1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::fmt;
62 use core::hash::{Hash, Hasher};
63 use core::iter;
64 use core::marker::PhantomData;
65 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
66 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
67 use core::ptr::{self, NonNull};
68 use core::slice::{self, SliceIndex};
69
70 use crate::alloc::{Allocator, Global};
71 #[cfg(not(no_borrow))]
72 use crate::borrow::{Cow, ToOwned};
73 use crate::boxed::Box;
74 use crate::collections::{TryReserveError, TryReserveErrorKind};
75 use crate::raw_vec::RawVec;
76
77 #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
78 pub use self::extract_if::ExtractIf;
79
80 mod extract_if;
81
82 #[cfg(not(no_global_oom_handling))]
83 #[stable(feature = "vec_splice", since = "1.21.0")]
84 pub use self::splice::Splice;
85
86 #[cfg(not(no_global_oom_handling))]
87 mod splice;
88
89 #[stable(feature = "drain", since = "1.6.0")]
90 pub use self::drain::Drain;
91
92 mod drain;
93
94 #[cfg(not(no_borrow))]
95 #[cfg(not(no_global_oom_handling))]
96 mod cow;
97
98 #[cfg(not(no_global_oom_handling))]
99 pub(crate) use self::in_place_collect::AsVecIntoIter;
100 #[stable(feature = "rust1", since = "1.0.0")]
101 pub use self::into_iter::IntoIter;
102
103 mod into_iter;
104
105 #[cfg(not(no_global_oom_handling))]
106 use self::is_zero::IsZero;
107
108 mod is_zero;
109
110 #[cfg(not(no_global_oom_handling))]
111 mod in_place_collect;
112
113 mod partial_eq;
114
115 #[cfg(not(no_global_oom_handling))]
116 use self::spec_from_elem::SpecFromElem;
117
118 #[cfg(not(no_global_oom_handling))]
119 mod spec_from_elem;
120
121 use self::set_len_on_drop::SetLenOnDrop;
122
123 mod set_len_on_drop;
124
125 #[cfg(not(no_global_oom_handling))]
126 use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
127
128 #[cfg(not(no_global_oom_handling))]
129 mod in_place_drop;
130
131 #[cfg(not(no_global_oom_handling))]
132 use self::spec_from_iter_nested::SpecFromIterNested;
133
134 #[cfg(not(no_global_oom_handling))]
135 mod spec_from_iter_nested;
136
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter::SpecFromIter;
139
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter;
142
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_extend::SpecExtend;
145
146 use self::spec_extend::TrySpecExtend;
147
148 mod spec_extend;
149
150 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
151 ///
152 /// # Examples
153 ///
154 /// ```
155 /// let mut vec = Vec::new();
156 /// vec.push(1);
157 /// vec.push(2);
158 ///
159 /// assert_eq!(vec.len(), 2);
160 /// assert_eq!(vec[0], 1);
161 ///
162 /// assert_eq!(vec.pop(), Some(2));
163 /// assert_eq!(vec.len(), 1);
164 ///
165 /// vec[0] = 7;
166 /// assert_eq!(vec[0], 7);
167 ///
168 /// vec.extend([1, 2, 3]);
169 ///
170 /// for x in &vec {
171 /// println!("{x}");
172 /// }
173 /// assert_eq!(vec, [7, 1, 2, 3]);
174 /// ```
175 ///
176 /// The [`vec!`] macro is provided for convenient initialization:
177 ///
178 /// ```
179 /// let mut vec1 = vec![1, 2, 3];
180 /// vec1.push(4);
181 /// let vec2 = Vec::from([1, 2, 3, 4]);
182 /// assert_eq!(vec1, vec2);
183 /// ```
184 ///
185 /// It can also initialize each element of a `Vec<T>` with a given value.
186 /// This may be more efficient than performing allocation and initialization
187 /// in separate steps, especially when initializing a vector of zeros:
188 ///
189 /// ```
190 /// let vec = vec![0; 5];
191 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
192 ///
193 /// // The following is equivalent, but potentially slower:
194 /// let mut vec = Vec::with_capacity(5);
195 /// vec.resize(5, 0);
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 /// ```
198 ///
199 /// For more information, see
200 /// [Capacity and Reallocation](#capacity-and-reallocation).
201 ///
202 /// Use a `Vec<T>` as an efficient stack:
203 ///
204 /// ```
205 /// let mut stack = Vec::new();
206 ///
207 /// stack.push(1);
208 /// stack.push(2);
209 /// stack.push(3);
210 ///
211 /// while let Some(top) = stack.pop() {
212 /// // Prints 3, 2, 1
213 /// println!("{top}");
214 /// }
215 /// ```
216 ///
217 /// # Indexing
218 ///
219 /// The `Vec` type allows access to values by index, because it implements the
220 /// [`Index`] trait. An example will be more explicit:
221 ///
222 /// ```
223 /// let v = vec![0, 2, 4, 6];
224 /// println!("{}", v[1]); // it will display '2'
225 /// ```
226 ///
227 /// However be careful: if you try to access an index which isn't in the `Vec`,
228 /// your software will panic! You cannot do this:
229 ///
230 /// ```should_panic
231 /// let v = vec![0, 2, 4, 6];
232 /// println!("{}", v[6]); // it will panic!
233 /// ```
234 ///
235 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236 /// the `Vec`.
237 ///
238 /// # Slicing
239 ///
240 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241 /// To get a [slice][prim@slice], use [`&`]. Example:
242 ///
243 /// ```
244 /// fn read_slice(slice: &[usize]) {
245 /// // ...
246 /// }
247 ///
248 /// let v = vec![0, 1];
249 /// read_slice(&v);
250 ///
251 /// // ... and that's all!
252 /// // you can also do it like this:
253 /// let u: &[usize] = &v;
254 /// // or like this:
255 /// let u: &[_] = &v;
256 /// ```
257 ///
258 /// In Rust, it's more common to pass slices as arguments rather than vectors
259 /// when you just want to provide read access. The same goes for [`String`] and
260 /// [`&str`].
261 ///
262 /// # Capacity and reallocation
263 ///
264 /// The capacity of a vector is the amount of space allocated for any future
265 /// elements that will be added onto the vector. This is not to be confused with
266 /// the *length* of a vector, which specifies the number of actual elements
267 /// within the vector. If a vector's length exceeds its capacity, its capacity
268 /// will automatically be increased, but its elements will have to be
269 /// reallocated.
270 ///
271 /// For example, a vector with capacity 10 and length 0 would be an empty vector
272 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
273 /// vector will not change its capacity or cause reallocation to occur. However,
274 /// if the vector's length is increased to 11, it will have to reallocate, which
275 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
276 /// whenever possible to specify how big the vector is expected to get.
277 ///
278 /// # Guarantees
279 ///
280 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
281 /// about its design. This ensures that it's as low-overhead as possible in
282 /// the general case, and can be correctly manipulated in primitive ways
283 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
284 /// If additional type parameters are added (e.g., to support custom allocators),
285 /// overriding their defaults may change the behavior.
286 ///
287 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
288 /// triplet. No more, no less. The order of these fields is completely
289 /// unspecified, and you should use the appropriate methods to modify these.
290 /// The pointer will never be null, so this type is null-pointer-optimized.
291 ///
292 /// However, the pointer might not actually point to allocated memory. In particular,
293 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
295 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
297 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
298 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
299 /// details are very subtle --- if you intend to allocate memory using a `Vec`
300 /// and use it for something else (either to pass to unsafe code, or to build your
301 /// own memory-backed collection), be sure to deallocate this memory by using
302 /// `from_raw_parts` to recover the `Vec` and then dropping it.
303 ///
304 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
305 /// (as defined by the allocator Rust is configured to use by default), and its
306 /// pointer points to [`len`] initialized, contiguous elements in order (what
307 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
308 /// logically uninitialized, contiguous elements.
309 ///
310 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311 /// visualized as below. The top part is the `Vec` struct, it contains a
312 /// pointer to the head of the allocation in the heap, length and capacity.
313 /// The bottom part is the allocation on the heap, a contiguous memory block.
314 ///
315 /// ```text
316 /// ptr len capacity
317 /// +--------+--------+--------+
318 /// | 0x0123 | 2 | 4 |
319 /// +--------+--------+--------+
320 /// |
321 /// v
322 /// Heap +--------+--------+--------+--------+
323 /// | 'a' | 'b' | uninit | uninit |
324 /// +--------+--------+--------+--------+
325 /// ```
326 ///
327 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329 /// layout (including the order of fields).
330 ///
331 /// `Vec` will never perform a "small optimization" where elements are actually
332 /// stored on the stack for two reasons:
333 ///
334 /// * It would make it more difficult for unsafe code to correctly manipulate
335 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336 /// only moved, and it would be more difficult to determine if a `Vec` had
337 /// actually allocated memory.
338 ///
339 /// * It would penalize the general case, incurring an additional branch
340 /// on every access.
341 ///
342 /// `Vec` will never automatically shrink itself, even if completely empty. This
343 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
344 /// and then filling it back up to the same [`len`] should incur no calls to
345 /// the allocator. If you wish to free up unused memory, use
346 /// [`shrink_to_fit`] or [`shrink_to`].
347 ///
348 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
350 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
351 /// accurate, and can be relied on. It can even be used to manually free the memory
352 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353 /// when not necessary.
354 ///
355 /// `Vec` does not guarantee any particular growth strategy when reallocating
356 /// when full, nor when [`reserve`] is called. The current strategy is basic
357 /// and it may prove desirable to use a non-constant growth factor. Whatever
358 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
359 ///
360 /// `vec![x; n]`, `vec![a, b, c, d]`, and
361 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
362 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
363 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
365 ///
366 /// `Vec` will not specifically overwrite any data that is removed from it,
367 /// but also won't specifically preserve it. Its uninitialized memory is
368 /// scratch space that it may use however it wants. It will generally just do
369 /// whatever is most efficient or otherwise easy to implement. Do not rely on
370 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
372 /// first, that might not actually happen because the optimizer does not consider
373 /// this a side-effect that must be preserved. There is one case which we will
374 /// not break, however: using `unsafe` code to write to the excess capacity,
375 /// and then increasing the length to match, is always valid.
376 ///
377 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
378 /// The order has changed in the past and may change again.
