
453     /// assert_eq!(vec.capacity(), 10);
454     ///
455     /// // These are all done without reallocating...
456     /// for i in 0..10 {
457     ///     vec.push(i);
458     /// }
459     /// assert_eq!(vec.len(), 10);
460     /// assert_eq!(vec.capacity(), 10);
461     ///
462     /// // ...but this may make the vector reallocate
463     /// vec.push(11);
464     /// assert_eq!(vec.len(), 11);
465     /// assert!(vec.capacity() >= 11);
466     /// ```
467     #[cfg(not(no_global_oom_handling))]
468     #[inline]
469     #[stable(feature = "rust1", since = "1.0.0")]
470     #[must_use]
471     pub fn with_capacity(capacity: usize) -> Self {
472         Self::with_capacity_in(capacity, Global)
473     }
474 
475     /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
476     ///
477     /// The vector will be able to hold exactly `capacity` elements without
478     /// reallocating. If `capacity` is 0, the vector will not allocate.
479     ///
480     /// It is important to note that although the returned vector has the
481     /// *capacity* specified, the vector will have a zero *length*. For an
482     /// explanation of the difference between length and capacity, see
483     /// *[Capacity and reallocation]*.
484     ///
485     /// [Capacity and reallocation]: #capacity-and-reallocation
486     ///
487     /// # Examples
488     ///
489     /// ```
490     /// let mut vec = Vec::try_with_capacity(10).unwrap();
491     ///
492     /// // The vector contains no items, even though it has capacity for more
493     /// assert_eq!(vec.len(), 0);
494     /// assert_eq!(vec.capacity(), 10);
495     ///
496     /// // These are all done without reallocating...
497     /// for i in 0..10 {
498     ///     vec.push(i);
499     /// }
500     /// assert_eq!(vec.len(), 10);
501     /// assert_eq!(vec.capacity(), 10);
502     ///
503     /// // ...but this may make the vector reallocate
504     /// vec.push(11);
505     /// assert_eq!(vec.len(), 11);
506     /// assert!(vec.capacity() >= 11);
507     ///
508     /// let mut result = Vec::try_with_capacity(usize::MAX);
509     /// assert!(result.is_err());
510     /// ```
511     #[inline]
512     #[stable(feature = "kernel", since = "1.0.0")]
513     pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
514         Self::try_with_capacity_in(capacity, Global)
515     }
516 
517     /// Creates a `Vec<T>` directly from the raw components of another vector.
518     ///
519     /// # Safety
520     ///
521     /// This is highly unsafe, due to the number of invariants that aren't
522     /// checked:
523     ///
524     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
525     ///   (at least, it's highly likely to be incorrect if it wasn't).
526     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
527     ///   (`T` having a less strict alignment is not sufficient, the alignment really
528     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
529     ///   allocated and deallocated with the same layout.)
530     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
531     ///   to be the same size as the pointer was allocated with. (Because similar to
532     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
533     /// * `length` needs to be less than or equal to `capacity`.
534     ///
535     /// Violating these may cause problems like corrupting the allocator's
536     /// internal data structures. For example it is normally **not** safe
537     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
538     /// `size_t`, doing so is only safe if the array was initially allocated by
539     /// a `Vec` or `String`.
540     /// It's also not safe to build one from a `Vec<u16>` and its length, because
541     /// the allocator cares about the alignment, and these two types have different
542     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
543     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
544     /// these issues, it is often preferable to do casting/transmuting using
545     /// [`slice::from_raw_parts`] instead.
546     ///
547     /// The ownership of `ptr` is effectively transferred to the
548     /// `Vec<T>` which may then deallocate, reallocate or change the
549     /// contents of memory pointed to by the pointer at will. Ensure
550     /// that nothing else uses the pointer after calling this
551     /// function.
552     ///
553     /// [`String`]: crate::string::String
554     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
555     ///
556     /// # Examples
557     ///
558     /// ```
559     /// use std::ptr;
560     /// use std::mem;
561     ///
562     /// let v = vec![1, 2, 3];
563     ///
564     // FIXME Update this when vec_into_raw_parts is stabilized
565     /// // Prevent running `v`'s destructor so we are in complete control
566     /// // of the allocation.
567     /// let mut v = mem::ManuallyDrop::new(v);
568     ///
569     /// // Pull out the various important pieces of information about `v`
570     /// let p = v.as_mut_ptr();
571     /// let len = v.len();
572     /// let cap = v.capacity();
573     ///
574     /// unsafe {
575     ///     // Overwrite memory with 4, 5, 6
576     ///     for i in 0..len as isize {
577     ///         ptr::write(p.offset(i), 4 + i);
578     ///     }
579     ///
580     ///     // Put everything back together into a Vec
581     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
582     ///     assert_eq!(rebuilt, [4, 5, 6]);
583     /// }
584     /// ```
585     #[inline]
586     #[stable(feature = "rust1", since = "1.0.0")]
587     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
588         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
589     }
590 }
591 
592 impl<T, A: Allocator> Vec<T, A> {
593     /// Constructs a new, empty `Vec<T, A>`.
594     ///
595     /// The vector will not allocate until elements are pushed onto it.
596     ///
597     /// # Examples
598     ///
599     /// ```
600     /// #![feature(allocator_api)]
601     ///
602     /// use std::alloc::System;
603     ///
604     /// # #[allow(unused_mut)]
605     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
606     /// ```
607     #[inline]
608     #[unstable(feature = "allocator_api", issue = "32838")]
609     pub const fn new_in(alloc: A) -> Self {
610         Vec { buf: RawVec::new_in(alloc), len: 0 }
611     }
612 
613     /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
614     /// allocator.
615     ///
616     /// The vector will be able to hold exactly `capacity` elements without
617     /// reallocating. If `capacity` is 0, the vector will not allocate.
618     ///
619     /// It is important to note that although the returned vector has the
620     /// *capacity* specified, the vector will have a zero *length*. For an
621     /// explanation of the difference between length and capacity, see
622     /// *[Capacity and reallocation]*.
623     ///
624     /// [Capacity and reallocation]: #capacity-and-reallocation
625     ///
626     /// # Panics
627     ///
628     /// Panics if the new capacity exceeds `isize::MAX` bytes.
629     ///
630     /// # Examples
631     ///
632     /// ```
633     /// #![feature(allocator_api)]
634     ///
635     /// use std::alloc::System;
636     ///
637     /// let mut vec = Vec::with_capacity_in(10, System);
638     ///
639     /// // The vector contains no items, even though it has capacity for more
640     /// assert_eq!(vec.len(), 0);
641     /// assert_eq!(vec.capacity(), 10);
642     ///
643     /// // These are all done without reallocating...
644     /// for i in 0..10 {
645     ///     vec.push(i);
646     /// }
647     /// assert_eq!(vec.len(), 10);
648     /// assert_eq!(vec.capacity(), 10);
649     ///
650     /// // ...but this may make the vector reallocate
651     /// vec.push(11);
652     /// assert_eq!(vec.len(), 11);
653     /// assert!(vec.capacity() >= 11);
654     /// ```
655     #[cfg(not(no_global_oom_handling))]
656     #[inline]
657     #[unstable(feature = "allocator_api", issue = "32838")]
658     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
659         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
660     }
661 
662     /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
663     /// with the provided allocator.
664     ///
665     /// The vector will be able to hold exactly `capacity` elements without
666     /// reallocating. If `capacity` is 0, the vector will not allocate.
667     ///
668     /// It is important to note that although the returned vector has the
669     /// *capacity* specified, the vector will have a zero *length*. For an
670     /// explanation of the difference between length and capacity, see
671     /// *[Capacity and reallocation]*.
672     ///
673     /// [Capacity and reallocation]: #capacity-and-reallocation
674     ///
675     /// # Examples
676     ///
677     /// ```
678     /// #![feature(allocator_api)]
679     ///
680     /// use std::alloc::System;
681     ///
682     /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
683     ///
684     /// // The vector contains no items, even though it has capacity for more
685     /// assert_eq!(vec.len(), 0);
686     /// assert_eq!(vec.capacity(), 10);
687     ///
688     /// // These are all done without reallocating...
689     /// for i in 0..10 {
690     ///     vec.push(i);
691     /// }
692     /// assert_eq!(vec.len(), 10);
693     /// assert_eq!(vec.capacity(), 10);
694     ///
695     /// // ...but this may make the vector reallocate
696     /// vec.push(11);
697     /// assert_eq!(vec.len(), 11);
698     /// assert!(vec.capacity() >= 11);
699     ///
700     /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
701     /// assert!(result.is_err());
702     /// ```
703     #[inline]
704     #[stable(feature = "kernel", since = "1.0.0")]
705     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
706         Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
707     }
708 
709     /// Creates a `Vec<T, A>` directly from the raw components of another vector.
710     ///
711     /// # Safety
712     ///
713     /// This is highly unsafe, due to the number of invariants that aren't
714     /// checked:
715     ///
716     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
717     ///   (at least, it's highly likely to be incorrect if it wasn't).
718     /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
719     ///   (`T` having a less strict alignment is not sufficient, the alignment really
720     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
721     ///   allocated and deallocated with the same layout.)
722     /// * `length` needs to be less than or equal to `capacity`.
723     /// * `capacity` needs to be the capacity that the pointer was allocated with.
724     ///
725     /// Violating these may cause problems like corrupting the allocator's
726     /// internal data structures. For example it is **not** safe
727     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
728     /// It's also not safe to build one from a `Vec<u16>` and its length, because
729     /// the allocator cares about the alignment, and these two types have different
730     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
731     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
732     ///
733     /// The ownership of `ptr` is effectively transferred to the
734     /// `Vec<T>` which may then deallocate, reallocate or change the
735     /// contents of memory pointed to by the pointer at will. Ensure
736     /// that nothing else uses the pointer after calling this
737     /// function.
738     ///
739     /// [`String`]: crate::string::String
740     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
741     ///
742     /// # Examples
743     ///
744     /// ```
745     /// #![feature(allocator_api)]
746     ///
747     /// use std::alloc::System;
748     ///
749     /// use std::ptr;
750     /// use std::mem;
751     ///
752     /// let mut v = Vec::with_capacity_in(3, System);
753     /// v.push(1);
754     /// v.push(2);
755     /// v.push(3);
756     ///
757     // FIXME Update this when vec_into_raw_parts is stabilized
758     /// // Prevent running `v`'s destructor so we are in complete control
759     /// // of the allocation.
760     /// let mut v = mem::ManuallyDrop::new(v);
761     ///
762     /// // Pull out the various important pieces of information about `v`
763     /// let p = v.as_mut_ptr();
764     /// let len = v.len();
765     /// let cap = v.capacity();
766     /// let alloc = v.allocator();
767     ///
768     /// unsafe {
769     ///     // Overwrite memory with 4, 5, 6
770     ///     for i in 0..len as isize {
771     ///         ptr::write(p.offset(i), 4 + i);
772     ///     }
773     ///
774     ///     // Put everything back together into a Vec
775     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
776     ///     assert_eq!(rebuilt, [4, 5, 6]);
777     /// }
778     /// ```
779     #[inline]
780     #[unstable(feature = "allocator_api", issue = "32838")]
781     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
782         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
783     }
784 
785     /// Decomposes a `Vec<T>` into its raw components.
786     ///
787     /// Returns the raw pointer to the underlying data, the length of
788     /// the vector (in elements), and the allocated capacity of the
789     /// data (in elements). These are the same arguments in the same
790     /// order as the arguments to [`from_raw_parts`].
791     ///
792     /// After calling this function, the caller is responsible for the
793     /// memory previously managed by the `Vec`. The only way to do
794     /// this is to convert the raw pointer, length, and capacity back
795     /// into a `Vec` with the [`from_raw_parts`] function, allowing
796     /// the destructor to perform the cleanup.
797     ///
798     /// [`from_raw_parts`]: Vec::from_raw_parts
799     ///
800     /// # Examples
801     ///
802     /// ```
803     /// #![feature(vec_into_raw_parts)]
804     /// let v: Vec<i32> = vec![-1, 0, 1];
805     ///
806     /// let (ptr, len, cap) = v.into_raw_parts();
807     ///
808     /// let rebuilt = unsafe {
809     ///     // We can now make changes to the components, such as
810     ///     // transmuting the raw pointer to a compatible type.
811     ///     let ptr = ptr as *mut u32;
812     ///
813     ///     Vec::from_raw_parts(ptr, len, cap)
814     /// };
815     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
816     /// ```
817     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
818     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
819         let mut me = ManuallyDrop::new(self);
820         (me.as_mut_ptr(), me.len(), me.capacity())
821     }
822 
823     /// Decomposes a `Vec<T>` into its raw components.
824     ///
825     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
826     /// the allocated capacity of the data (in elements), and the allocator. These are the same
827     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
828     ///
829     /// After calling this function, the caller is responsible for the
830     /// memory previously managed by the `Vec`. The only way to do
831     /// this is to convert the raw pointer, length, and capacity back
832     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
833     /// the destructor to perform the cleanup.
834     ///
835     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
836     ///
837     /// # Examples
838     ///
839     /// ```
840     /// #![feature(allocator_api, vec_into_raw_parts)]
841     ///
842     /// use std::alloc::System;
843     ///
844     /// let mut v: Vec<i32, System> = Vec::new_in(System);
845     /// v.push(-1);
846     /// v.push(0);
847     /// v.push(1);
848     ///
849     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
850     ///
851     /// let rebuilt = unsafe {
852     ///     // We can now make changes to the components, such as
853     ///     // transmuting the raw pointer to a compatible type.
854     ///     let ptr = ptr as *mut u32;
855     ///
856     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
857     /// };
858     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
859     /// ```
860     #[unstable(feature = "allocator_api", issue = "32838")]
861     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
862     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
863         let mut me = ManuallyDrop::new(self);
864         let len = me.len();
865         let capacity = me.capacity();
866         let ptr = me.as_mut_ptr();
867         let alloc = unsafe { ptr::read(me.allocator()) };
868         (ptr, len, capacity, alloc)
869     }
870 
871     /// Returns the number of elements the vector can hold without
872     /// reallocating.
873     ///
874     /// # Examples
875     ///
876     /// ```
877     /// let vec: Vec<i32> = Vec::with_capacity(10);
878     /// assert_eq!(vec.capacity(), 10);
879     /// ```
880     #[inline]
881     #[stable(feature = "rust1", since = "1.0.0")]
882     pub fn capacity(&self) -> usize {
883         self.buf.capacity()
884     }
885 
886     /// Reserves capacity for at least `additional` more elements to be inserted
887     /// in the given `Vec<T>`. The collection may reserve more space to avoid
888     /// frequent reallocations. After calling `reserve`, capacity will be
889     /// greater than or equal to `self.len() + additional`. Does nothing if
890     /// capacity is already sufficient.
891     ///
892     /// # Panics
893     ///
894     /// Panics if the new capacity exceeds `isize::MAX` bytes.
895     ///
896     /// # Examples
897     ///
898     /// ```
899     /// let mut vec = vec![1];
900     /// vec.reserve(10);
901     /// assert!(vec.capacity() >= 11);
902     /// ```
903     #[cfg(not(no_global_oom_handling))]
904     #[stable(feature = "rust1", since = "1.0.0")]
905     pub fn reserve(&mut self, additional: usize) {
906         self.buf.reserve(self.len, additional);
907     }
908 
909     /// Reserves the minimum capacity for exactly `additional` more elements to
910     /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
911     /// capacity will be greater than or equal to `self.len() + additional`.
912     /// Does nothing if the capacity is already sufficient.
913     ///
914     /// Note that the allocator may give the collection more space than it
915     /// requests. Therefore, capacity can not be relied upon to be precisely
916     /// minimal. Prefer [`reserve`] if future insertions are expected.
917     ///
918     /// [`reserve`]: Vec::reserve
919     ///
920     /// # Panics
921     ///
922     /// Panics if the new capacity exceeds `isize::MAX` bytes.
923     ///
924     /// # Examples
925     ///
926     /// ```
927     /// let mut vec = vec![1];
928     /// vec.reserve_exact(10);
929     /// assert!(vec.capacity() >= 11);
930     /// ```
931     #[cfg(not(no_global_oom_handling))]
932     #[stable(feature = "rust1", since = "1.0.0")]
933     pub fn reserve_exact(&mut self, additional: usize) {
934         self.buf.reserve_exact(self.len, additional);
935     }
936 
937     /// Tries to reserve capacity for at least `additional` more elements to be inserted
938     /// in the given `Vec<T>`. The collection may reserve more space to avoid
939     /// frequent reallocations. After calling `try_reserve`, capacity will be
940     /// greater than or equal to `self.len() + additional`. Does nothing if
941     /// capacity is already sufficient.
942     ///
943     /// # Errors
944     ///
945     /// If the capacity overflows, or the allocator reports a failure, then an error
946     /// is returned.
947     ///
948     /// # Examples
949     ///
950     /// ```
951     /// use std::collections::TryReserveError;
952     ///
953     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
954     ///     let mut output = Vec::new();
955     ///
956     ///     // Pre-reserve the memory, exiting if we can't
957     ///     output.try_reserve(data.len())?;
958     ///
959     ///     // Now we know this can't OOM in the middle of our complex work
960     ///     output.extend(data.iter().map(|&val| {
961     ///         val * 2 + 5 // very complicated
962     ///     }));
963     ///
964     ///     Ok(output)
965     /// }
966     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
967     /// ```
968     #[stable(feature = "try_reserve", since = "1.57.0")]
969     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
970         self.buf.try_reserve(self.len, additional)
971     }
972 
973     /// Tries to reserve the minimum capacity for exactly `additional`
974     /// elements to be inserted in the given `Vec<T>`. After calling
975     /// `try_reserve_exact`, capacity will be greater than or equal to
976     /// `self.len() + additional` if it returns `Ok(())`.
977     /// Does nothing if the capacity is already sufficient.
978     ///
979     /// Note that the allocator may give the collection more space than it
980     /// requests. Therefore, capacity can not be relied upon to be precisely
981     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
982     ///
983     /// [`try_reserve`]: Vec::try_reserve
984     ///
985     /// # Errors
986     ///
987     /// If the capacity overflows, or the allocator reports a failure, then an error
988     /// is returned.
989     ///
990     /// # Examples
991     ///
992     /// ```
993     /// use std::collections::TryReserveError;
994     ///
995     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
996     ///     let mut output = Vec::new();
997     ///
998     ///     // Pre-reserve the memory, exiting if we can't
999     ///     output.try_reserve_exact(data.len())?;
1000     ///
1001     ///     // Now we know this can't OOM in the middle of our complex work
1002     ///     output.extend(data.iter().map(|&val| {
1003     ///         val * 2 + 5 // very complicated
1004     ///     }));
1005     ///
1006     ///     Ok(output)
1007     /// }
1008     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1009     /// ```
1010     #[stable(feature = "try_reserve", since = "1.57.0")]
1011     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1012         self.buf.try_reserve_exact(self.len, additional)
1013     }
1014 
1015     /// Shrinks the capacity of the vector as much as possible.
1016     ///
1017     /// It will drop down as close as possible to the length but the allocator
1018     /// may still inform the vector that there is space for a few more elements.
1019     ///
1020     /// # Examples
1021     ///
1022     /// ```
1023     /// let mut vec = Vec::with_capacity(10);
1024     /// vec.extend([1, 2, 3]);
1025     /// assert_eq!(vec.capacity(), 10);
1026     /// vec.shrink_to_fit();
1027     /// assert!(vec.capacity() >= 3);
1028     /// ```
1029     #[cfg(not(no_global_oom_handling))]
1030     #[stable(feature = "rust1", since = "1.0.0")]
1031     pub fn shrink_to_fit(&mut self) {
1032         // The capacity is never less than the length, and there's nothing to do when
1033         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1034         // by only calling it with a greater capacity.
1035         if self.capacity() > self.len {
1036             self.buf.shrink_to_fit(self.len);
1037         }
1038     }
1039 
1040     /// Shrinks the capacity of the vector with a lower bound.
1041     ///
1042     /// The capacity will remain at least as large as both the length
1043     /// and the supplied value.
1044     ///
1045     /// If the current capacity is less than the lower limit, this is a no-op.
1046     ///
1047     /// # Examples
1048     ///
1049     /// ```
1050     /// let mut vec = Vec::with_capacity(10);
1051     /// vec.extend([1, 2, 3]);
1052     /// assert_eq!(vec.capacity(), 10);
1053     /// vec.shrink_to(4);
1054     /// assert!(vec.capacity() >= 4);
1055     /// vec.shrink_to(0);
1056     /// assert!(vec.capacity() >= 3);
1057     /// ```
1058     #[cfg(not(no_global_oom_handling))]
1059     #[stable(feature = "shrink_to", since = "1.56.0")]
1060     pub fn shrink_to(&mut self, min_capacity: usize) {
1061         if self.capacity() > min_capacity {
1062             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1063         }
1064     }
1065 
1066     /// Converts the vector into [`Box<[T]>`][owned slice].
1067     ///
1068     /// Note that this will drop any excess capacity.
1069     ///
1070     /// [owned slice]: Box
1071     ///
1072     /// # Examples
1073     ///
1074     /// ```
1075     /// let v = vec![1, 2, 3];
1076     ///
1077     /// let slice = v.into_boxed_slice();
1078     /// ```
1079     ///
1080     /// Any excess capacity is removed:
1081     ///
1082     /// ```
1083     /// let mut vec = Vec::with_capacity(10);
1084     /// vec.extend([1, 2, 3]);
1085     ///
1086     /// assert_eq!(vec.capacity(), 10);
1087     /// let slice = vec.into_boxed_slice();
1088     /// assert_eq!(slice.into_vec().capacity(), 3);
1089     /// ```
1090     #[cfg(not(no_global_oom_handling))]
1091     #[stable(feature = "rust1", since = "1.0.0")]
1092     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1093         unsafe {
1094             self.shrink_to_fit();
1095             let me = ManuallyDrop::new(self);
1096             let buf = ptr::read(&me.buf);
1097             let len = me.len();
1098             buf.into_box(len).assume_init()
1099         }
1100     }
1101 
1102     /// Shortens the vector, keeping the first `len` elements and dropping
1103     /// the rest.