379 ///
380 /// [`get`]: slice::get
381 /// [`get_mut`]: slice::get_mut
382 /// [`String`]: crate::string::String
383 /// [`&str`]: type@str
384 /// [`shrink_to_fit`]: Vec::shrink_to_fit
385 /// [`shrink_to`]: Vec::shrink_to
386 /// [capacity]: Vec::capacity
387 /// [`capacity`]: Vec::capacity
388 /// [mem::size_of::\<T>]: core::mem::size_of
389 /// [len]: Vec::len
390 /// [`len`]: Vec::len
391 /// [`push`]: Vec::push
392 /// [`insert`]: Vec::insert
393 /// [`reserve`]: Vec::reserve
394 /// [`MaybeUninit`]: core::mem::MaybeUninit
395 /// [owned slice]: Box
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
398 #[rustc_insignificant_dtor]
399 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
400 buf: RawVec<T, A>,
401 len: usize,
402 }
403
404 ////////////////////////////////////////////////////////////////////////////////
405 // Inherent methods
406 ////////////////////////////////////////////////////////////////////////////////
407
408 impl<T> Vec<T> {
409 /// Constructs a new, empty `Vec<T>`.
410 ///
411 /// The vector will not allocate until elements are pushed onto it.
412 ///
413 /// # Examples
414 ///
415 /// ```
416 /// # #![allow(unused_mut)]
417 /// let mut vec: Vec<i32> = Vec::new();
418 /// ```
419 #[inline]
420 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
421 #[stable(feature = "rust1", since = "1.0.0")]
422 #[must_use]
new() -> Self423 pub const fn new() -> Self {
424 Vec { buf: RawVec::NEW, len: 0 }
425 }
426
427 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
428 ///
429 /// The vector will be able to hold at least `capacity` elements without
430 /// reallocating. This method is allowed to allocate for more elements than
431 /// `capacity`. If `capacity` is 0, the vector will not allocate.
432 ///
433 /// It is important to note that although the returned vector has the
434 /// minimum *capacity* specified, the vector will have a zero *length*. For
435 /// an explanation of the difference between length and capacity, see
436 /// *[Capacity and reallocation]*.
437 ///
438 /// If it is important to know the exact allocated capacity of a `Vec`,
439 /// always use the [`capacity`] method after construction.
440 ///
441 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
442 /// and the capacity will always be `usize::MAX`.
443 ///
444 /// [Capacity and reallocation]: #capacity-and-reallocation
445 /// [`capacity`]: Vec::capacity
446 ///
447 /// # Panics
448 ///
449 /// Panics if the new capacity exceeds `isize::MAX` bytes.
450 ///
451 /// # Examples
452 ///
453 /// ```
454 /// let mut vec = Vec::with_capacity(10);
455 ///
456 /// // The vector contains no items, even though it has capacity for more
457 /// assert_eq!(vec.len(), 0);
458 /// assert!(vec.capacity() >= 10);
459 ///
460 /// // These are all done without reallocating...
461 /// for i in 0..10 {
462 /// vec.push(i);
463 /// }
464 /// assert_eq!(vec.len(), 10);
465 /// assert!(vec.capacity() >= 10);
466 ///
467 /// // ...but this may make the vector reallocate
468 /// vec.push(11);
469 /// assert_eq!(vec.len(), 11);
470 /// assert!(vec.capacity() >= 11);
471 ///
472 /// // A vector of a zero-sized type will always over-allocate, since no
473 /// // allocation is necessary
474 /// let vec_units = Vec::<()>::with_capacity(10);
475 /// assert_eq!(vec_units.capacity(), usize::MAX);
476 /// ```
477 #[cfg(not(no_global_oom_handling))]
478 #[inline]
479 #[stable(feature = "rust1", since = "1.0.0")]
480 #[must_use]
with_capacity(capacity: usize) -> Self481 pub fn with_capacity(capacity: usize) -> Self {
482 Self::with_capacity_in(capacity, Global)
483 }
484
485 /// Tries to construct a new, empty `Vec<T>` with at least the specified capacity.
486 ///
487 /// The vector will be able to hold at least `capacity` elements without
488 /// reallocating. This method is allowed to allocate for more elements than
489 /// `capacity`. If `capacity` is 0, the vector will not allocate.
490 ///
491 /// It is important to note that although the returned vector has the
492 /// minimum *capacity* specified, the vector will have a zero *length*. For
493 /// an explanation of the difference between length and capacity, see
494 /// *[Capacity and reallocation]*.
495 ///
496 /// If it is important to know the exact allocated capacity of a `Vec`,
497 /// always use the [`capacity`] method after construction.
498 ///
499 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
500 /// and the capacity will always be `usize::MAX`.
501 ///
502 /// [Capacity and reallocation]: #capacity-and-reallocation
503 /// [`capacity`]: Vec::capacity
504 ///
505 /// # Examples
506 ///
507 /// ```
508 /// let mut vec = Vec::try_with_capacity(10).unwrap();
509 ///
510 /// // The vector contains no items, even though it has capacity for more
511 /// assert_eq!(vec.len(), 0);
512 /// assert!(vec.capacity() >= 10);
513 ///
514 /// // These are all done without reallocating...
515 /// for i in 0..10 {
516 /// vec.push(i);
517 /// }
518 /// assert_eq!(vec.len(), 10);
519 /// assert!(vec.capacity() >= 10);
520 ///
521 /// // ...but this may make the vector reallocate
522 /// vec.push(11);
523 /// assert_eq!(vec.len(), 11);
524 /// assert!(vec.capacity() >= 11);
525 ///
526 /// let mut result = Vec::try_with_capacity(usize::MAX);
527 /// assert!(result.is_err());
528 ///
529 /// // A vector of a zero-sized type will always over-allocate, since no
530 /// // allocation is necessary
531 /// let vec_units = Vec::<()>::try_with_capacity(10).unwrap();
532 /// assert_eq!(vec_units.capacity(), usize::MAX);
533 /// ```
534 #[inline]
535 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity(capacity: usize) -> Result<Self, TryReserveError>536 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537 Self::try_with_capacity_in(capacity, Global)
538 }
539
540 /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
541 ///
542 /// # Safety
543 ///
544 /// This is highly unsafe, due to the number of invariants that aren't
545 /// checked:
546 ///
547 /// * `ptr` must have been allocated using the global allocator, such as via
548 /// the [`alloc::alloc`] function.
549 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
550 /// (`T` having a less strict alignment is not sufficient, the alignment really
551 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
552 /// allocated and deallocated with the same layout.)
553 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
554 /// to be the same size as the pointer was allocated with. (Because similar to
555 /// alignment, [`dealloc`] must be called with the same layout `size`.)
556 /// * `length` needs to be less than or equal to `capacity`.
557 /// * The first `length` values must be properly initialized values of type `T`.
558 /// * `capacity` needs to be the capacity that the pointer was allocated with.
559 /// * The allocated size in bytes must be no larger than `isize::MAX`.
560 /// See the safety documentation of [`pointer::offset`].
561 ///
562 /// These requirements are always upheld by any `ptr` that has been allocated
563 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
564 /// upheld.
565 ///
566 /// Violating these may cause problems like corrupting the allocator's
567 /// internal data structures. For example it is normally **not** safe
568 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
569 /// `size_t`, doing so is only safe if the array was initially allocated by
570 /// a `Vec` or `String`.
571 /// It's also not safe to build one from a `Vec<u16>` and its length, because
572 /// the allocator cares about the alignment, and these two types have different
573 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
574 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
575 /// these issues, it is often preferable to do casting/transmuting using
576 /// [`slice::from_raw_parts`] instead.
577 ///
578 /// The ownership of `ptr` is effectively transferred to the
579 /// `Vec<T>` which may then deallocate, reallocate or change the
580 /// contents of memory pointed to by the pointer at will. Ensure
581 /// that nothing else uses the pointer after calling this
582 /// function.
583 ///
584 /// [`String`]: crate::string::String
585 /// [`alloc::alloc`]: crate::alloc::alloc
586 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
587 ///
588 /// # Examples
589 ///
590 /// ```
591 /// use std::ptr;
592 /// use std::mem;
593 ///
594 /// let v = vec![1, 2, 3];
595 ///
596 // FIXME Update this when vec_into_raw_parts is stabilized
597 /// // Prevent running `v`'s destructor so we are in complete control
598 /// // of the allocation.
599 /// let mut v = mem::ManuallyDrop::new(v);
600 ///
601 /// // Pull out the various important pieces of information about `v`
602 /// let p = v.as_mut_ptr();
603 /// let len = v.len();
604 /// let cap = v.capacity();
605 ///
606 /// unsafe {
607 /// // Overwrite memory with 4, 5, 6
608 /// for i in 0..len {
609 /// ptr::write(p.add(i), 4 + i);
610 /// }
611 ///
612 /// // Put everything back together into a Vec
613 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
614 /// assert_eq!(rebuilt, [4, 5, 6]);
615 /// }
616 /// ```
617 ///
618 /// Using memory that was allocated elsewhere:
619 ///
620 /// ```rust
621 /// use std::alloc::{alloc, Layout};
622 ///
623 /// fn main() {
624 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
625 ///
626 /// let vec = unsafe {
627 /// let mem = alloc(layout).cast::<u32>();
628 /// if mem.is_null() {
629 /// return;
630 /// }
631 ///
632 /// mem.write(1_000_000);
633 ///
634 /// Vec::from_raw_parts(mem, 1, 16)
635 /// };
636 ///
637 /// assert_eq!(vec, &[1_000_000]);
638 /// assert_eq!(vec.capacity(), 16);
639 /// }
640 /// ```
641 #[inline]
642 #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self643 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
644 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
645 }
646 }
647
648 impl<T, A: Allocator> Vec<T, A> {
649 /// Constructs a new, empty `Vec<T, A>`.
650 ///
651 /// The vector will not allocate until elements are pushed onto it.
652 ///
653 /// # Examples
654 ///
655 /// ```
656 /// #![feature(allocator_api)]
657 ///
658 /// use std::alloc::System;
659 ///
660 /// # #[allow(unused_mut)]
661 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
662 /// ```
663 #[inline]
664 #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self665 pub const fn new_in(alloc: A) -> Self {
666 Vec { buf: RawVec::new_in(alloc), len: 0 }
667 }
668
669 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
670 /// with the provided allocator.
671 ///
672 /// The vector will be able to hold at least `capacity` elements without
673 /// reallocating. This method is allowed to allocate for more elements than
674 /// `capacity`. If `capacity` is 0, the vector will not allocate.
675 ///
676 /// It is important to note that although the returned vector has the
677 /// minimum *capacity* specified, the vector will have a zero *length*. For
678 /// an explanation of the difference between length and capacity, see
679 /// *[Capacity and reallocation]*.