1104     ///
1105     /// If `len` is greater than the vector's current length, this has no
1106     /// effect.
1107     ///
1108     /// The [`drain`] method can emulate `truncate`, but causes the excess
1109     /// elements to be returned instead of dropped.
1110     ///
1111     /// Note that this method has no effect on the allocated capacity
1112     /// of the vector.
1113     ///
1114     /// # Examples
1115     ///
1116     /// Truncating a five element vector to two elements:
1117     ///
1118     /// ```
1119     /// let mut vec = vec![1, 2, 3, 4, 5];
1120     /// vec.truncate(2);
1121     /// assert_eq!(vec, [1, 2]);
1122     /// ```
1123     ///
1124     /// No truncation occurs when `len` is greater than the vector's current
1125     /// length:
1126     ///
1127     /// ```
1128     /// let mut vec = vec![1, 2, 3];
1129     /// vec.truncate(8);
1130     /// assert_eq!(vec, [1, 2, 3]);
1131     /// ```
1132     ///
1133     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1134     /// method.
1135     ///
1136     /// ```
1137     /// let mut vec = vec![1, 2, 3];
1138     /// vec.truncate(0);
1139     /// assert_eq!(vec, []);
1140     /// ```
1141     ///
1142     /// [`clear`]: Vec::clear
1143     /// [`drain`]: Vec::drain
1144     #[stable(feature = "rust1", since = "1.0.0")]
1145     pub fn truncate(&mut self, len: usize) {
1146         // This is safe because:
1147         //
1148         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1149         //   case avoids creating an invalid slice, and
1150         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1151         //   such that no value will be dropped twice in case `drop_in_place`
1152         //   were to panic once (if it panics twice, the program aborts).
1153         unsafe {
1154             // Note: It's intentional that this is `>` and not `>=`.
1155             //       Changing it to `>=` has negative performance
1156             //       implications in some cases. See #78884 for more.
1157             if len > self.len {
1158                 return;
1159             }
1160             let remaining_len = self.len - len;
1161             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1162             self.len = len;
1163             ptr::drop_in_place(s);
1164         }
1165     }
1166 
1167     /// Extracts a slice containing the entire vector.
1168     ///
1169     /// Equivalent to `&s[..]`.
1170     ///
1171     /// # Examples
1172     ///
1173     /// ```
1174     /// use std::io::{self, Write};
1175     /// let buffer = vec![1, 2, 3, 5, 8];
1176     /// io::sink().write(buffer.as_slice()).unwrap();
1177     /// ```
1178     #[inline]
1179     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1180     pub fn as_slice(&self) -> &[T] {
1181         self
1182     }
1183 
1184     /// Extracts a mutable slice of the entire vector.
1185     ///
1186     /// Equivalent to `&mut s[..]`.
1187     ///
1188     /// # Examples
1189     ///
1190     /// ```
1191     /// use std::io::{self, Read};
1192     /// let mut buffer = vec![0; 3];
1193     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1194     /// ```
1195     #[inline]
1196     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1197     pub fn as_mut_slice(&mut self) -> &mut [T] {
1198         self
1199     }
1200 
1201     /// Returns a raw pointer to the vector's buffer.
1202     ///
1203     /// The caller must ensure that the vector outlives the pointer this
1204     /// function returns, or else it will end up pointing to garbage.
1205     /// Modifying the vector may cause its buffer to be reallocated,
1206     /// which would also make any pointers to it invalid.
1207     ///
1208     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1209     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1210     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1211     ///
1212     /// # Examples
1213     ///
1214     /// ```
1215     /// let x = vec![1, 2, 4];
1216     /// let x_ptr = x.as_ptr();
1217     ///
1218     /// unsafe {
1219     ///     for i in 0..x.len() {
1220     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1221     ///     }
1222     /// }
1223     /// ```
1224     ///
1225     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1226     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1227     #[inline]
1228     pub fn as_ptr(&self) -> *const T {
1229         // We shadow the slice method of the same name to avoid going through
1230         // `deref`, which creates an intermediate reference.
1231         let ptr = self.buf.ptr();
1232         unsafe {
1233             assume(!ptr.is_null());
1234         }
1235         ptr
1236     }
1237 
1238     /// Returns an unsafe mutable pointer to the vector's buffer.
1239     ///
1240     /// The caller must ensure that the vector outlives the pointer this
1241     /// function returns, or else it will end up pointing to garbage.
1242     /// Modifying the vector may cause its buffer to be reallocated,
1243     /// which would also make any pointers to it invalid.
1244     ///
1245     /// # Examples
1246     ///
1247     /// ```
1248     /// // Allocate vector big enough for 4 elements.
1249     /// let size = 4;
1250     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1251     /// let x_ptr = x.as_mut_ptr();
1252     ///
1253     /// // Initialize elements via raw pointer writes, then set length.
1254     /// unsafe {
1255     ///     for i in 0..size {
1256     ///         *x_ptr.add(i) = i as i32;
1257     ///     }
1258     ///     x.set_len(size);
1259     /// }
1260     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1261     /// ```
1262     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1263     #[inline]
1264     pub fn as_mut_ptr(&mut self) -> *mut T {
1265         // We shadow the slice method of the same name to avoid going through
1266         // `deref_mut`, which creates an intermediate reference.
1267         let ptr = self.buf.ptr();
1268         unsafe {
1269             assume(!ptr.is_null());
1270         }
1271         ptr
1272     }
1273 
1274     /// Returns a reference to the underlying allocator.
1275     #[unstable(feature = "allocator_api", issue = "32838")]
1276     #[inline]
1277     pub fn allocator(&self) -> &A {
1278         self.buf.allocator()
1279     }
1280 
1281     /// Forces the length of the vector to `new_len`.
1282     ///
1283     /// This is a low-level operation that maintains none of the normal
1284     /// invariants of the type. Normally changing the length of a vector
1285     /// is done using one of the safe operations instead, such as
1286     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1287     ///
1288     /// [`truncate`]: Vec::truncate
1289     /// [`resize`]: Vec::resize
1290     /// [`extend`]: Extend::extend
1291     /// [`clear`]: Vec::clear
1292     ///
1293     /// # Safety
1294     ///
1295     /// - `new_len` must be less than or equal to [`capacity()`].
1296     /// - The elements at `old_len..new_len` must be initialized.
1297     ///
1298     /// [`capacity()`]: Vec::capacity
1299     ///
1300     /// # Examples
1301     ///
1302     /// This method can be useful for situations in which the vector
1303     /// is serving as a buffer for other code, particularly over FFI:
1304     ///
1305     /// ```no_run
1306     /// # #![allow(dead_code)]
1307     /// # // This is just a minimal skeleton for the doc example;
1308     /// # // don't use this as a starting point for a real library.
1309     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1310     /// # const Z_OK: i32 = 0;
1311     /// # extern "C" {
1312     /// #     fn deflateGetDictionary(
1313     /// #         strm: *mut std::ffi::c_void,
1314     /// #         dictionary: *mut u8,
1315     /// #         dictLength: *mut usize,
1316     /// #     ) -> i32;
1317     /// # }
1318     /// # impl StreamWrapper {
1319     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1320     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1321     ///     let mut dict = Vec::with_capacity(32_768);
1322     ///     let mut dict_length = 0;
1323     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1324     ///     // 1. `dict_length` elements were initialized.
1325     ///     // 2. `dict_length` <= the capacity (32_768)
1326     ///     // which makes `set_len` safe to call.
1327     ///     unsafe {
1328     ///         // Make the FFI call...
1329     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1330     ///         if r == Z_OK {
1331     ///             // ...and update the length to what was initialized.
1332     ///             dict.set_len(dict_length);
1333     ///             Some(dict)
1334     ///         } else {
1335     ///             None
1336     ///         }
1337     ///     }
1338     /// }
1339     /// # }
1340     /// ```
1341     ///
1342     /// While the following example is sound, there is a memory leak since
1343     /// the inner vectors were not freed prior to the `set_len` call:
1344     ///
1345     /// ```
1346     /// let mut vec = vec![vec![1, 0, 0],
1347     ///                    vec![0, 1, 0],
1348     ///                    vec![0, 0, 1]];
1349     /// // SAFETY:
1350     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1351     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1352     /// unsafe {
1353     ///     vec.set_len(0);
1354     /// }
1355     /// ```
1356     ///
1357     /// Normally, here, one would use [`clear`] instead to correctly drop
1358     /// the contents and thus not leak memory.
1359     #[inline]
1360     #[stable(feature = "rust1", since = "1.0.0")]
1361     pub unsafe fn set_len(&mut self, new_len: usize) {
1362         debug_assert!(new_len <= self.capacity());
1363 
1364         self.len = new_len;
1365     }
1366 
1367     /// Removes an element from the vector and returns it.
1368     ///
1369     /// The removed element is replaced by the last element of the vector.
1370     ///
1371     /// This does not preserve ordering, but is *O*(1).
1372     /// If you need to preserve the element order, use [`remove`] instead.
1373     ///
1374     /// [`remove`]: Vec::remove
1375     ///
1376     /// # Panics
1377     ///
1378     /// Panics if `index` is out of bounds.
1379     ///
1380     /// # Examples
1381     ///
1382     /// ```
1383     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1384     ///
1385     /// assert_eq!(v.swap_remove(1), "bar");
1386     /// assert_eq!(v, ["foo", "qux", "baz"]);
1387     ///
1388     /// assert_eq!(v.swap_remove(0), "foo");
1389     /// assert_eq!(v, ["baz", "qux"]);
1390     /// ```
1391     #[inline]
1392     #[stable(feature = "rust1", since = "1.0.0")]
1393     pub fn swap_remove(&mut self, index: usize) -> T {
1394         #[cold]
1395         #[inline(never)]
1396         fn assert_failed(index: usize, len: usize) -> ! {
1397             panic!("swap_remove index (is {index}) should be < len (is {len})");
1398         }
1399 
1400         let len = self.len();
1401         if index >= len {
1402             assert_failed(index, len);
1403         }
1404         unsafe {
1405             // We replace self[index] with the last element. Note that if the
1406             // bounds check above succeeds there must be a last element (which
1407             // can be self[index] itself).
1408             let value = ptr::read(self.as_ptr().add(index));
1409             let base_ptr = self.as_mut_ptr();
1410             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1411             self.set_len(len - 1);
1412             value
1413         }
1414     }
1415 
1416     /// Inserts an element at position `index` within the vector, shifting all
1417     /// elements after it to the right.
1418     ///
1419     /// # Panics
1420     ///
1421     /// Panics if `index > len`.
1422     ///
1423     /// # Examples
1424     ///
1425     /// ```
1426     /// let mut vec = vec![1, 2, 3];
1427     /// vec.insert(1, 4);
1428     /// assert_eq!(vec, [1, 4, 2, 3]);
1429     /// vec.insert(4, 5);
1430     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1431     /// ```
1432     #[cfg(not(no_global_oom_handling))]
1433     #[stable(feature = "rust1", since = "1.0.0")]
1434     pub fn insert(&mut self, index: usize, element: T) {
1435         #[cold]
1436         #[inline(never)]
1437         fn assert_failed(index: usize, len: usize) -> ! {
1438             panic!("insertion index (is {index}) should be <= len (is {len})");
1439         }
1440 
1441         let len = self.len();
1442         if index > len {
1443             assert_failed(index, len);
1444         }
1445 
1446         // space for the new element
1447         if len == self.buf.capacity() {
1448             self.reserve(1);
1449         }
1450 
1451         unsafe {
1452             // infallible
1453             // The spot to put the new value
1454             {
1455                 let p = self.as_mut_ptr().add(index);
1456                 // Shift everything over to make space. (Duplicating the
1457                 // `index`th element into two consecutive places.)
1458                 ptr::copy(p, p.offset(1), len - index);
1459                 // Write it in, overwriting the first copy of the `index`th
1460                 // element.
1461                 ptr::write(p, element);
1462             }
1463             self.set_len(len + 1);
1464         }
1465     }
1466 
1467     /// Removes and returns the element at position `index` within the vector,
1468     /// shifting all elements after it to the left.
1469     ///
1470     /// Note: Because this shifts over the remaining elements, it has a
1471     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1472     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1473     /// elements from the beginning of the `Vec`, consider using
1474     /// [`VecDeque::pop_front`] instead.
1475     ///
1476     /// [`swap_remove`]: Vec::swap_remove
1477     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1478     ///
1479     /// # Panics
1480     ///
1481     /// Panics if `index` is out of bounds.
1482     ///
1483     /// # Examples
1484     ///
1485     /// ```
1486     /// let mut v = vec![1, 2, 3];
1487     /// assert_eq!(v.remove(1), 2);
1488     /// assert_eq!(v, [1, 3]);
1489     /// ```
1490     #[stable(feature = "rust1", since = "1.0.0")]
1491     #[track_caller]
1492     pub fn remove(&mut self, index: usize) -> T {
1493         #[cold]
1494         #[inline(never)]
1495         #[track_caller]
1496         fn assert_failed(index: usize, len: usize) -> ! {
1497             panic!("removal index (is {index}) should be < len (is {len})");
1498         }
1499 
1500         let len = self.len();
1501         if index >= len {
1502             assert_failed(index, len);
1503         }
1504         unsafe {
1505             // infallible
1506             let ret;
1507             {
1508                 // the place we are taking from.
1509                 let ptr = self.as_mut_ptr().add(index);
1510                 // copy it out, unsafely having a copy of the value on
1511                 // the stack and in the vector at the same time.
1512                 ret = ptr::read(ptr);
1513 
1514                 // Shift everything down to fill in that spot.
1515                 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1516             }
1517             self.set_len(len - 1);
1518             ret
1519         }
1520     }
1521 
1522     /// Retains only the elements specified by the predicate.
1523     ///
1524     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1525     /// This method operates in place, visiting each element exactly once in the
1526     /// original order, and preserves the order of the retained elements.
1527     ///
1528     /// # Examples
1529     ///
1530     /// ```
1531     /// let mut vec = vec![1, 2, 3, 4];
1532     /// vec.retain(|&x| x % 2 == 0);
1533     /// assert_eq!(vec, [2, 4]);
1534     /// ```
1535     ///
1536     /// Because the elements are visited exactly once in the original order,
1537     /// external state may be used to decide which elements to keep.
1538     ///
1539     /// ```
1540     /// let mut vec = vec![1, 2, 3, 4, 5];
1541     /// let keep = [false, true, true, false, true];
1542     /// let mut iter = keep.iter();
1543     /// vec.retain(|_| *iter.next().unwrap());
1544     /// assert_eq!(vec, [2, 3, 5]);
1545     /// ```
1546     #[stable(feature = "rust1", since = "1.0.0")]
1547     pub fn retain<F>(&mut self, mut f: F)
1548     where
1549         F: FnMut(&T) -> bool,
1550     {
1551         self.retain_mut(|elem| f(elem));
1552     }
1553 
1554     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1555     ///
1556     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1557     /// This method operates in place, visiting each element exactly once in the
1558     /// original order, and preserves the order of the retained elements.
1559     ///
1560     /// # Examples
1561     ///
1562     /// ```
1563     /// let mut vec = vec![1, 2, 3, 4];
1564     /// vec.retain_mut(|x| if *x > 3 {
1565     ///     false
1566     /// } else {
1567     ///     *x += 1;
1568     ///     true
1569     /// });
1570     /// assert_eq!(vec, [2, 3, 4]);
1571     /// ```
1572     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
1573     pub fn retain_mut<F>(&mut self, mut f: F)
1574     where
1575         F: FnMut(&mut T) -> bool,
1576     {
1577         let original_len = self.len();
1578         // Avoid double drop if the drop guard is not executed,
1579         // since we may make some holes during the process.
1580         unsafe { self.set_len(0) };
1581 
1582         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1583         //      |<-              processed len   ->| ^- next to check
1584         //                  |<-  deleted cnt     ->|
1585         //      |<-              original_len                          ->|
1586         // Kept: Elements which predicate returns true on.
1587         // Hole: Moved or dropped element slot.
1588         // Unchecked: Unchecked valid elements.
1589         //
1590         // This drop guard will be invoked when predicate or `drop` of element panicked.
1591         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1592         // In cases when predicate and `drop` never panick, it will be optimized out.
1593         struct BackshiftOnDrop<'a, T, A: Allocator> {
1594             v: &'a mut Vec<T, A>,
1595             processed_len: usize,
1596             deleted_cnt: usize,
1597             original_len: usize,
1598         }
1599 
1600         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1601             fn drop(&mut self) {
1602                 if self.deleted_cnt > 0 {
1603                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1604                     unsafe {
1605                         ptr::copy(
1606                             self.v.as_ptr().add(self.processed_len),
1607                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1608                             self.original_len - self.processed_len,
1609                         );
1610                     }
1611                 }
1612                 // SAFETY: After filling holes, all items are in contiguous memory.
1613                 unsafe {
1614                     self.v.set_len(self.original_len - self.deleted_cnt);
1615                 }
1616             }
1617         }
1618 
1619         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1620 
1621         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1622             original_len: usize,
1623             f: &mut F,
1624             g: &mut BackshiftOnDrop<'_, T, A>,
1625         ) where
1626             F: FnMut(&mut T) -> bool,
1627         {
1628             while g.processed_len != original_len {
1629                 // SAFETY: Unchecked element must be valid.
1630                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1631                 if !f(cur) {
1632                     // Advance early to avoid double drop if `drop_in_place` panicked.
1633                     g.processed_len += 1;
1634                     g.deleted_cnt += 1;
1635                     // SAFETY: We never touch this element again after dropped.
1636                     unsafe { ptr::drop_in_place(cur) };
1637                     // We already advanced the counter.
1638                     if DELETED {
1639                         continue;
1640                     } else {
1641                         break;
1642                     }
1643                 }
1644                 if DELETED {
1645                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1646                     // We use copy for move, and never touch this element again.
1647                     unsafe {
1648                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1649                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1650                     }
1651                 }
1652                 g.processed_len += 1;
1653             }
1654         }
1655 
1656         // Stage 1: Nothing was deleted.
1657         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1658 
1659         // Stage 2: Some elements were deleted.
1660         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1661 
1662         // All item are processed. This can be optimized to `set_len` by LLVM.
1663         drop(g);
1664     }
1665 
1666     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1667     /// key.
1668     ///
1669     /// If the vector is sorted, this removes all duplicates.
1670     ///
1671     /// # Examples
1672     ///
1673     /// ```
1674     /// let mut vec = vec![10, 20, 21, 30, 20];
1675     ///
1676     /// vec.dedup_by_key(|i| *i / 10);
1677     ///
1678     /// assert_eq!(vec, [10, 20, 30, 20]);
1679     /// ```
1680     #[stable(feature = "dedup_by", since = "1.16.0")]
1681     #[inline]
1682     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1683     where
1684         F: FnMut(&mut T) -> K,
1685         K: PartialEq,
1686     {
1687         self.dedup_by(|a, b| key(a) == key(b))
1688     }
1689 
1690     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1691     /// relation.
1692     ///
1693     /// The `same_bucket` function is passed references to two elements from the vector and
1694     /// must determine if the elements compare equal. The elements are passed in opposite order
1695     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1696     ///
1697     /// If the vector is sorted, this removes all duplicates.
1698     ///
1699     /// # Examples
1700     ///
1701     /// ```
1702     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1703     ///
1704     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1705     ///
1706     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1707     /// ```
1708     #[stable(feature = "dedup_by", since = "1.16.0")]
1709     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1710     where
1711         F: FnMut(&mut T, &mut T) -> bool,
1712     {
1713         let len = self.len();
1714         if len <= 1 {
1715             return;
1716         }
1717 
1718         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1719         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1720             /* Offset of the element we want to check if it is duplicate */
1721             read: usize,
1722 
1723             /* Offset of the place where we want to place the non-duplicate
1724              * when we find it. */
1725             write: usize,
1726 
1727             /* The Vec that would need correction if `same_bucket` panicked */
1728             vec: &'a mut Vec<T, A>,
1729         }
1730 
1731         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1732             fn drop(&mut self) {
1733                 /* This code gets executed when `same_bucket` panics */
1734 
1735                 /* SAFETY: invariant guarantees that `read - write`
1736                  * and `len - read` never overflow and that the copy is always
1737                  * in-bounds. */
1738                 unsafe {
1739                     let ptr = self.vec.as_mut_ptr();
1740                     let len = self.vec.len();
1741 
1742                     /* How many items were left when `same_bucket` panicked.
1743                      * Basically vec[read..].len() */
1744                     let items_left = len.wrapping_sub(self.read);
1745 
1746                     /* Pointer to first item in vec[write..write+items_left] slice */
1747                     let dropped_ptr = ptr.add(self.write);
1748                     /* Pointer to first item in vec[read..] slice */
1749                     let valid_ptr = ptr.add(self.read);
1750 
1751                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1752                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1753                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1754 
1755                     /* How many items have been already dropped
1756                      * Basically vec[read..write].len() */
1757                     let dropped = self.read.wrapping_sub(self.write);
1758 
1759                     self.vec.set_len(len - dropped);
1760                 }
1761             }
1762         }
1763 
1764         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1765         let ptr = gap.vec.as_mut_ptr();
1766 
1767         /* Drop items while going through Vec, it should be more efficient than
1768          * doing slice partition_dedup + truncate */
1769 
1770         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1771          * are always in-bounds and read_ptr never aliases prev_ptr */
1772         unsafe {
1773             while gap.read < len {
1774                 let read_ptr = ptr.add(gap.read);
1775                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1776 
1777                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1778                     // Increase `gap.read` now since the drop may panic.
1779                     gap.read += 1;
1780                     /* We have found duplicate, drop it in-place */
1781                     ptr::drop_in_place(read_ptr);
1782                 } else {
1783                     let write_ptr = ptr.add(gap.write);
1784 
1785                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1786                      * have to use `copy` or conditional `copy_nonoverlapping`.