680 ///
681 /// If it is important to know the exact allocated capacity of a `Vec`,
682 /// always use the [`capacity`] method after construction.
683 ///
684 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
685 /// and the capacity will always be `usize::MAX`.
686 ///
687 /// [Capacity and reallocation]: #capacity-and-reallocation
688 /// [`capacity`]: Vec::capacity
689 ///
690 /// # Panics
691 ///
692 /// Panics if the new capacity exceeds `isize::MAX` bytes.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// #![feature(allocator_api)]
698 ///
699 /// use std::alloc::System;
700 ///
701 /// let mut vec = Vec::with_capacity_in(10, System);
702 ///
703 /// // The vector contains no items, even though it has capacity for more
704 /// assert_eq!(vec.len(), 0);
705 /// assert!(vec.capacity() >= 10);
706 ///
707 /// // These are all done without reallocating...
708 /// for i in 0..10 {
709 /// vec.push(i);
710 /// }
711 /// assert_eq!(vec.len(), 10);
712 /// assert!(vec.capacity() >= 10);
713 ///
714 /// // ...but this may make the vector reallocate
715 /// vec.push(11);
716 /// assert_eq!(vec.len(), 11);
717 /// assert!(vec.capacity() >= 11);
718 ///
719 /// // A vector of a zero-sized type will always over-allocate, since no
720 /// // allocation is necessary
721 /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
722 /// assert_eq!(vec_units.capacity(), usize::MAX);
723 /// ```
724 #[cfg(not(no_global_oom_handling))]
725 #[inline]
726 #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self727 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
728 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
729 }
730
731 /// Tries to construct a new, empty `Vec<T, A>` with at least the specified capacity
732 /// with the provided allocator.
733 ///
734 /// The vector will be able to hold at least `capacity` elements without
735 /// reallocating. This method is allowed to allocate for more elements than
736 /// `capacity`. If `capacity` is 0, the vector will not allocate.
737 ///
738 /// It is important to note that although the returned vector has the
739 /// minimum *capacity* specified, the vector will have a zero *length*. For
740 /// an explanation of the difference between length and capacity, see
741 /// *[Capacity and reallocation]*.
742 ///
743 /// If it is important to know the exact allocated capacity of a `Vec`,
744 /// always use the [`capacity`] method after construction.
745 ///
746 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
747 /// and the capacity will always be `usize::MAX`.
748 ///
749 /// [Capacity and reallocation]: #capacity-and-reallocation
750 /// [`capacity`]: Vec::capacity
751 ///
752 /// # Examples
753 ///
754 /// ```
755 /// #![feature(allocator_api)]
756 ///
757 /// use std::alloc::System;
758 ///
759 /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
760 ///
761 /// // The vector contains no items, even though it has capacity for more
762 /// assert_eq!(vec.len(), 0);
763 /// assert!(vec.capacity() >= 10);
764 ///
765 /// // These are all done without reallocating...
766 /// for i in 0..10 {
767 /// vec.push(i);
768 /// }
769 /// assert_eq!(vec.len(), 10);
770 /// assert!(vec.capacity() >= 10);
771 ///
772 /// // ...but this may make the vector reallocate
773 /// vec.push(11);
774 /// assert_eq!(vec.len(), 11);
775 /// assert!(vec.capacity() >= 11);
776 ///
777 /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
778 /// assert!(result.is_err());
779 ///
780 /// // A vector of a zero-sized type will always over-allocate, since no
781 /// // allocation is necessary
782 /// let vec_units = Vec::<(), System>::try_with_capacity_in(10, System).unwrap();
783 /// assert_eq!(vec_units.capacity(), usize::MAX);
784 /// ```
785 #[inline]
786 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>787 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
788 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
789 }
790
791 /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
792 /// and an allocator.
793 ///
794 /// # Safety
795 ///
796 /// This is highly unsafe, due to the number of invariants that aren't
797 /// checked:
798 ///
799 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
800 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
801 /// (`T` having a less strict alignment is not sufficient, the alignment really
802 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
803 /// allocated and deallocated with the same layout.)
804 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
805 /// to be the same size as the pointer was allocated with. (Because similar to
806 /// alignment, [`dealloc`] must be called with the same layout `size`.)
807 /// * `length` needs to be less than or equal to `capacity`.
808 /// * The first `length` values must be properly initialized values of type `T`.
809 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
810 /// * The allocated size in bytes must be no larger than `isize::MAX`.
811 /// See the safety documentation of [`pointer::offset`].
812 ///
813 /// These requirements are always upheld by any `ptr` that has been allocated
814 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
815 /// upheld.
816 ///
817 /// Violating these may cause problems like corrupting the allocator's
818 /// internal data structures. For example it is **not** safe
819 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
820 /// It's also not safe to build one from a `Vec<u16>` and its length, because
821 /// the allocator cares about the alignment, and these two types have different
822 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
823 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
824 ///
825 /// The ownership of `ptr` is effectively transferred to the
826 /// `Vec<T>` which may then deallocate, reallocate or change the
827 /// contents of memory pointed to by the pointer at will. Ensure
828 /// that nothing else uses the pointer after calling this
829 /// function.
830 ///
831 /// [`String`]: crate::string::String
832 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
833 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
834 /// [*fit*]: crate::alloc::Allocator#memory-fitting
835 ///
836 /// # Examples
837 ///
838 /// ```
839 /// #![feature(allocator_api)]
840 ///
841 /// use std::alloc::System;
842 ///
843 /// use std::ptr;
844 /// use std::mem;
845 ///
846 /// let mut v = Vec::with_capacity_in(3, System);
847 /// v.push(1);
848 /// v.push(2);
849 /// v.push(3);
850 ///
851 // FIXME Update this when vec_into_raw_parts is stabilized
852 /// // Prevent running `v`'s destructor so we are in complete control
853 /// // of the allocation.
854 /// let mut v = mem::ManuallyDrop::new(v);
855 ///
856 /// // Pull out the various important pieces of information about `v`
857 /// let p = v.as_mut_ptr();
858 /// let len = v.len();
859 /// let cap = v.capacity();
860 /// let alloc = v.allocator();
861 ///
862 /// unsafe {
863 /// // Overwrite memory with 4, 5, 6
864 /// for i in 0..len {
865 /// ptr::write(p.add(i), 4 + i);
866 /// }
867 ///
868 /// // Put everything back together into a Vec
869 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
870 /// assert_eq!(rebuilt, [4, 5, 6]);
871 /// }
872 /// ```
873 ///
874 /// Using memory that was allocated elsewhere:
875 ///
876 /// ```rust
877 /// #![feature(allocator_api)]
878 ///
879 /// use std::alloc::{AllocError, Allocator, Global, Layout};
880 ///
881 /// fn main() {
882 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
883 ///
884 /// let vec = unsafe {
885 /// let mem = match Global.allocate(layout) {
886 /// Ok(mem) => mem.cast::<u32>().as_ptr(),
887 /// Err(AllocError) => return,
888 /// };
889 ///
890 /// mem.write(1_000_000);
891 ///
892 /// Vec::from_raw_parts_in(mem, 1, 16, Global)
893 /// };
894 ///
895 /// assert_eq!(vec, &[1_000_000]);
896 /// assert_eq!(vec.capacity(), 16);
897 /// }
898 /// ```
899 #[inline]
900 #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self901 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
902 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
903 }
904
905 /// Decomposes a `Vec<T>` into its raw components.
906 ///
907 /// Returns the raw pointer to the underlying data, the length of
908 /// the vector (in elements), and the allocated capacity of the
909 /// data (in elements). These are the same arguments in the same
910 /// order as the arguments to [`from_raw_parts`].
911 ///
912 /// After calling this function, the caller is responsible for the
913 /// memory previously managed by the `Vec`. The only way to do
914 /// this is to convert the raw pointer, length, and capacity back
915 /// into a `Vec` with the [`from_raw_parts`] function, allowing
916 /// the destructor to perform the cleanup.
917 ///
918 /// [`from_raw_parts`]: Vec::from_raw_parts
919 ///
920 /// # Examples
921 ///
922 /// ```
923 /// #![feature(vec_into_raw_parts)]
924 /// let v: Vec<i32> = vec![-1, 0, 1];
925 ///
926 /// let (ptr, len, cap) = v.into_raw_parts();
927 ///
928 /// let rebuilt = unsafe {
929 /// // We can now make changes to the components, such as
930 /// // transmuting the raw pointer to a compatible type.
931 /// let ptr = ptr as *mut u32;
932 ///
933 /// Vec::from_raw_parts(ptr, len, cap)
934 /// };
935 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
936 /// ```
937 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)938 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
939 let mut me = ManuallyDrop::new(self);
940 (me.as_mut_ptr(), me.len(), me.capacity())
941 }
942
943 /// Decomposes a `Vec<T>` into its raw components.
944 ///
945 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
946 /// the allocated capacity of the data (in elements), and the allocator. These are the same
947 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
948 ///
949 /// After calling this function, the caller is responsible for the
950 /// memory previously managed by the `Vec`. The only way to do
951 /// this is to convert the raw pointer, length, and capacity back
952 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
953 /// the destructor to perform the cleanup.
954 ///
955 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
956 ///
957 /// # Examples
958 ///
959 /// ```
960 /// #![feature(allocator_api, vec_into_raw_parts)]
961 ///
962 /// use std::alloc::System;
963 ///
964 /// let mut v: Vec<i32, System> = Vec::new_in(System);
965 /// v.push(-1);
966 /// v.push(0);
967 /// v.push(1);
968 ///
969 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
970 ///
971 /// let rebuilt = unsafe {
972 /// // We can now make changes to the components, such as
973 /// // transmuting the raw pointer to a compatible type.
974 /// let ptr = ptr as *mut u32;
975 ///
976 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
977 /// };
978 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
979 /// ```
980 #[unstable(feature = "allocator_api", issue = "32838")]
981 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)982 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
983 let mut me = ManuallyDrop::new(self);
984 let len = me.len();
985 let capacity = me.capacity();
986 let ptr = me.as_mut_ptr();
987 let alloc = unsafe { ptr::read(me.allocator()) };
988 (ptr, len, capacity, alloc)
989 }
990
991 /// Returns the total number of elements the vector can hold without
992 /// reallocating.
993 ///
994 /// # Examples
995 ///
996 /// ```
997 /// let mut vec: Vec<i32> = Vec::with_capacity(10);
998 /// vec.push(42);
999 /// assert!(vec.capacity() >= 10);
1000 /// ```
1001 #[inline]
1002 #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize1003 pub fn capacity(&self) -> usize {
1004 self.buf.capacity()
1005 }
1006
1007 /// Reserves capacity for at least `additional` more elements to be inserted
1008 /// in the given `Vec<T>`. The collection may reserve more space to
1009 /// speculatively avoid frequent reallocations. After calling `reserve`,
1010 /// capacity will be greater than or equal to `self.len() + additional`.
1011 /// Does nothing if capacity is already sufficient.
1012 ///
1013 /// # Panics
1014 ///
1015 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1016 ///
1017 /// # Examples
1018 ///
1019 /// ```
1020 /// let mut vec = vec![1];
1021 /// vec.reserve(10);
1022 /// assert!(vec.capacity() >= 11);
1023 /// ```
1024 #[cfg(not(no_global_oom_handling))]
1025 #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)1026 pub fn reserve(&mut self, additional: usize) {
1027 self.buf.reserve(self.len, additional);
1028 }
1029
1030 /// Reserves the minimum capacity for at least `additional` more elements to
1031 /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1032 /// deliberately over-allocate to speculatively avoid frequent allocations.
1033 /// After calling `reserve_exact`, capacity will be greater than or equal to
1034 /// `self.len() + additional`. Does nothing if the capacity is already
1035 /// sufficient.
1036 ///
1037 /// Note that the allocator may give the collection more space than it
1038 /// requests. Therefore, capacity can not be relied upon to be precisely
1039 /// minimal. Prefer [`reserve`] if future insertions are expected.
1040 ///
1041 /// [`reserve`]: Vec::reserve
1042 ///
1043 /// # Panics
1044 ///
1045 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
1050 /// let mut vec = vec![1];
1051 /// vec.reserve_exact(10);
1052 /// assert!(vec.capacity() >= 11);
1053 /// ```
1054 #[cfg(not(no_global_oom_handling))]
1055 #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)1056 pub fn reserve_exact(&mut self, additional: usize) {
1057 self.buf.reserve_exact(self.len, additional);
1058 }
1059
1060 /// Tries to reserve capacity for at least `additional` more elements to be inserted
1061 /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1062 /// frequent reallocations. After calling `try_reserve`, capacity will be
1063 /// greater than or equal to `self.len() + additional` if it returns
1064 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1065 /// preserves the contents even if an error occurs.
1066 ///
1067 /// # Errors
1068 ///
1069 /// If the capacity overflows, or the allocator reports a failure, then an error
1070 /// is returned.
1071 ///
1072 /// # Examples
1073 ///
1074 /// ```
1075 /// use std::collections::TryReserveError;
1076 ///
1077 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1078 /// let mut output = Vec::new();
1079 ///
1080 /// // Pre-reserve the memory, exiting if we can't
1081 /// output.try_reserve(data.len())?;
1082 ///
1083 /// // Now we know this can't OOM in the middle of our complex work
1084 /// output.extend(data.iter().map(|&val| {
1085 /// val * 2 + 5 // very complicated
1086 /// }));
1087 ///
1088 /// Ok(output)
1089 /// }
1090 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1091 /// ```
1092 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>1093 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1094 self.buf.try_reserve(self.len, additional)
1095 }
1096
1097 /// Tries to reserve the minimum capacity for at least `additional`
1098 /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1099 /// this will not deliberately over-allocate to speculatively avoid frequent
1100 /// allocations. After calling `try_reserve_exact`, capacity will be greater
1101 /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1102 /// Does nothing if the capacity is already sufficient.
1103 ///
1104 /// Note that the allocator may give the collection more space than it
1105 /// requests. Therefore, capacity can not be relied upon to be precisely
1106 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1107 ///
1108 /// [`try_reserve`]: Vec::try_reserve
1109 ///
1110 /// # Errors
1111 ///
1112 /// If the capacity overflows, or the allocator reports a failure, then an error
1113 /// is returned.
1114 ///
1115 /// # Examples
1116 ///
1117 /// ```
1118 /// use std::collections::TryReserveError;
1119 ///
1120 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1121 /// let mut output = Vec::new();
1122 ///
1123 /// // Pre-reserve the memory, exiting if we can't
1124 /// output.try_reserve_exact(data.len())?;
1125 ///
1126 /// // Now we know this can't OOM in the middle of our complex work
1127 /// output.extend(data.iter().map(|&val| {
1128 /// val * 2 + 5 // very complicated
1129 /// }));
1130 ///
1131 /// Ok(output)
1132 /// }
1133 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1134 /// ```
1135 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1136 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1137 self.buf.try_reserve_exact(self.len, additional)
1138 }
1139
1140 /// Shrinks the capacity of the vector as much as possible.
1141 ///
1142 /// It will drop down as close as possible to the length but the allocator
1143 /// may still inform the vector that there is space for a few more elements.
1144 ///
1145 /// # Examples
1146 ///
1147 /// ```
1148 /// let mut vec = Vec::with_capacity(10);
1149 /// vec.extend([1, 2, 3]);
1150 /// assert!(vec.capacity() >= 10);
1151 /// vec.shrink_to_fit();
1152 /// assert!(vec.capacity() >= 3);
1153 /// ```
1154 #[cfg(not(no_global_oom_handling))]
1155 #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1156 pub fn shrink_to_fit(&mut self) {
1157 // The capacity is never less than the length, and there's nothing to do when
1158 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1159 // by only calling it with a greater capacity.
1160 if self.capacity() > self.len {
1161 self.buf.shrink_to_fit(self.len);
1162 }
1163 }
1164
1165 /// Shrinks the capacity of the vector with a lower bound.
1166 ///
1167 /// The capacity will remain at least as large as both the length
1168 /// and the supplied value.
1169 ///
1170 /// If the current capacity is less than the lower limit, this is a no-op.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// let mut vec = Vec::with_capacity(10);
1176 /// vec.extend([1, 2, 3]);
1177 /// assert!(vec.capacity() >= 10);
1178 /// vec.shrink_to(4);
1179 /// assert!(vec.capacity() >= 4);
1180 /// vec.shrink_to(0);
1181 /// assert!(vec.capacity() >= 3);
1182 /// ```
1183 #[cfg(not(no_global_oom_handling))]
1184 #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1185 pub fn shrink_to(&mut self, min_capacity: usize) {
1186 if self.capacity() > min_capacity {
1187 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1188 }
1189 }
1190
1191 /// Converts the vector into [`Box<[T]>`][owned slice].
1192 ///
1193 /// If the vector has excess capacity, its items will be moved into a
1194 /// newly-allocated buffer with exactly the right capacity.
1195 ///
1196 /// [owned slice]: Box
1197 ///
1198 /// # Examples
1199 ///
1200 /// ```
1201 /// let v = vec![1, 2, 3];
1202 ///
1203 /// let slice = v.into_boxed_slice();
1204 /// ```
1205 ///
1206 /// Any excess capacity is removed:
1207 ///
1208 /// ```
1209 /// let mut vec = Vec::with_capacity(10);
1210 /// vec.extend([1, 2, 3]);
1211 ///
1212 /// assert!(vec.capacity() >= 10);
1213 /// let slice = vec.into_boxed_slice();
1214 /// assert_eq!(slice.into_vec().capacity(), 3);
1215 /// ```
1216 #[cfg(not(no_global_oom_handling))]
1217 #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1218 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1219 unsafe {
1220 self.shrink_to_fit();
1221 let me = ManuallyDrop::new(self);
1222 let buf = ptr::read(&me.buf);
1223 let len = me.len();
1224 buf.into_box(len).assume_init()
1225 }
1226 }
1227
1228 /// Shortens the vector, keeping the first `len` elements and dropping
1229 /// the rest.
1230 ///
1231 /// If `len` is greater than the vector's current length, this has no
1232 /// effect.
1233 ///
1234 /// The [`drain`] method can emulate `truncate`, but causes the excess
1235 /// elements to be returned instead of dropped.
1236 ///
1237 /// Note that this method has no effect on the allocated capacity
1238 /// of the vector.
1239 ///
1240 /// # Examples
1241 ///
1242 /// Truncating a five element vector to two elements:
1243 ///
1244 /// ```
1245 /// let mut vec = vec![1, 2, 3, 4, 5];
1246 /// vec.truncate(2);
1247 /// assert_eq!(vec, [1, 2]);
1248 /// ```
1249 ///
1250 /// No truncation occurs when `len` is greater than the vector's current
1251 /// length:
1252 ///
1253 /// ```
1254 /// let mut vec = vec![1, 2, 3];
1255 /// vec.truncate(8);
1256 /// assert_eq!(vec, [1, 2, 3]);
1257 /// ```
1258 ///
1259 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1260 /// method.
1261 ///
1262 /// ```
1263 /// let mut vec = vec![1, 2, 3];
1264 /// vec.truncate(0);
1265 /// assert_eq!(vec, []);
1266 /// ```
1267 ///
1268 /// [`clear`]: Vec::clear
1269 /// [`drain`]: Vec::drain
1270 #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1271 pub fn truncate(&mut self, len: usize) {
1272 // This is safe because:
1273 //
1274 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1275 // case avoids creating an invalid slice, and
1276 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1277 // such that no value will be dropped twice in case `drop_in_place`
1278 // were to panic once (if it panics twice, the program aborts).
1279 unsafe {
1280 // Note: It's intentional that this is `>` and not `>=`.
1281 // Changing it to `>=` has negative performance
1282 // implications in some cases. See #78884 for more.
1283 if len > self.len {
1284 return;
1285 }
1286 let remaining_len = self.len - len;
1287 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1288 self.len = len;
1289 ptr::drop_in_place(s);
1290 }
1291 }
1292
1293 /// Extracts a slice containing the entire vector.
1294 ///
1295 /// Equivalent to `&s[..]`.
1296 ///
1297 /// # Examples
1298 ///
1299 /// ```
1300 /// use std::io::{self, Write};
1301 /// let buffer = vec![1, 2, 3, 5, 8];
1302 /// io::sink().write(buffer.as_slice()).unwrap();
1303 /// ```
1304 #[inline]
1305 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1306 pub fn as_slice(&self) -> &[T] {
1307 self
1308 }
1309
1310 /// Extracts a mutable slice of the entire vector.
1311 ///
1312 /// Equivalent to `&mut s[..]`.