1787                      * Looks like the first option is faster. */
1788                     ptr::copy(read_ptr, write_ptr, 1);
1789 
1790                     /* We have filled that place, so go further */
1791                     gap.write += 1;
1792                     gap.read += 1;
1793                 }
1794             }
1795 
1796             /* Technically we could let `gap` clean up with its Drop, but
1797              * when `same_bucket` is guaranteed to not panic, this bloats a little
1798              * the codegen, so we just do it manually */
1799             gap.vec.set_len(gap.write);
1800             mem::forget(gap);
1801         }
1802     }
1803 
1804     /// Appends an element to the back of a collection.
1805     ///
1806     /// # Panics
1807     ///
1808     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1809     ///
1810     /// # Examples
1811     ///
1812     /// ```
1813     /// let mut vec = vec![1, 2];
1814     /// vec.push(3);
1815     /// assert_eq!(vec, [1, 2, 3]);
1816     /// ```
1817     #[cfg(not(no_global_oom_handling))]
1818     #[inline]
1819     #[stable(feature = "rust1", since = "1.0.0")]
1820     pub fn push(&mut self, value: T) {
1821         // This will panic or abort if we would allocate > isize::MAX bytes
1822         // or if the length increment would overflow for zero-sized types.
1823         if self.len == self.buf.capacity() {
1824             self.buf.reserve_for_push(self.len);
1825         }
1826         unsafe {
1827             let end = self.as_mut_ptr().add(self.len);
1828             ptr::write(end, value);
1829             self.len += 1;
1830         }
1831     }
1832 
1833     /// Tries to append an element to the back of a collection.
1834     ///
1835     /// # Examples
1836     ///
1837     /// ```
1838     /// let mut vec = vec![1, 2];
1839     /// vec.try_push(3).unwrap();
1840     /// assert_eq!(vec, [1, 2, 3]);
1841     /// ```
1842     #[inline]
1843     #[stable(feature = "kernel", since = "1.0.0")]
1844     pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1845         if self.len == self.buf.capacity() {
1846             self.buf.try_reserve_for_push(self.len)?;
1847         }
1848         unsafe {
1849             let end = self.as_mut_ptr().add(self.len);
1850             ptr::write(end, value);
1851             self.len += 1;
1852         }
1853         Ok(())
1854     }
1855 
1856     /// Removes the last element from a vector and returns it, or [`None`] if it
1857     /// is empty.
1858     ///
1859     /// If you'd like to pop the first element, consider using
1860     /// [`VecDeque::pop_front`] instead.
1861     ///
1862     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1863     ///
1864     /// # Examples
1865     ///
1866     /// ```
1867     /// let mut vec = vec![1, 2, 3];
1868     /// assert_eq!(vec.pop(), Some(3));
1869     /// assert_eq!(vec, [1, 2]);
1870     /// ```
1871     #[inline]
1872     #[stable(feature = "rust1", since = "1.0.0")]
1873     pub fn pop(&mut self) -> Option<T> {
1874         if self.len == 0 {
1875             None
1876         } else {
1877             unsafe {
1878                 self.len -= 1;
1879                 Some(ptr::read(self.as_ptr().add(self.len())))
1880             }
1881         }
1882     }
1883 
1884     /// Moves all the elements of `other` into `self`, leaving `other` empty.
1885     ///
1886     /// # Panics
1887     ///
1888     /// Panics if the number of elements in the vector overflows a `usize`.
1889     ///
1890     /// # Examples
1891     ///
1892     /// ```
1893     /// let mut vec = vec![1, 2, 3];
1894     /// let mut vec2 = vec![4, 5, 6];
1895     /// vec.append(&mut vec2);
1896     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1897     /// assert_eq!(vec2, []);
1898     /// ```
1899     #[cfg(not(no_global_oom_handling))]
1900     #[inline]
1901     #[stable(feature = "append", since = "1.4.0")]
1902     pub fn append(&mut self, other: &mut Self) {
1903         unsafe {
1904             self.append_elements(other.as_slice() as _);
1905             other.set_len(0);
1906         }
1907     }
1908 
1909     /// Appends elements to `self` from other buffer.
1910     #[cfg(not(no_global_oom_handling))]
1911     #[inline]
1912     unsafe fn append_elements(&mut self, other: *const [T]) {
1913         let count = unsafe { (*other).len() };
1914         self.reserve(count);
1915         let len = self.len();
1916         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1917         self.len += count;
1918     }
1919 
1920     /// Removes the specified range from the vector in bulk, returning all
1921     /// removed elements as an iterator. If the iterator is dropped before
1922     /// being fully consumed, it drops the remaining removed elements.
1923     ///
1924     /// The returned iterator keeps a mutable borrow on the vector to optimize
1925     /// its implementation.
1926     ///
1927     /// # Panics
1928     ///
1929     /// Panics if the starting point is greater than the end point or if
1930     /// the end point is greater than the length of the vector.
1931     ///
1932     /// # Leaking
1933     ///
1934     /// If the returned iterator goes out of scope without being dropped (due to
1935     /// [`mem::forget`], for example), the vector may have lost and leaked
1936     /// elements arbitrarily, including elements outside the range.
1937     ///
1938     /// # Examples
1939     ///
1940     /// ```
1941     /// let mut v = vec![1, 2, 3];
1942     /// let u: Vec<_> = v.drain(1..).collect();
1943     /// assert_eq!(v, &[1]);
1944     /// assert_eq!(u, &[2, 3]);
1945     ///
1946     /// // A full range clears the vector, like `clear()` does
1947     /// v.drain(..);
1948     /// assert_eq!(v, &[]);
1949     /// ```
1950     #[stable(feature = "drain", since = "1.6.0")]
1951     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1952     where
1953         R: RangeBounds<usize>,
1954     {
1955         // Memory safety
1956         //
1957         // When the Drain is first created, it shortens the length of
1958         // the source vector to make sure no uninitialized or moved-from elements
1959         // are accessible at all if the Drain's destructor never gets to run.
1960         //
1961         // Drain will ptr::read out the values to remove.
1962         // When finished, remaining tail of the vec is copied back to cover
1963         // the hole, and the vector length is restored to the new length.
1964         //
1965         let len = self.len();
1966         let Range { start, end } = slice::range(range, ..len);
1967 
1968         unsafe {
1969             // set self.vec length's to start, to be safe in case Drain is leaked
1970             self.set_len(start);
1971             // Use the borrow in the IterMut to indicate borrowing behavior of the
1972             // whole Drain iterator (like &mut T).
1973             let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1974             Drain {
1975                 tail_start: end,
1976                 tail_len: len - end,
1977                 iter: range_slice.iter(),
1978                 vec: NonNull::from(self),
1979             }
1980         }
1981     }
1982 
1983     /// Clears the vector, removing all values.
1984     ///
1985     /// Note that this method has no effect on the allocated capacity
1986     /// of the vector.
1987     ///
1988     /// # Examples
1989     ///
1990     /// ```
1991     /// let mut v = vec![1, 2, 3];
1992     ///
1993     /// v.clear();
1994     ///
1995     /// assert!(v.is_empty());
1996     /// ```
1997     #[inline]
1998     #[stable(feature = "rust1", since = "1.0.0")]
1999     pub fn clear(&mut self) {
2000         let elems: *mut [T] = self.as_mut_slice();
2001 
2002         // SAFETY:
2003         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2004         // - Setting `self.len` before calling `drop_in_place` means that,
2005         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2006         //   do nothing (leaking the rest of the elements) instead of dropping
2007         //   some twice.
2008         unsafe {
2009             self.len = 0;
2010             ptr::drop_in_place(elems);
2011         }
2012     }
2013 
2014     /// Returns the number of elements in the vector, also referred to
2015     /// as its 'length'.
2016     ///
2017     /// # Examples
2018     ///
2019     /// ```
2020     /// let a = vec![1, 2, 3];
2021     /// assert_eq!(a.len(), 3);
2022     /// ```
2023     #[inline]
2024     #[stable(feature = "rust1", since = "1.0.0")]
2025     pub fn len(&self) -> usize {
2026         self.len
2027     }
2028 
2029     /// Returns `true` if the vector contains no elements.
2030     ///
2031     /// # Examples
2032     ///
2033     /// ```
2034     /// let mut v = Vec::new();
2035     /// assert!(v.is_empty());
2036     ///
2037     /// v.push(1);
2038     /// assert!(!v.is_empty());
2039     /// ```
2040     #[stable(feature = "rust1", since = "1.0.0")]
2041     pub fn is_empty(&self) -> bool {
2042         self.len() == 0
2043     }
2044 
2045     /// Splits the collection into two at the given index.
2046     ///
2047     /// Returns a newly allocated vector containing the elements in the range
2048     /// `[at, len)`. After the call, the original vector will be left containing
2049     /// the elements `[0, at)` with its previous capacity unchanged.
2050     ///
2051     /// # Panics
2052     ///
2053     /// Panics if `at > len`.
2054     ///
2055     /// # Examples
2056     ///
2057     /// ```
2058     /// let mut vec = vec![1, 2, 3];
2059     /// let vec2 = vec.split_off(1);
2060     /// assert_eq!(vec, [1]);
2061     /// assert_eq!(vec2, [2, 3]);
2062     /// ```
2063     #[cfg(not(no_global_oom_handling))]
2064     #[inline]
2065     #[must_use = "use `.truncate()` if you don't need the other half"]
2066     #[stable(feature = "split_off", since = "1.4.0")]
2067     pub fn split_off(&mut self, at: usize) -> Self
2068     where
2069         A: Clone,
2070     {
2071         #[cold]
2072         #[inline(never)]
2073         fn assert_failed(at: usize, len: usize) -> ! {
2074             panic!("`at` split index (is {at}) should be <= len (is {len})");
2075         }
2076 
2077         if at > self.len() {
2078             assert_failed(at, self.len());
2079         }
2080 
2081         if at == 0 {
2082             // the new vector can take over the original buffer and avoid the copy
2083             return mem::replace(
2084                 self,
2085                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2086             );
2087         }
2088 
2089         let other_len = self.len - at;
2090         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2091 
2092         // Unsafely `set_len` and copy items to `other`.
2093         unsafe {
2094             self.set_len(at);
2095             other.set_len(other_len);
2096 
2097             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2098         }
2099         other
2100     }
2101 
2102     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2103     ///
2104     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2105     /// difference, with each additional slot filled with the result of
2106     /// calling the closure `f`. The return values from `f` will end up
2107     /// in the `Vec` in the order they have been generated.
2108     ///
2109     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2110     ///
2111     /// This method uses a closure to create new values on every push. If
2112     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2113     /// want to use the [`Default`] trait to generate values, you can
2114     /// pass [`Default::default`] as the second argument.
2115     ///
2116     /// # Examples
2117     ///
2118     /// ```
2119     /// let mut vec = vec![1, 2, 3];
2120     /// vec.resize_with(5, Default::default);
2121     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2122     ///
2123     /// let mut vec = vec![];
2124     /// let mut p = 1;
2125     /// vec.resize_with(4, || { p *= 2; p });
2126     /// assert_eq!(vec, [2, 4, 8, 16]);
2127     /// ```
2128     #[cfg(not(no_global_oom_handling))]
2129     #[stable(feature = "vec_resize_with", since = "1.33.0")]
2130     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2131     where
2132         F: FnMut() -> T,
2133     {
2134         let len = self.len();
2135         if new_len > len {
2136             self.extend_with(new_len - len, ExtendFunc(f));
2137         } else {
2138             self.truncate(new_len);
2139         }
2140     }
2141 
2142     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2143     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2144     /// `'a`. If the type has only static references, or none at all, then this
2145     /// may be chosen to be `'static`.