1313 ///
1314 /// # Examples
1315 ///
1316 /// ```
1317 /// use std::io::{self, Read};
1318 /// let mut buffer = vec![0; 3];
1319 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1320 /// ```
1321 #[inline]
1322 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1323 pub fn as_mut_slice(&mut self) -> &mut [T] {
1324 self
1325 }
1326
1327 /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1328 /// valid for zero sized reads if the vector didn't allocate.
1329 ///
1330 /// The caller must ensure that the vector outlives the pointer this
1331 /// function returns, or else it will end up pointing to garbage.
1332 /// Modifying the vector may cause its buffer to be reallocated,
1333 /// which would also make any pointers to it invalid.
1334 ///
1335 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1336 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1337 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1338 ///
1339 /// # Examples
1340 ///
1341 /// ```
1342 /// let x = vec![1, 2, 4];
1343 /// let x_ptr = x.as_ptr();
1344 ///
1345 /// unsafe {
1346 /// for i in 0..x.len() {
1347 /// assert_eq!(*x_ptr.add(i), 1 << i);
1348 /// }
1349 /// }
1350 /// ```
1351 ///
1352 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1353 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1354 #[inline]
as_ptr(&self) -> *const T1355 pub fn as_ptr(&self) -> *const T {
1356 // We shadow the slice method of the same name to avoid going through
1357 // `deref`, which creates an intermediate reference.
1358 self.buf.ptr()
1359 }
1360
1361 /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1362 /// raw pointer valid for zero sized reads if the vector didn't allocate.
1363 ///
1364 /// The caller must ensure that the vector outlives the pointer this
1365 /// function returns, or else it will end up pointing to garbage.
1366 /// Modifying the vector may cause its buffer to be reallocated,
1367 /// which would also make any pointers to it invalid.
1368 ///
1369 /// # Examples
1370 ///
1371 /// ```
1372 /// // Allocate vector big enough for 4 elements.
1373 /// let size = 4;
1374 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1375 /// let x_ptr = x.as_mut_ptr();
1376 ///
1377 /// // Initialize elements via raw pointer writes, then set length.
1378 /// unsafe {
1379 /// for i in 0..size {
1380 /// *x_ptr.add(i) = i as i32;
1381 /// }
1382 /// x.set_len(size);
1383 /// }
1384 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1385 /// ```
1386 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1387 #[inline]
as_mut_ptr(&mut self) -> *mut T1388 pub fn as_mut_ptr(&mut self) -> *mut T {
1389 // We shadow the slice method of the same name to avoid going through
1390 // `deref_mut`, which creates an intermediate reference.
1391 self.buf.ptr()
1392 }
1393
1394 /// Returns a reference to the underlying allocator.
1395 #[unstable(feature = "allocator_api", issue = "32838")]
1396 #[inline]
allocator(&self) -> &A1397 pub fn allocator(&self) -> &A {
1398 self.buf.allocator()
1399 }
1400
1401 /// Forces the length of the vector to `new_len`.
1402 ///
1403 /// This is a low-level operation that maintains none of the normal
1404 /// invariants of the type. Normally changing the length of a vector
1405 /// is done using one of the safe operations instead, such as
1406 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1407 ///
1408 /// [`truncate`]: Vec::truncate
1409 /// [`resize`]: Vec::resize
1410 /// [`extend`]: Extend::extend
1411 /// [`clear`]: Vec::clear
1412 ///
1413 /// # Safety
1414 ///
1415 /// - `new_len` must be less than or equal to [`capacity()`].
1416 /// - The elements at `old_len..new_len` must be initialized.
1417 ///
1418 /// [`capacity()`]: Vec::capacity
1419 ///
1420 /// # Examples
1421 ///
1422 /// This method can be useful for situations in which the vector
1423 /// is serving as a buffer for other code, particularly over FFI:
1424 ///
1425 /// ```no_run
1426 /// # #![allow(dead_code)]
1427 /// # // This is just a minimal skeleton for the doc example;
1428 /// # // don't use this as a starting point for a real library.
1429 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1430 /// # const Z_OK: i32 = 0;
1431 /// # extern "C" {
1432 /// # fn deflateGetDictionary(
1433 /// # strm: *mut std::ffi::c_void,
1434 /// # dictionary: *mut u8,
1435 /// # dictLength: *mut usize,
1436 /// # ) -> i32;
1437 /// # }
1438 /// # impl StreamWrapper {
1439 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1440 /// // Per the FFI method's docs, "32768 bytes is always enough".
1441 /// let mut dict = Vec::with_capacity(32_768);
1442 /// let mut dict_length = 0;
1443 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1444 /// // 1. `dict_length` elements were initialized.
1445 /// // 2. `dict_length` <= the capacity (32_768)
1446 /// // which makes `set_len` safe to call.
1447 /// unsafe {
1448 /// // Make the FFI call...
1449 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1450 /// if r == Z_OK {
1451 /// // ...and update the length to what was initialized.
1452 /// dict.set_len(dict_length);
1453 /// Some(dict)
1454 /// } else {
1455 /// None
1456 /// }
1457 /// }
1458 /// }
1459 /// # }
1460 /// ```
1461 ///
1462 /// While the following example is sound, there is a memory leak since
1463 /// the inner vectors were not freed prior to the `set_len` call:
1464 ///
1465 /// ```
1466 /// let mut vec = vec![vec![1, 0, 0],
1467 /// vec![0, 1, 0],
1468 /// vec![0, 0, 1]];
1469 /// // SAFETY:
1470 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1471 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1472 /// unsafe {
1473 /// vec.set_len(0);
1474 /// }
1475 /// ```
1476 ///
1477 /// Normally, here, one would use [`clear`] instead to correctly drop
1478 /// the contents and thus not leak memory.
1479 #[inline]
1480 #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1481 pub unsafe fn set_len(&mut self, new_len: usize) {
1482 debug_assert!(new_len <= self.capacity());
1483
1484 self.len = new_len;
1485 }
1486
1487 /// Removes an element from the vector and returns it.
1488 ///
1489 /// The removed element is replaced by the last element of the vector.
1490 ///
1491 /// This does not preserve ordering, but is *O*(1).
1492 /// If you need to preserve the element order, use [`remove`] instead.
1493 ///
1494 /// [`remove`]: Vec::remove
1495 ///
1496 /// # Panics
1497 ///
1498 /// Panics if `index` is out of bounds.
1499 ///
1500 /// # Examples
1501 ///
1502 /// ```
1503 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1504 ///
1505 /// assert_eq!(v.swap_remove(1), "bar");
1506 /// assert_eq!(v, ["foo", "qux", "baz"]);
1507 ///
1508 /// assert_eq!(v.swap_remove(0), "foo");
1509 /// assert_eq!(v, ["baz", "qux"]);
1510 /// ```
1511 #[inline]
1512 #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1513 pub fn swap_remove(&mut self, index: usize) -> T {
1514 #[cold]
1515 #[inline(never)]
1516 fn assert_failed(index: usize, len: usize) -> ! {
1517 panic!("swap_remove index (is {index}) should be < len (is {len})");
1518 }
1519
1520 let len = self.len();
1521 if index >= len {
1522 assert_failed(index, len);
1523 }
1524 unsafe {
1525 // We replace self[index] with the last element. Note that if the
1526 // bounds check above succeeds there must be a last element (which
1527 // can be self[index] itself).
1528 let value = ptr::read(self.as_ptr().add(index));
1529 let base_ptr = self.as_mut_ptr();
1530 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1531 self.set_len(len - 1);
1532 value
1533 }
1534 }
1535
1536 /// Inserts an element at position `index` within the vector, shifting all
1537 /// elements after it to the right.
1538 ///
1539 /// # Panics
1540 ///
1541 /// Panics if `index > len`.
1542 ///
1543 /// # Examples
1544 ///
1545 /// ```
1546 /// let mut vec = vec![1, 2, 3];
1547 /// vec.insert(1, 4);
1548 /// assert_eq!(vec, [1, 4, 2, 3]);
1549 /// vec.insert(4, 5);
1550 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1551 /// ```
1552 #[cfg(not(no_global_oom_handling))]
1553 #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1554 pub fn insert(&mut self, index: usize, element: T) {
1555 #[cold]
1556 #[inline(never)]
1557 fn assert_failed(index: usize, len: usize) -> ! {
1558 panic!("insertion index (is {index}) should be <= len (is {len})");
1559 }
1560
1561 let len = self.len();
1562
1563 // space for the new element
1564 if len == self.buf.capacity() {
1565 self.reserve(1);
1566 }
1567
1568 unsafe {
1569 // infallible
1570 // The spot to put the new value
1571 {
1572 let p = self.as_mut_ptr().add(index);
1573 if index < len {
1574 // Shift everything over to make space. (Duplicating the
1575 // `index`th element into two consecutive places.)
1576 ptr::copy(p, p.add(1), len - index);
1577 } else if index == len {
1578 // No elements need shifting.
1579 } else {
1580 assert_failed(index, len);
1581 }
1582 // Write it in, overwriting the first copy of the `index`th
1583 // element.
1584 ptr::write(p, element);
1585 }
1586 self.set_len(len + 1);
1587 }
1588 }
1589
1590 /// Removes and returns the element at position `index` within the vector,
1591 /// shifting all elements after it to the left.
1592 ///
1593 /// Note: Because this shifts over the remaining elements, it has a
1594 /// worst-case performance of *O*(*n*). If you don't need the order of elements
1595 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1596 /// elements from the beginning of the `Vec`, consider using
1597 /// [`VecDeque::pop_front`] instead.
1598 ///
1599 /// [`swap_remove`]: Vec::swap_remove
1600 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1601 ///
1602 /// # Panics
1603 ///
1604 /// Panics if `index` is out of bounds.
1605 ///
1606 /// # Examples
1607 ///
1608 /// ```
1609 /// let mut v = vec![1, 2, 3];
1610 /// assert_eq!(v.remove(1), 2);
1611 /// assert_eq!(v, [1, 3]);
1612 /// ```
1613 #[stable(feature = "rust1", since = "1.0.0")]
1614 #[track_caller]
remove(&mut self, index: usize) -> T1615 pub fn remove(&mut self, index: usize) -> T {
1616 #[cold]
1617 #[inline(never)]
1618 #[track_caller]
1619 fn assert_failed(index: usize, len: usize) -> ! {
1620 panic!("removal index (is {index}) should be < len (is {len})");
1621 }
1622
1623 let len = self.len();
1624 if index >= len {
1625 assert_failed(index, len);
1626 }
1627 unsafe {
1628 // infallible
1629 let ret;
1630 {
1631 // the place we are taking from.
1632 let ptr = self.as_mut_ptr().add(index);
1633 // copy it out, unsafely having a copy of the value on
1634 // the stack and in the vector at the same time.
1635 ret = ptr::read(ptr);
1636
1637 // Shift everything down to fill in that spot.
1638 ptr::copy(ptr.add(1), ptr, len - index - 1);
1639 }
1640 self.set_len(len - 1);
1641 ret
1642 }
1643 }
1644
1645 /// Retains only the elements specified by the predicate.
1646 ///
1647 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1648 /// This method operates in place, visiting each element exactly once in the
1649 /// original order, and preserves the order of the retained elements.
1650 ///
1651 /// # Examples
1652 ///
1653 /// ```
1654 /// let mut vec = vec![1, 2, 3, 4];
1655 /// vec.retain(|&x| x % 2 == 0);
1656 /// assert_eq!(vec, [2, 4]);
1657 /// ```
1658 ///
1659 /// Because the elements are visited exactly once in the original order,
1660 /// external state may be used to decide which elements to keep.
1661 ///
1662 /// ```
1663 /// let mut vec = vec![1, 2, 3, 4, 5];
1664 /// let keep = [false, true, true, false, true];
1665 /// let mut iter = keep.iter();
1666 /// vec.retain(|_| *iter.next().unwrap());
1667 /// assert_eq!(vec, [2, 3, 5]);
1668 /// ```
1669 #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1670 pub fn retain<F>(&mut self, mut f: F)
1671 where
1672 F: FnMut(&T) -> bool,
1673 {
1674 self.retain_mut(|elem| f(elem));
1675 }
1676
1677 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1678 ///
1679 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1680 /// This method operates in place, visiting each element exactly once in the
1681 /// original order, and preserves the order of the retained elements.
1682 ///
1683 /// # Examples
1684 ///
1685 /// ```
1686 /// let mut vec = vec![1, 2, 3, 4];
1687 /// vec.retain_mut(|x| if *x <= 3 {
1688 /// *x += 1;
1689 /// true
1690 /// } else {
1691 /// false
1692 /// });
1693 /// assert_eq!(vec, [2, 3, 4]);
1694 /// ```
1695 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1696 pub fn retain_mut<F>(&mut self, mut f: F)
1697 where
1698 F: FnMut(&mut T) -> bool,
1699 {
1700 let original_len = self.len();
1701 // Avoid double drop if the drop guard is not executed,
1702 // since we may make some holes during the process.
1703 unsafe { self.set_len(0) };
1704
1705 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1706 // |<- processed len ->| ^- next to check
1707 // |<- deleted cnt ->|
1708 // |<- original_len ->|
1709 // Kept: Elements which predicate returns true on.
1710 // Hole: Moved or dropped element slot.
1711 // Unchecked: Unchecked valid elements.
1712 //
1713 // This drop guard will be invoked when predicate or `drop` of element panicked.
1714 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1715 // In cases when predicate and `drop` never panick, it will be optimized out.
1716 struct BackshiftOnDrop<'a, T, A: Allocator> {
1717 v: &'a mut Vec<T, A>,
1718 processed_len: usize,
1719 deleted_cnt: usize,
1720 original_len: usize,
1721 }
1722
1723 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1724 fn drop(&mut self) {
1725 if self.deleted_cnt > 0 {
1726 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1727 unsafe {
1728 ptr::copy(
1729 self.v.as_ptr().add(self.processed_len),
1730 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1731 self.original_len - self.processed_len,
1732 );
1733 }
1734 }
1735 // SAFETY: After filling holes, all items are in contiguous memory.
1736 unsafe {
1737 self.v.set_len(self.original_len - self.deleted_cnt);
1738 }
1739 }
1740 }
1741
1742 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1743
1744 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1745 original_len: usize,
1746 f: &mut F,
1747 g: &mut BackshiftOnDrop<'_, T, A>,
1748 ) where
1749 F: FnMut(&mut T) -> bool,
1750 {
1751 while g.processed_len != original_len {
1752 // SAFETY: Unchecked element must be valid.
1753 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1754 if !f(cur) {
1755 // Advance early to avoid double drop if `drop_in_place` panicked.
1756 g.processed_len += 1;
1757 g.deleted_cnt += 1;
1758 // SAFETY: We never touch this element again after dropped.
1759 unsafe { ptr::drop_in_place(cur) };
1760 // We already advanced the counter.
1761 if DELETED {
1762 continue;
1763 } else {
1764 break;
1765 }
1766 }
1767 if DELETED {
1768 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1769 // We use copy for move, and never touch this element again.
1770 unsafe {
1771 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1772 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1773 }
1774 }
1775 g.processed_len += 1;
1776 }
1777 }
1778
1779 // Stage 1: Nothing was deleted.
1780 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1781
1782 // Stage 2: Some elements were deleted.
1783 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1784
1785 // All item are processed. This can be optimized to `set_len` by LLVM.
1786 drop(g);
1787 }
1788
1789 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1790 /// key.
1791 ///
1792 /// If the vector is sorted, this removes all duplicates.
1793 ///
1794 /// # Examples
1795 ///
1796 /// ```
1797 /// let mut vec = vec![10, 20, 21, 30, 20];
1798 ///
1799 /// vec.dedup_by_key(|i| *i / 10);
1800 ///
1801 /// assert_eq!(vec, [10, 20, 30, 20]);
1802 /// ```
1803 #[stable(feature = "dedup_by", since = "1.16.0")]
1804 #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1805 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1806 where
1807 F: FnMut(&mut T) -> K,
1808 K: PartialEq,
1809 {
1810 self.dedup_by(|a, b| key(a) == key(b))
1811 }
1812
1813 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1814 /// relation.
1815 ///
1816 /// The `same_bucket` function is passed references to two elements from the vector and
1817 /// must determine if the elements compare equal. The elements are passed in opposite order
1818 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1819 ///
1820 /// If the vector is sorted, this removes all duplicates.
1821 ///
1822 /// # Examples
1823 ///
1824 /// ```
1825 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1826 ///
1827 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1828 ///
1829 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1830 /// ```
1831 #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1832 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1833 where
1834 F: FnMut(&mut T, &mut T) -> bool,
1835 {
1836 let len = self.len();
1837 if len <= 1 {
1838 return;
1839 }
1840
1841 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1842 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1843 /* Offset of the element we want to check if it is duplicate */
1844 read: usize,
1845
1846 /* Offset of the place where we want to place the non-duplicate
1847 * when we find it. */
1848 write: usize,
1849
1850 /* The Vec that would need correction if `same_bucket` panicked */
1851 vec: &'a mut Vec<T, A>,
1852 }
1853
1854 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1855 fn drop(&mut self) {
1856 /* This code gets executed when `same_bucket` panics */
1857
1858 /* SAFETY: invariant guarantees that `read - write`
1859 * and `len - read` never overflow and that the copy is always
1860 * in-bounds. */
1861 unsafe {
1862 let ptr = self.vec.as_mut_ptr();
1863 let len = self.vec.len();
1864
1865 /* How many items were left when `same_bucket` panicked.
1866 * Basically vec[read..].len() */
1867 let items_left = len.wrapping_sub(self.read);
1868
1869 /* Pointer to first item in vec[write..write+items_left] slice */
1870 let dropped_ptr = ptr.add(self.write);
1871 /* Pointer to first item in vec[read..] slice */
1872 let valid_ptr = ptr.add(self.read);
1873
1874 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1875 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1876 ptr::copy(valid_ptr, dropped_ptr, items_left);
1877
1878 /* How many items have been already dropped
1879 * Basically vec[read..write].len() */
1880 let dropped = self.read.wrapping_sub(self.write);
1881
1882 self.vec.set_len(len - dropped);
1883 }
1884 }
1885 }
1886
1887 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1888 let ptr = gap.vec.as_mut_ptr();
1889
1890 /* Drop items while going through Vec, it should be more efficient than
1891 * doing slice partition_dedup + truncate */
1892
1893 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1894 * are always in-bounds and read_ptr never aliases prev_ptr */
1895 unsafe {
1896 while gap.read < len {
1897 let read_ptr = ptr.add(gap.read);
1898 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1899
1900 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1901 // Increase `gap.read` now since the drop may panic.
1902 gap.read += 1;
1903 /* We have found duplicate, drop it in-place */
1904 ptr::drop_in_place(read_ptr);
1905 } else {
1906 let write_ptr = ptr.add(gap.write);
1907
1908 /* Because `read_ptr` can be equal to `write_ptr`, we either
1909 * have to use `copy` or conditional `copy_nonoverlapping`.
1910 * Looks like the first option is faster. */
1911 ptr::copy(read_ptr, write_ptr, 1);
1912
1913 /* We have filled that place, so go further */
1914 gap.write += 1;
1915 gap.read += 1;
1916 }
1917 }
1918
1919 /* Technically we could let `gap` clean up with its Drop, but
1920 * when `same_bucket` is guaranteed to not panic, this bloats a little
1921 * the codegen, so we just do it manually */
1922 gap.vec.set_len(gap.write);
1923 mem::forget(gap);
1924 }
1925 }
1926
1927 /// Appends an element to the back of a collection.
1928 ///
1929 /// # Panics
1930 ///
1931 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1932 ///
1933 /// # Examples
1934 ///
1935 /// ```
1936 /// let mut vec = vec![1, 2];
1937 /// vec.push(3);
1938 /// assert_eq!(vec, [1, 2, 3]);
1939 /// ```
1940 #[cfg(not(no_global_oom_handling))]
1941 #[inline]
1942 #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1943 pub fn push(&mut self, value: T) {
1944 // This will panic or abort if we would allocate > isize::MAX bytes
1945 // or if the length increment would overflow for zero-sized types.
1946 if self.len == self.buf.capacity() {
1947 self.buf.reserve_for_push(self.len);
1948 }
1949 unsafe {
1950 let end = self.as_mut_ptr().add(self.len);
1951 ptr::write(end, value);
1952 self.len += 1;
1953 }
1954 }
1955
1956 /// Tries to append an element to the back of a collection.
1957 ///
1958 /// # Examples
1959 ///
1960 /// ```
1961 /// let mut vec = vec![1, 2];
1962 /// vec.try_push(3).unwrap();
1963 /// assert_eq!(vec, [1, 2, 3]);
1964 /// ```
1965 #[inline]
1966 #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1967 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1968 if self.len == self.buf.capacity() {
1969 self.buf.try_reserve_for_push(self.len)?;
1970 }
1971 unsafe {
1972 let end = self.as_mut_ptr().add(self.len);
1973 ptr::write(end, value);
1974 self.len += 1;
1975 }
1976 Ok(())
1977 }
1978
1979 /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1980 /// with the element.