2146     ///
2147     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2148     /// so the leaked allocation may include unused capacity that is not part
2149     /// of the returned slice.
2150     ///
2151     /// This function is mainly useful for data that lives for the remainder of
2152     /// the program's life. Dropping the returned reference will cause a memory
2153     /// leak.
2154     ///
2155     /// # Examples
2156     ///
2157     /// Simple usage:
2158     ///
2159     /// ```
2160     /// let x = vec![1, 2, 3];
2161     /// let static_ref: &'static mut [usize] = x.leak();
2162     /// static_ref[0] += 1;
2163     /// assert_eq!(static_ref, &[2, 2, 3]);
2164     /// ```
2165     #[cfg(not(no_global_oom_handling))]
2166     #[stable(feature = "vec_leak", since = "1.47.0")]
2167     #[inline]
2168     pub fn leak<'a>(self) -> &'a mut [T]
2169     where
2170         A: 'a,
2171     {
2172         let mut me = ManuallyDrop::new(self);
2173         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2174     }
2175 
2176     /// Returns the remaining spare capacity of the vector as a slice of
2177     /// `MaybeUninit<T>`.
2178     ///
2179     /// The returned slice can be used to fill the vector with data (e.g. by
2180     /// reading from a file) before marking the data as initialized using the
2181     /// [`set_len`] method.
2182     ///
2183     /// [`set_len`]: Vec::set_len
2184     ///
2185     /// # Examples
2186     ///
2187     /// ```
2188     /// // Allocate vector big enough for 10 elements.
2189     /// let mut v = Vec::with_capacity(10);
2190     ///
2191     /// // Fill in the first 3 elements.
2192     /// let uninit = v.spare_capacity_mut();
2193     /// uninit[0].write(0);
2194     /// uninit[1].write(1);
2195     /// uninit[2].write(2);
2196     ///
2197     /// // Mark the first 3 elements of the vector as being initialized.
2198     /// unsafe {
2199     ///     v.set_len(3);
2200     /// }
2201     ///
2202     /// assert_eq!(&v, &[0, 1, 2]);
2203     /// ```
2204     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2205     #[inline]
2206     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2207         // Note:
2208         // This method is not implemented in terms of `split_at_spare_mut`,
2209         // to prevent invalidation of pointers to the buffer.
2210         unsafe {
2211             slice::from_raw_parts_mut(
2212                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2213                 self.buf.capacity() - self.len,
2214             )
2215         }
2216     }
2217 
2218     /// Returns vector content as a slice of `T`, along with the remaining spare
2219     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2220     ///
2221     /// The returned spare capacity slice can be used to fill the vector with data
2222     /// (e.g. by reading from a file) before marking the data as initialized using
2223     /// the [`set_len`] method.
2224     ///
2225     /// [`set_len`]: Vec::set_len
2226     ///
2227     /// Note that this is a low-level API, which should be used with care for
2228     /// optimization purposes. If you need to append data to a `Vec`
2229     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2230     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2231     /// [`resize_with`], depending on your exact needs.
2232     ///
2233     /// [`push`]: Vec::push
2234     /// [`extend`]: Vec::extend
2235     /// [`extend_from_slice`]: Vec::extend_from_slice
2236     /// [`extend_from_within`]: Vec::extend_from_within
2237     /// [`insert`]: Vec::insert
2238     /// [`append`]: Vec::append
2239     /// [`resize`]: Vec::resize
2240     /// [`resize_with`]: Vec::resize_with
2241     ///
2242     /// # Examples
2243     ///
2244     /// ```
2245     /// #![feature(vec_split_at_spare)]
2246     ///
2247     /// let mut v = vec![1, 1, 2];
2248     ///
2249     /// // Reserve additional space big enough for 10 elements.
2250     /// v.reserve(10);
2251     ///
2252     /// let (init, uninit) = v.split_at_spare_mut();
2253     /// let sum = init.iter().copied().sum::<u32>();
2254     ///
2255     /// // Fill in the next 4 elements.
2256     /// uninit[0].write(sum);
2257     /// uninit[1].write(sum * 2);
2258     /// uninit[2].write(sum * 3);
2259     /// uninit[3].write(sum * 4);
2260     ///
2261     /// // Mark the 4 elements of the vector as being initialized.
2262     /// unsafe {
2263     ///     let len = v.len();
2264     ///     v.set_len(len + 4);
2265     /// }
2266     ///
2267     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2268     /// ```
2269     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2270     #[inline]
2271     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2272         // SAFETY:
2273         // - len is ignored and so never changed
2274         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2275         (init, spare)
2276     }
2277 
2278     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2279     ///
2280     /// This method provides unique access to all vec parts at once in `extend_from_within`.
2281     unsafe fn split_at_spare_mut_with_len(
2282         &mut self,
2283     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2284         let ptr = self.as_mut_ptr();
2285         // SAFETY:
2286         // - `ptr` is guaranteed to be valid for `self.len` elements
2287         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2288         // uninitialized
2289         let spare_ptr = unsafe { ptr.add(self.len) };
2290         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2291         let spare_len = self.buf.capacity() - self.len;
2292 
2293         // SAFETY:
2294         // - `ptr` is guaranteed to be valid for `self.len` elements
2295         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2296         unsafe {
2297             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2298             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2299 
2300             (initialized, spare, &mut self.len)
2301         }
2302     }
2303 }
2304 
2305 impl<T: Clone, A: Allocator> Vec<T, A> {
2306     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2307     ///
2308     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2309     /// difference, with each additional slot filled with `value`.
2310     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2311     ///
2312     /// This method requires `T` to implement [`Clone`],
2313     /// in order to be able to clone the passed value.
2314     /// If you need more flexibility (or want to rely on [`Default`] instead of
2315     /// [`Clone`]), use [`Vec::resize_with`].
2316     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2317     ///
2318     /// # Examples
2319     ///
2320     /// ```
2321     /// let mut vec = vec!["hello"];
2322     /// vec.resize(3, "world");
2323     /// assert_eq!(vec, ["hello", "world", "world"]);
2324     ///
2325     /// let mut vec = vec![1, 2, 3, 4];
2326     /// vec.resize(2, 0);
2327     /// assert_eq!(vec, [1, 2]);
2328     /// ```
2329     #[cfg(not(no_global_oom_handling))]
2330     #[stable(feature = "vec_resize", since = "1.5.0")]
2331     pub fn resize(&mut self, new_len: usize, value: T) {
2332         let len = self.len();
2333 
2334         if new_len > len {
2335             self.extend_with(new_len - len, ExtendElement(value))
2336         } else {
2337             self.truncate(new_len);
2338         }
2339     }
2340 
2341     /// Clones and appends all elements in a slice to the `Vec`.
2342     ///
2343     /// Iterates over the slice `other`, clones each element, and then appends
2344     /// it to this `Vec`. The `other` slice is traversed in-order.
2345     ///
2346     /// Note that this function is same as [`extend`] except that it is
2347     /// specialized to work with slices instead. If and when Rust gets
2348     /// specialization this function will likely be deprecated (but still
2349     /// available).
2350     ///
2351     /// # Examples
2352     ///
2353     /// ```
2354     /// let mut vec = vec![1];
2355     /// vec.extend_from_slice(&[2, 3, 4]);
2356     /// assert_eq!(vec, [1, 2, 3, 4]);
2357     /// ```
2358     ///
2359     /// [`extend`]: Vec::extend
2360     #[cfg(not(no_global_oom_handling))]
2361     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2362     pub fn extend_from_slice(&mut self, other: &[T]) {
2363         self.spec_extend(other.iter())
2364     }
2365 
2366     /// Copies elements from `src` range to the end of the vector.
2367     ///
2368     /// # Panics
2369     ///
2370     /// Panics if the starting point is greater than the end point or if
2371     /// the end point is greater than the length of the vector.
2372     ///
2373     /// # Examples
2374     ///
2375     /// ```
2376     /// let mut vec = vec![0, 1, 2, 3, 4];
2377     ///
2378     /// vec.extend_from_within(2..);
2379     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2380     ///
2381     /// vec.extend_from_within(..2);
2382     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2383     ///
2384     /// vec.extend_from_within(4..8);
2385     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2386     /// ```
2387     #[cfg(not(no_global_oom_handling))]
2388     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
2389     pub fn extend_from_within<R>(&mut self, src: R)
2390     where
2391         R: RangeBounds<usize>,
2392     {
2393         let range = slice::range(src, ..self.len());
2394         self.reserve(range.len());
2395 
2396         // SAFETY:
2397         // - `slice::range` guarantees  that the given range is valid for indexing self
2398         unsafe {
2399             self.spec_extend_from_within(range);
2400         }
2401     }
2402 }
2403 
2404 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2405     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2406     ///
2407     /// # Panics
2408     ///
2409     /// Panics if the length of the resulting vector would overflow a `usize`.
2410     ///
2411     /// This is only possible when flattening a vector of arrays of zero-sized
2412     /// types, and thus tends to be irrelevant in practice. If
2413     /// `size_of::<T>() > 0`, this will never panic.
2414     ///
2415     /// # Examples
2416     ///
2417     /// ```
2418     /// #![feature(slice_flatten)]
2419     ///
2420     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2421     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2422     ///
2423     /// let mut flattened = vec.into_flattened();
2424     /// assert_eq!(flattened.pop(), Some(6));
2425     /// ```
2426     #[unstable(feature = "slice_flatten", issue = "95629")]
2427     pub fn into_flattened(self) -> Vec<T, A> {
2428         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2429         let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2430             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2431         } else {
2432             // SAFETY:
2433             // - `cap * N` cannot overflow because the allocation is already in
2434             // the address space.
2435             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2436             // valid elements in the allocation.
2437             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2438         };
2439         // SAFETY:
2440         // - `ptr` was allocated by `self`
2441         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2442         // - `new_cap` refers to the same sized allocation as `cap` because
2443         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2444         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2445         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2446     }
2447 }
2448 
2449 // This code generalizes `extend_with_{element,default}`.
2450 trait ExtendWith<T> {
2451     fn next(&mut self) -> T;
2452     fn last(self) -> T;
2453 }
2454 
2455 struct ExtendElement<T>(T);
2456 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
2457     fn next(&mut self) -> T {
2458         self.0.clone()
2459     }
2460     fn last(self) -> T {
2461         self.0
2462     }
2463 }
2464 
2465 struct ExtendFunc<F>(F);
2466 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
2467     fn next(&mut self) -> T {
2468         (self.0)()
2469     }
2470     fn last(mut self) -> T {
2471         (self.0)()
2472     }
2473 }
2474 
2475 impl<T, A: Allocator> Vec<T, A> {
2476     #[cfg(not(no_global_oom_handling))]
2477     /// Extend the vector by `n` values, using the given generator.
2478     fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2479         self.reserve(n);
2480 
2481         unsafe {
2482             let mut ptr = self.as_mut_ptr().add(self.len());
2483             // Use SetLenOnDrop to work around bug where compiler
2484             // might not realize the store through `ptr` through self.set_len()
2485             // don't alias.
2486             let mut local_len = SetLenOnDrop::new(&mut self.len);
2487 
2488             // Write all elements except the last one
2489             for _ in 1..n {
2490                 ptr::write(ptr, value.next());
2491                 ptr = ptr.offset(1);
2492                 // Increment the length in every step in case next() panics
2493                 local_len.increment_len(1);
2494             }
2495 
2496             if n > 0 {
2497                 // We can write the last element directly without cloning needlessly
2498                 ptr::write(ptr, value.last());
2499                 local_len.increment_len(1);
2500             }
2501 
2502             // len set by scope guard
2503         }
2504     }
2505 }
2506 
2507 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2508     /// Removes consecutive repeated elements in the vector according to the
2509     /// [`PartialEq`] trait implementation.
2510     ///
2511     /// If the vector is sorted, this removes all duplicates.
2512     ///
2513     /// # Examples
2514     ///
2515     /// ```
2516     /// let mut vec = vec![1, 2, 2, 3, 2];
2517     ///
2518     /// vec.dedup();
2519     ///
2520     /// assert_eq!(vec, [1, 2, 3, 2]);
2521     /// ```
2522     #[stable(feature = "rust1", since = "1.0.0")]
2523     #[inline]
2524     pub fn dedup(&mut self) {
2525         self.dedup_by(|a, b| a == b)
2526     }
2527 }
2528 
2529 ////////////////////////////////////////////////////////////////////////////////
2530 // Internal methods and functions
2531 ////////////////////////////////////////////////////////////////////////////////
2532 
2533 #[doc(hidden)]
2534 #[cfg(not(no_global_oom_handling))]
2535 #[stable(feature = "rust1", since = "1.0.0")]
2536 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2537     <T as SpecFromElem>::from_elem(elem, n, Global)
2538 }
2539 
2540 #[doc(hidden)]
2541 #[cfg(not(no_global_oom_handling))]
2542 #[unstable(feature = "allocator_api", issue = "32838")]
2543 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2544     <T as SpecFromElem>::from_elem(elem, n, alloc)
2545 }
2546 
2547 trait ExtendFromWithinSpec {
2548     /// # Safety
2549     ///
2550     /// - `src` needs to be valid index
2551     /// - `self.capacity() - self.len()` must be `>= src.len()`
2552     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2553 }
2554 
2555 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2556     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2557         // SAFETY:
2558         // - len is increased only after initializing elements
2559         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2560 
2561         // SAFETY:
2562         // - caller guaratees that src is a valid index
2563         let to_clone = unsafe { this.get_unchecked(src) };
2564 
2565         iter::zip(to_clone, spare)
2566             .map(|(src, dst)| dst.write(src.clone()))
2567             // Note:
2568             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2569             // - len is increased after each element to prevent leaks (see issue #82533)
2570             .for_each(|_| *len += 1);
2571     }
2572 }
2573 
2574 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2575     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2576         let count = src.len();
2577         {
2578             let (init, spare) = self.split_at_spare_mut();
2579 
2580             // SAFETY:
2581             // - caller guaratees that `src` is a valid index
2582             let source = unsafe { init.get_unchecked(src) };
2583 
2584             // SAFETY:
2585             // - Both pointers are created from unique slice references (`&mut [_]`)
2586             //   so they are valid and do not overlap.
2587             // - Elements are :Copy so it's OK to to copy them, without doing
2588             //   anything with the original values
2589             // - `count` is equal to the len of `source`, so source is valid for
2590             //   `count` reads
2591             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2592             //   is valid for `count` writes
2593             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2594         }
2595 
2596         // SAFETY:
2597         // - The elements were just initialized by `copy_nonoverlapping`
2598         self.len += count;
2599     }
2600 }
2601 
2602 ////////////////////////////////////////////////////////////////////////////////
2603 // Common trait implementations for Vec
2604 ////////////////////////////////////////////////////////////////////////////////
2605 
2606 #[stable(feature = "rust1", since = "1.0.0")]
2607 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2608     type Target = [T];
2609 
2610     fn deref(&self) -> &[T] {
2611         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2612     }
2613 }
2614 
2615 #[stable(feature = "rust1", since = "1.0.0")]
2616 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2617     fn deref_mut(&mut self) -> &mut [T] {
2618         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2619     }
2620 }
2621 
2622 #[cfg(not(no_global_oom_handling))]
2623 trait SpecCloneFrom {
2624     fn clone_from(this: &mut Self, other: &Self);
2625 }
2626 
2627 #[cfg(not(no_global_oom_handling))]
2628 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
2629     default fn clone_from(this: &mut Self, other: &Self) {
2630         // drop anything that will not be overwritten
2631         this.truncate(other.len());
2632 
2633         // self.len <= other.len due to the truncate above, so the
2634         // slices here are always in-bounds.
2635         let (init, tail) = other.split_at(this.len());
2636 
2637         // reuse the contained values' allocations/resources.
2638         this.clone_from_slice(init);
2639         this.extend_from_slice(tail);
2640     }
2641 }
2642 
2643 #[cfg(not(no_global_oom_handling))]
2644 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
2645     fn clone_from(this: &mut Self, other: &Self) {
2646         this.clear();
2647         this.extend_from_slice(other);
2648     }
2649 }
2650 
2651 #[cfg(not(no_global_oom_handling))]
2652 #[stable(feature = "rust1", since = "1.0.0")]
2653 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2654     #[cfg(not(test))]
2655     fn clone(&self) -> Self {
2656         let alloc = self.allocator().clone();
2657         <[T]>::to_vec_in(&**self, alloc)
2658     }
2659 
2660     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2661     // required for this method definition, is not available. Instead use the
2662     // `slice::to_vec`  function which is only available with cfg(test)
2663     // NB see the slice::hack module in slice.rs for more information
2664     #[cfg(test)]
2665     fn clone(&self) -> Self {
2666         let alloc = self.allocator().clone();
2667         crate::slice::to_vec(&**self, alloc)
2668     }
2669 
2670     fn clone_from(&mut self, other: &Self) {
2671         SpecCloneFrom::clone_from(self, other)
2672     }
2673 }
2674 
2675 /// The hash of a vector is the same as that of the corresponding slice,
2676 /// as required by the `core::borrow::Borrow` implementation.
2677 ///
2678 /// ```
2679 /// #![feature(build_hasher_simple_hash_one)]
2680 /// use std::hash::BuildHasher;
2681 ///
2682 /// let b = std::collections::hash_map::RandomState::new();
2683 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2684 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2685 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2686 /// ```
2687 #[stable(feature = "rust1", since = "1.0.0")]
2688 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2689     #[inline]
2690     fn hash<H: Hasher>(&self, state: &mut H) {
2691         Hash::hash(&**self, state)
2692     }
2693 }
2694 
2695 #[stable(feature = "rust1", since = "1.0.0")]
2696 #[rustc_on_unimplemented(
2697     message = "vector indices are of type `usize` or ranges of `usize`",
2698     label = "vector indices are of type `usize` or ranges of `usize`"
2699 )]
2700 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2701     type Output = I::Output;
2702 
2703     #[inline]
2704     fn index(&self, index: I) -> &Self::Output {
2705         Index::index(&**self, index)
2706     }
2707 }
2708 
2709 #[stable(feature = "rust1", since = "1.0.0")]
2710 #[rustc_on_unimplemented(
2711     message = "vector indices are of type `usize` or ranges of `usize`",
2712     label = "vector indices are of type `usize` or ranges of `usize`"
2713 )]
2714 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2715     #[inline]
2716     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2717         IndexMut::index_mut(&mut **self, index)
2718     }
2719 }
2720 
2721 #[cfg(not(no_global_oom_handling))]
2722 #[stable(feature = "rust1", since = "1.0.0")]
2723 impl<T> FromIterator<T> for Vec<T> {
2724     #[inline]
2725     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2726         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2727     }
2728 }
2729 
2730 #[stable(feature = "rust1", since = "1.0.0")]
2731 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2732     type Item = T;
2733     type IntoIter = IntoIter<T, A>;
2734 
2735     /// Creates a consuming iterator, that is, one that moves each value out of
2736     /// the vector (from start to end). The vector cannot be used after calling
2737     /// this.
2738     ///
2739     /// # Examples
2740     ///
2741     /// ```
2742     /// let v = vec!["a".to_string(), "b".to_string()];
2743     /// for s in v.into_iter() {
2744     ///     // s has type String, not &String
2745     ///     println!("{s}");
2746     /// }
2747     /// ```
2748     #[inline]
2749     fn into_iter(self) -> IntoIter<T, A> {
2750         unsafe {
2751             let mut me = ManuallyDrop::new(self);
2752             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2753             let begin = me.as_mut_ptr();
2754             let end = if mem::size_of::<T>() == 0 {
2755                 arith_offset(begin as *const i8, me.len() as isize) as *const T
2756             } else {
2757                 begin.add(me.len()) as *const T
2758             };
2759             let cap = me.buf.capacity();
2760             IntoIter {
2761                 buf: NonNull::new_unchecked(begin),
2762                 phantom: PhantomData,
2763                 cap,
2764                 alloc,
2765                 ptr: begin,
2766                 end,
2767             }
2768         }
2769     }
2770 }
2771 
2772 #[stable(feature = "rust1", since = "1.0.0")]
2773 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2774     type Item = &'a T;
2775     type IntoIter = slice::Iter<'a, T>;
2776 
2777     fn into_iter(self) -> slice::Iter<'a, T> {
2778         self.iter()
2779     }
2780 }
2781 
2782 #[stable(feature = "rust1", since = "1.0.0")]
2783 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2784     type Item = &'a mut T;
2785     type IntoIter = slice::IterMut<'a, T>;
2786 
2787     fn into_iter(self) -> slice::IterMut<'a, T> {
2788         self.iter_mut()
2789     }
2790 }
2791 
2792 #[cfg(not(no_global_oom_handling))]
2793 #[stable(feature = "rust1", since = "1.0.0")]
2794 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2795     #[inline]
2796     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2797         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2798     }
2799 
2800     #[inline]
2801     fn extend_one(&mut self, item: T) {
2802         self.push(item);
2803     }
2804 
2805     #[inline]
2806     fn extend_reserve(&mut self, additional: usize) {
2807         self.reserve(additional);
2808     }
2809 }
2810 
2811 impl<T, A: Allocator> Vec<T, A> {
2812     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2813     // they have no further optimizations to apply
2814     #[cfg(not(no_global_oom_handling))]
2815     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2816         // This is the case for a general iterator.
2817         //
2818         // This function should be the moral equivalent of:
2819         //
2820         //      for item in iterator {
2821         //          self.push(item);
2822         //      }
2823         while let Some(element) = iterator.next() {
2824             let len = self.len();
2825             if len == self.capacity() {
2826                 let (lower, _) = iterator.size_hint();
2827                 self.reserve(lower.saturating_add(1));
2828             }
2829             unsafe {
2830                 ptr::write(self.as_mut_ptr().add(len), element);
2831                 // Since next() executes user code which can panic we have to bump the length
2832                 // after each step.