1981 ///
1982 /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1983 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1984 ///
1985 /// [`push`]: Vec::push
1986 /// [`reserve`]: Vec::reserve
1987 /// [`try_reserve`]: Vec::try_reserve
1988 ///
1989 /// # Examples
1990 ///
1991 /// A manual, panic-free alternative to [`FromIterator`]:
1992 ///
1993 /// ```
1994 /// #![feature(vec_push_within_capacity)]
1995 ///
1996 /// use std::collections::TryReserveError;
1997 /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1998 /// let mut vec = Vec::new();
1999 /// for value in iter {
2000 /// if let Err(value) = vec.push_within_capacity(value) {
2001 /// vec.try_reserve(1)?;
2002 /// // this cannot fail, the previous line either returned or added at least 1 free slot
2003 /// let _ = vec.push_within_capacity(value);
2004 /// }
2005 /// }
2006 /// Ok(vec)
2007 /// }
2008 /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2009 /// ```
2010 #[inline]
2011 #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
push_within_capacity(&mut self, value: T) -> Result<(), T>2012 pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2013 if self.len == self.buf.capacity() {
2014 return Err(value);
2015 }
2016 unsafe {
2017 let end = self.as_mut_ptr().add(self.len);
2018 ptr::write(end, value);
2019 self.len += 1;
2020 }
2021 Ok(())
2022 }
2023
2024 /// Removes the last element from a vector and returns it, or [`None`] if it
2025 /// is empty.
2026 ///
2027 /// If you'd like to pop the first element, consider using
2028 /// [`VecDeque::pop_front`] instead.
2029 ///
2030 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2031 ///
2032 /// # Examples
2033 ///
2034 /// ```
2035 /// let mut vec = vec![1, 2, 3];
2036 /// assert_eq!(vec.pop(), Some(3));
2037 /// assert_eq!(vec, [1, 2]);
2038 /// ```
2039 #[inline]
2040 #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>2041 pub fn pop(&mut self) -> Option<T> {
2042 if self.len == 0 {
2043 None
2044 } else {
2045 unsafe {
2046 self.len -= 1;
2047 Some(ptr::read(self.as_ptr().add(self.len())))
2048 }
2049 }
2050 }
2051
2052 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2053 ///
2054 /// # Panics
2055 ///
2056 /// Panics if the new capacity exceeds `isize::MAX` bytes.
2057 ///
2058 /// # Examples
2059 ///
2060 /// ```
2061 /// let mut vec = vec![1, 2, 3];
2062 /// let mut vec2 = vec![4, 5, 6];
2063 /// vec.append(&mut vec2);
2064 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2065 /// assert_eq!(vec2, []);
2066 /// ```
2067 #[cfg(not(no_global_oom_handling))]
2068 #[inline]
2069 #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)2070 pub fn append(&mut self, other: &mut Self) {
2071 unsafe {
2072 self.append_elements(other.as_slice() as _);
2073 other.set_len(0);
2074 }
2075 }
2076
2077 /// Appends elements to `self` from other buffer.
2078 #[cfg(not(no_global_oom_handling))]
2079 #[inline]
append_elements(&mut self, other: *const [T])2080 unsafe fn append_elements(&mut self, other: *const [T]) {
2081 let count = unsafe { (*other).len() };
2082 self.reserve(count);
2083 let len = self.len();
2084 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2085 self.len += count;
2086 }
2087
2088 /// Tries to append elements to `self` from other buffer.
2089 #[inline]
try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError>2090 unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
2091 let count = unsafe { (*other).len() };
2092 self.try_reserve(count)?;
2093 let len = self.len();
2094 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2095 self.len += count;
2096 Ok(())
2097 }
2098
2099 /// Removes the specified range from the vector in bulk, returning all
2100 /// removed elements as an iterator. If the iterator is dropped before
2101 /// being fully consumed, it drops the remaining removed elements.
2102 ///
2103 /// The returned iterator keeps a mutable borrow on the vector to optimize
2104 /// its implementation.
2105 ///
2106 /// # Panics
2107 ///
2108 /// Panics if the starting point is greater than the end point or if
2109 /// the end point is greater than the length of the vector.
2110 ///
2111 /// # Leaking
2112 ///
2113 /// If the returned iterator goes out of scope without being dropped (due to
2114 /// [`mem::forget`], for example), the vector may have lost and leaked
2115 /// elements arbitrarily, including elements outside the range.
2116 ///
2117 /// # Examples
2118 ///
2119 /// ```
2120 /// let mut v = vec![1, 2, 3];
2121 /// let u: Vec<_> = v.drain(1..).collect();
2122 /// assert_eq!(v, &[1]);
2123 /// assert_eq!(u, &[2, 3]);
2124 ///
2125 /// // A full range clears the vector, like `clear()` does
2126 /// v.drain(..);
2127 /// assert_eq!(v, &[]);
2128 /// ```
2129 #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,2130 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2131 where
2132 R: RangeBounds<usize>,
2133 {
2134 // Memory safety
2135 //
2136 // When the Drain is first created, it shortens the length of
2137 // the source vector to make sure no uninitialized or moved-from elements
2138 // are accessible at all if the Drain's destructor never gets to run.
2139 //
2140 // Drain will ptr::read out the values to remove.
2141 // When finished, remaining tail of the vec is copied back to cover
2142 // the hole, and the vector length is restored to the new length.
2143 //
2144 let len = self.len();
2145 let Range { start, end } = slice::range(range, ..len);
2146
2147 unsafe {
2148 // set self.vec length's to start, to be safe in case Drain is leaked
2149 self.set_len(start);
2150 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2151 Drain {
2152 tail_start: end,
2153 tail_len: len - end,
2154 iter: range_slice.iter(),
2155 vec: NonNull::from(self),
2156 }
2157 }
2158 }
2159
2160 /// Clears the vector, removing all values.
2161 ///
2162 /// Note that this method has no effect on the allocated capacity
2163 /// of the vector.
2164 ///
2165 /// # Examples
2166 ///
2167 /// ```
2168 /// let mut v = vec![1, 2, 3];
2169 ///
2170 /// v.clear();
2171 ///
2172 /// assert!(v.is_empty());
2173 /// ```
2174 #[inline]
2175 #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2176 pub fn clear(&mut self) {
2177 let elems: *mut [T] = self.as_mut_slice();
2178
2179 // SAFETY:
2180 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2181 // - Setting `self.len` before calling `drop_in_place` means that,
2182 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2183 // do nothing (leaking the rest of the elements) instead of dropping
2184 // some twice.
2185 unsafe {
2186 self.len = 0;
2187 ptr::drop_in_place(elems);
2188 }
2189 }
2190
2191 /// Returns the number of elements in the vector, also referred to
2192 /// as its 'length'.
2193 ///
2194 /// # Examples
2195 ///
2196 /// ```
2197 /// let a = vec![1, 2, 3];
2198 /// assert_eq!(a.len(), 3);
2199 /// ```
2200 #[inline]
2201 #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2202 pub fn len(&self) -> usize {
2203 self.len
2204 }
2205
2206 /// Returns `true` if the vector contains no elements.
2207 ///
2208 /// # Examples
2209 ///
2210 /// ```
2211 /// let mut v = Vec::new();
2212 /// assert!(v.is_empty());
2213 ///
2214 /// v.push(1);
2215 /// assert!(!v.is_empty());
2216 /// ```
2217 #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2218 pub fn is_empty(&self) -> bool {
2219 self.len() == 0
2220 }
2221
2222 /// Splits the collection into two at the given index.
2223 ///
2224 /// Returns a newly allocated vector containing the elements in the range
2225 /// `[at, len)`. After the call, the original vector will be left containing
2226 /// the elements `[0, at)` with its previous capacity unchanged.
2227 ///
2228 /// # Panics
2229 ///
2230 /// Panics if `at > len`.
2231 ///
2232 /// # Examples
2233 ///
2234 /// ```
2235 /// let mut vec = vec![1, 2, 3];
2236 /// let vec2 = vec.split_off(1);
2237 /// assert_eq!(vec, [1]);
2238 /// assert_eq!(vec2, [2, 3]);
2239 /// ```
2240 #[cfg(not(no_global_oom_handling))]
2241 #[inline]
2242 #[must_use = "use `.truncate()` if you don't need the other half"]
2243 #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2244 pub fn split_off(&mut self, at: usize) -> Self
2245 where
2246 A: Clone,
2247 {
2248 #[cold]
2249 #[inline(never)]
2250 fn assert_failed(at: usize, len: usize) -> ! {
2251 panic!("`at` split index (is {at}) should be <= len (is {len})");
2252 }
2253
2254 if at > self.len() {
2255 assert_failed(at, self.len());
2256 }
2257
2258 if at == 0 {
2259 // the new vector can take over the original buffer and avoid the copy
2260 return mem::replace(
2261 self,
2262 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2263 );
2264 }
2265
2266 let other_len = self.len - at;
2267 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2268
2269 // Unsafely `set_len` and copy items to `other`.
2270 unsafe {
2271 self.set_len(at);
2272 other.set_len(other_len);
2273
2274 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2275 }
2276 other
2277 }
2278
2279 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2280 ///
2281 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2282 /// difference, with each additional slot filled with the result of
2283 /// calling the closure `f`. The return values from `f` will end up
2284 /// in the `Vec` in the order they have been generated.
2285 ///
2286 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2287 ///
2288 /// This method uses a closure to create new values on every push. If
2289 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2290 /// want to use the [`Default`] trait to generate values, you can
2291 /// pass [`Default::default`] as the second argument.
2292 ///
2293 /// # Examples
2294 ///
2295 /// ```
2296 /// let mut vec = vec![1, 2, 3];
2297 /// vec.resize_with(5, Default::default);
2298 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2299 ///
2300 /// let mut vec = vec![];
2301 /// let mut p = 1;
2302 /// vec.resize_with(4, || { p *= 2; p });
2303 /// assert_eq!(vec, [2, 4, 8, 16]);
2304 /// ```
2305 #[cfg(not(no_global_oom_handling))]
2306 #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2307 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2308 where
2309 F: FnMut() -> T,
2310 {
2311 let len = self.len();
2312 if new_len > len {
2313 self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2314 } else {
2315 self.truncate(new_len);
2316 }
2317 }
2318
2319 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2320 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2321 /// `'a`. If the type has only static references, or none at all, then this
2322 /// may be chosen to be `'static`.