2833                 // NB can't overflow since we would have had to alloc the address space
2834                 self.set_len(len + 1);
2835             }
2836         }
2837     }
2838 
2839     /// Creates a splicing iterator that replaces the specified range in the vector
2840     /// with the given `replace_with` iterator and yields the removed items.
2841     /// `replace_with` does not need to be the same length as `range`.
2842     ///
2843     /// `range` is removed even if the iterator is not consumed until the end.
2844     ///
2845     /// It is unspecified how many elements are removed from the vector
2846     /// if the `Splice` value is leaked.
2847     ///
2848     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2849     ///
2850     /// This is optimal if:
2851     ///
2852     /// * The tail (elements in the vector after `range`) is empty,
2853     /// * or `replace_with` yields fewer or equal elements than `range`’s length
2854     /// * or the lower bound of its `size_hint()` is exact.
2855     ///
2856     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2857     ///
2858     /// # Panics
2859     ///
2860     /// Panics if the starting point is greater than the end point or if
2861     /// the end point is greater than the length of the vector.
2862     ///
2863     /// # Examples
2864     ///
2865     /// ```
2866     /// let mut v = vec![1, 2, 3, 4];
2867     /// let new = [7, 8, 9];
2868     /// let u: Vec<_> = v.splice(1..3, new).collect();
2869     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
2870     /// assert_eq!(u, &[2, 3]);
2871     /// ```
2872     #[cfg(not(no_global_oom_handling))]
2873     #[inline]
2874     #[stable(feature = "vec_splice", since = "1.21.0")]
2875     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
2876     where
2877         R: RangeBounds<usize>,
2878         I: IntoIterator<Item = T>,
2879     {
2880         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
2881     }
2882 
2883     /// Creates an iterator which uses a closure to determine if an element should be removed.
2884     ///
2885     /// If the closure returns true, then the element is removed and yielded.
2886     /// If the closure returns false, the element will remain in the vector and will not be yielded
2887     /// by the iterator.
2888     ///
2889     /// Using this method is equivalent to the following code:
2890     ///
2891     /// ```
2892     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2893     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
2894     /// let mut i = 0;
2895     /// while i < vec.len() {
2896     ///     if some_predicate(&mut vec[i]) {
2897     ///         let val = vec.remove(i);
2898     ///         // your code here
2899     ///     } else {
2900     ///         i += 1;
2901     ///     }
2902     /// }
2903     ///
2904     /// # assert_eq!(vec, vec![1, 4, 5]);
2905     /// ```
2906     ///
2907     /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2908     /// because it can backshift the elements of the array in bulk.
2909     ///
2910     /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2911     /// regardless of whether you choose to keep or remove it.
2912     ///
2913     /// # Examples
2914     ///
2915     /// Splitting an array into evens and odds, reusing the original allocation:
2916     ///
2917     /// ```
2918     /// #![feature(drain_filter)]
2919     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2920     ///
2921     /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2922     /// let odds = numbers;
2923     ///
2924     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2925     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2926     /// ```
2927     #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2928     pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
2929     where
2930         F: FnMut(&mut T) -> bool,
2931     {
2932         let old_len = self.len();
2933 
2934         // Guard against us getting leaked (leak amplification)
2935         unsafe {
2936             self.set_len(0);
2937         }
2938 
2939         DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
2940     }
2941 }
2942 
2943 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2944 ///
2945 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2946 /// append the entire slice at once.
2947 ///
2948 /// [`copy_from_slice`]: slice::copy_from_slice
2949 #[cfg(not(no_global_oom_handling))]
2950 #[stable(feature = "extend_ref", since = "1.2.0")]
2951 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
2952     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2953         self.spec_extend(iter.into_iter())
2954     }
2955 
2956     #[inline]
2957     fn extend_one(&mut self, &item: &'a T) {
2958         self.push(item);
2959     }
2960 
2961     #[inline]
2962     fn extend_reserve(&mut self, additional: usize) {
2963         self.reserve(additional);
2964     }
2965 }
2966 
2967 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2968 #[stable(feature = "rust1", since = "1.0.0")]
2969 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
2970     #[inline]
2971     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2972         PartialOrd::partial_cmp(&**self, &**other)
2973     }
2974 }
2975 
2976 #[stable(feature = "rust1", since = "1.0.0")]
2977 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
2978 
2979 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2980 #[stable(feature = "rust1", since = "1.0.0")]
2981 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
2982     #[inline]
2983     fn cmp(&self, other: &Self) -> Ordering {
2984         Ord::cmp(&**self, &**other)
2985     }
2986 }
2987 
2988 #[stable(feature = "rust1", since = "1.0.0")]
2989 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
2990     fn drop(&mut self) {
2991         unsafe {
2992             // use drop for [T]
2993             // use a raw slice to refer to the elements of the vector as weakest necessary type;
2994             // could avoid questions of validity in certain cases
2995             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
2996         }
2997         // RawVec handles deallocation
2998     }
2999 }
3000 
3001 #[stable(feature = "rust1", since = "1.0.0")]
3002 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
3003 impl<T> const Default for Vec<T> {
3004     /// Creates an empty `Vec<T>`.
3005     fn default() -> Vec<T> {
3006         Vec::new()
3007     }
3008 }
3009 
3010 #[stable(feature = "rust1", since = "1.0.0")]
3011 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3012     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3013         fmt::Debug::fmt(&**self, f)
3014     }
3015 }
3016 
3017 #[stable(feature = "rust1", since = "1.0.0")]
3018 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3019     fn as_ref(&self) -> &Vec<T, A> {
3020         self
3021     }
3022 }
3023 
3024 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3025 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3026     fn as_mut(&mut self) -> &mut Vec<T, A> {
3027         self
3028     }
3029 }
3030 
3031 #[stable(feature = "rust1", since = "1.0.0")]
3032 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3033     fn as_ref(&self) -> &[T] {
3034         self
3035     }
3036 }
3037 
3038 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3039 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3040     fn as_mut(&mut self) -> &mut [T] {
3041         self
3042     }
3043 }
3044 
3045 #[cfg(not(no_global_oom_handling))]
3046 #[stable(feature = "rust1", since = "1.0.0")]
3047 impl<T: Clone> From<&[T]> for Vec<T> {
3048     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3049     ///
3050     /// # Examples
3051     ///
3052     /// ```
3053     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3054     /// ```
3055     #[cfg(not(test))]
3056     fn from(s: &[T]) -> Vec<T> {
3057         s.to_vec()
3058     }
3059     #[cfg(test)]
3060     fn from(s: &[T]) -> Vec<T> {
3061         crate::slice::to_vec(s, Global)
3062     }
3063 }
3064 
3065 #[cfg(not(no_global_oom_handling))]
3066 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3067 impl<T: Clone> From<&mut [T]> for Vec<T> {
3068     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3069     ///
3070     /// # Examples
3071     ///
3072     /// ```
3073     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3074     /// ```
3075     #[cfg(not(test))]
3076     fn from(s: &mut [T]) -> Vec<T> {
3077         s.to_vec()
3078     }
3079     #[cfg(test)]
3080     fn from(s: &mut [T]) -> Vec<T> {
3081         crate::slice::to_vec(s, Global)
3082     }
3083 }
3084 
3085 #[cfg(not(no_global_oom_handling))]
3086 #[stable(feature = "vec_from_array", since = "1.44.0")]
3087 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3088     /// Allocate a `Vec<T>` and move `s`'s items into it.
3089     ///
3090     /// # Examples
3091     ///
3092     /// ```
3093     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3094     /// ```
3095     #[cfg(not(test))]
3096     fn from(s: [T; N]) -> Vec<T> {
3097         <[T]>::into_vec(box s)
3098     }
3099 
3100     #[cfg(test)]
3101     fn from(s: [T; N]) -> Vec<T> {
3102         crate::slice::into_vec(box s)
3103     }
3104 }
3105 
3106 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3107 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3108 where
3109     [T]: ToOwned<Owned = Vec<T>>,
3110 {
3111     /// Convert a clone-on-write slice into a vector.
3112     ///
3113     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3114     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3115     /// filled by cloning `s`'s items into it.
3116     ///
3117     /// # Examples
3118     ///
3119     /// ```
3120     /// # use std::borrow::Cow;
3121     /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3122     /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3123     /// assert_eq!(Vec::from(o), Vec::from(b));
3124     /// ```
3125     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3126         s.into_owned()
3127     }
3128 }
3129 
3130 // note: test pulls in libstd, which causes errors here
3131 #[cfg(not(test))]
3132 #[stable(feature = "vec_from_box", since = "1.18.0")]
3133 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3134     /// Convert a boxed slice into a vector by transferring ownership of
3135     /// the existing heap allocation.
3136     ///
3137     /// # Examples
3138     ///
3139     /// ```
3140     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3141     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3142     /// ```
3143     fn from(s: Box<[T], A>) -> Self {
3144         s.into_vec()
3145     }
3146 }
3147 
3148 // note: test pulls in libstd, which causes errors here
3149 #[cfg(not(no_global_oom_handling))]
3150 #[cfg(not(test))]
3151 #[stable(feature = "box_from_vec", since = "1.20.0")]
3152 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3153     /// Convert a vector into a boxed slice.
3154     ///
3155     /// If `v` has excess capacity, its items will be moved into a
3156     /// newly-allocated buffer with exactly the right capacity.
3157     ///
3158     /// # Examples
3159     ///
3160     /// ```
3161     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3162     /// ```
3163     fn from(v: Vec<T, A>) -> Self {
3164         v.into_boxed_slice()
3165     }
3166 }
3167 
3168 #[cfg(not(no_global_oom_handling))]
3169 #[stable(feature = "rust1", since = "1.0.0")]
3170 impl From<&str> for Vec<u8> {
3171     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3172     ///
3173     /// # Examples
3174     ///
3175     /// ```
3176     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3177     /// ```
3178     fn from(s: &str) -> Vec<u8> {
3179         From::from(s.as_bytes())
3180     }
3181 }
3182 
3183 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3184 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3185     type Error = Vec<T, A>;
3186 
3187     /// Gets the entire contents of the `Vec<T>` as an array,
3188     /// if its size exactly matches that of the requested array.
3189     ///
3190     /// # Examples
3191     ///
3192     /// ```
3193     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3194     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3195     /// ```
3196     ///
3197     /// If the length doesn't match, the input comes back in `Err`:
3198     /// ```
3199     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3200     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3201     /// ```
3202     ///
3203     /// If you're fine with just getting a prefix of the `Vec<T>`,
3204     /// you can call [`.truncate(N)`](Vec::truncate) first.
3205     /// ```
3206     /// let mut v = String::from("hello world").into_bytes();
3207     /// v.sort();
3208     /// v.truncate(2);
3209     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3210     /// assert_eq!(a, b' ');
3211     /// assert_eq!(b, b'd');
3212     /// ```
3213     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3214         if vec.len() != N {
3215             return Err(vec);
3216         }
3217 
3218         // SAFETY: `.set_len(0)` is always sound.
3219         unsafe { vec.set_len(0) };
3220 
3221         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3222         // the alignment the array needs is the same as the items.
3223         // We checked earlier that we have sufficient items.
3224         // The items will not double-drop as the `set_len`
3225         // tells the `Vec` not to also drop them.
3226         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3227         Ok(array)
3228     }
3229 }
3230