2323 ///
2324 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2325 /// so the leaked allocation may include unused capacity that is not part
2326 /// of the returned slice.
2327 ///
2328 /// This function is mainly useful for data that lives for the remainder of
2329 /// the program's life. Dropping the returned reference will cause a memory
2330 /// leak.
2331 ///
2332 /// # Examples
2333 ///
2334 /// Simple usage:
2335 ///
2336 /// ```
2337 /// let x = vec![1, 2, 3];
2338 /// let static_ref: &'static mut [usize] = x.leak();
2339 /// static_ref[0] += 1;
2340 /// assert_eq!(static_ref, &[2, 2, 3]);
2341 /// ```
2342 #[stable(feature = "vec_leak", since = "1.47.0")]
2343 #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2344 pub fn leak<'a>(self) -> &'a mut [T]
2345 where
2346 A: 'a,
2347 {
2348 let mut me = ManuallyDrop::new(self);
2349 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2350 }
2351
2352 /// Returns the remaining spare capacity of the vector as a slice of
2353 /// `MaybeUninit<T>`.
2354 ///
2355 /// The returned slice can be used to fill the vector with data (e.g. by
2356 /// reading from a file) before marking the data as initialized using the
2357 /// [`set_len`] method.
2358 ///
2359 /// [`set_len`]: Vec::set_len
2360 ///
2361 /// # Examples
2362 ///
2363 /// ```
2364 /// // Allocate vector big enough for 10 elements.
2365 /// let mut v = Vec::with_capacity(10);
2366 ///
2367 /// // Fill in the first 3 elements.
2368 /// let uninit = v.spare_capacity_mut();
2369 /// uninit[0].write(0);
2370 /// uninit[1].write(1);
2371 /// uninit[2].write(2);
2372 ///
2373 /// // Mark the first 3 elements of the vector as being initialized.
2374 /// unsafe {
2375 /// v.set_len(3);
2376 /// }
2377 ///
2378 /// assert_eq!(&v, &[0, 1, 2]);
2379 /// ```
2380 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2381 #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2382 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2383 // Note:
2384 // This method is not implemented in terms of `split_at_spare_mut`,
2385 // to prevent invalidation of pointers to the buffer.
2386 unsafe {
2387 slice::from_raw_parts_mut(
2388 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2389 self.buf.capacity() - self.len,
2390 )
2391 }
2392 }
2393
2394 /// Returns vector content as a slice of `T`, along with the remaining spare
2395 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2396 ///
2397 /// The returned spare capacity slice can be used to fill the vector with data
2398 /// (e.g. by reading from a file) before marking the data as initialized using
2399 /// the [`set_len`] method.
2400 ///
2401 /// [`set_len`]: Vec::set_len
2402 ///
2403 /// Note that this is a low-level API, which should be used with care for
2404 /// optimization purposes. If you need to append data to a `Vec`
2405 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2406 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2407 /// [`resize_with`], depending on your exact needs.
2408 ///
2409 /// [`push`]: Vec::push
2410 /// [`extend`]: Vec::extend
2411 /// [`extend_from_slice`]: Vec::extend_from_slice
2412 /// [`extend_from_within`]: Vec::extend_from_within
2413 /// [`insert`]: Vec::insert
2414 /// [`append`]: Vec::append
2415 /// [`resize`]: Vec::resize
2416 /// [`resize_with`]: Vec::resize_with
2417 ///
2418 /// # Examples
2419 ///
2420 /// ```
2421 /// #![feature(vec_split_at_spare)]
2422 ///
2423 /// let mut v = vec![1, 1, 2];
2424 ///
2425 /// // Reserve additional space big enough for 10 elements.
2426 /// v.reserve(10);
2427 ///
2428 /// let (init, uninit) = v.split_at_spare_mut();
2429 /// let sum = init.iter().copied().sum::<u32>();
2430 ///
2431 /// // Fill in the next 4 elements.
2432 /// uninit[0].write(sum);
2433 /// uninit[1].write(sum * 2);
2434 /// uninit[2].write(sum * 3);
2435 /// uninit[3].write(sum * 4);
2436 ///
2437 /// // Mark the 4 elements of the vector as being initialized.
2438 /// unsafe {
2439 /// let len = v.len();
2440 /// v.set_len(len + 4);
2441 /// }
2442 ///
2443 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2444 /// ```
2445 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2446 #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2447 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2448 // SAFETY:
2449 // - len is ignored and so never changed
2450 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2451 (init, spare)
2452 }
2453
2454 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2455 ///
2456 /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2457 unsafe fn split_at_spare_mut_with_len(
2458 &mut self,
2459 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2460 let ptr = self.as_mut_ptr();
2461 // SAFETY:
2462 // - `ptr` is guaranteed to be valid for `self.len` elements
2463 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2464 // uninitialized
2465 let spare_ptr = unsafe { ptr.add(self.len) };
2466 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2467 let spare_len = self.buf.capacity() - self.len;
2468
2469 // SAFETY:
2470 // - `ptr` is guaranteed to be valid for `self.len` elements
2471 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2472 unsafe {
2473 let initialized = slice::from_raw_parts_mut(ptr, self.len);
2474 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2475
2476 (initialized, spare, &mut self.len)
2477 }
2478 }
2479 }
2480
2481 impl<T: Clone, A: Allocator> Vec<T, A> {
2482 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2483 ///
2484 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2485 /// difference, with each additional slot filled with `value`.
2486 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2487 ///
2488 /// This method requires `T` to implement [`Clone`],
2489 /// in order to be able to clone the passed value.
2490 /// If you need more flexibility (or want to rely on [`Default`] instead of
2491 /// [`Clone`]), use [`Vec::resize_with`].
2492 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2493 ///
2494 /// # Examples
2495 ///
2496 /// ```
2497 /// let mut vec = vec!["hello"];
2498 /// vec.resize(3, "world");
2499 /// assert_eq!(vec, ["hello", "world", "world"]);
2500 ///
2501 /// let mut vec = vec![1, 2, 3, 4];
2502 /// vec.resize(2, 0);
2503 /// assert_eq!(vec, [1, 2]);
2504 /// ```
2505 #[cfg(not(no_global_oom_handling))]
2506 #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2507 pub fn resize(&mut self, new_len: usize, value: T) {
2508 let len = self.len();
2509
2510 if new_len > len {
2511 self.extend_with(new_len - len, value)
2512 } else {
2513 self.truncate(new_len);
2514 }
2515 }
2516
2517 /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2518 ///
2519 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2520 /// difference, with each additional slot filled with `value`.
2521 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2522 ///
2523 /// This method requires `T` to implement [`Clone`],
2524 /// in order to be able to clone the passed value.
2525 /// If you need more flexibility (or want to rely on [`Default`] instead of
2526 /// [`Clone`]), use [`Vec::resize_with`].
2527 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2528 ///
2529 /// # Examples
2530 ///
2531 /// ```
2532 /// let mut vec = vec!["hello"];
2533 /// vec.try_resize(3, "world").unwrap();
2534 /// assert_eq!(vec, ["hello", "world", "world"]);
2535 ///
2536 /// let mut vec = vec![1, 2, 3, 4];
2537 /// vec.try_resize(2, 0).unwrap();
2538 /// assert_eq!(vec, [1, 2]);
2539 ///
2540 /// let mut vec = vec![42];
2541 /// let result = vec.try_resize(usize::MAX, 0);
2542 /// assert!(result.is_err());
2543 /// ```
2544 #[stable(feature = "kernel", since = "1.0.0")]
try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError>2545 pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2546 let len = self.len();
2547
2548 if new_len > len {
2549 self.try_extend_with(new_len - len, value)
2550 } else {
2551 self.truncate(new_len);
2552 Ok(())
2553 }
2554 }
2555
2556 /// Clones and appends all elements in a slice to the `Vec`.
2557 ///
2558 /// Iterates over the slice `other`, clones each element, and then appends
2559 /// it to this `Vec`. The `other` slice is traversed in-order.
2560 ///
2561 /// Note that this function is same as [`extend`] except that it is
2562 /// specialized to work with slices instead. If and when Rust gets
2563 /// specialization this function will likely be deprecated (but still
2564 /// available).
2565 ///
2566 /// # Examples
2567 ///
2568 /// ```
2569 /// let mut vec = vec![1];
2570 /// vec.extend_from_slice(&[2, 3, 4]);
2571 /// assert_eq!(vec, [1, 2, 3, 4]);
2572 /// ```
2573 ///
2574 /// [`extend`]: Vec::extend
2575 #[cfg(not(no_global_oom_handling))]
2576 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2577 pub fn extend_from_slice(&mut self, other: &[T]) {
2578 self.spec_extend(other.iter())
2579 }
2580
2581 /// Tries to clone and append all elements in a slice to the `Vec`.
2582 ///
2583 /// Iterates over the slice `other`, clones each element, and then appends
2584 /// it to this `Vec`. The `other` slice is traversed in-order.
2585 ///
2586 /// Note that this function is same as [`extend`] except that it is
2587 /// specialized to work with slices instead. If and when Rust gets
2588 /// specialization this function will likely be deprecated (but still
2589 /// available).
2590 ///
2591 /// # Examples
2592 ///
2593 /// ```
2594 /// let mut vec = vec![1];
2595 /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2596 /// assert_eq!(vec, [1, 2, 3, 4]);
2597 /// ```
2598 ///
2599 /// [`extend`]: Vec::extend
2600 #[stable(feature = "kernel", since = "1.0.0")]
try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError>2601 pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2602 self.try_spec_extend(other.iter())
2603 }
2604
2605 /// Copies elements from `src` range to the end of the vector.
2606 ///
2607 /// # Panics
2608 ///
2609 /// Panics if the starting point is greater than the end point or if
2610 /// the end point is greater than the length of the vector.
2611 ///
2612 /// # Examples
2613 ///
2614 /// ```
2615 /// let mut vec = vec![0, 1, 2, 3, 4];
2616 ///
2617 /// vec.extend_from_within(2..);
2618 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2619 ///
2620 /// vec.extend_from_within(..2);
2621 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2622 ///
2623 /// vec.extend_from_within(4..8);
2624 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2625 /// ```
2626 #[cfg(not(no_global_oom_handling))]
2627 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2628 pub fn extend_from_within<R>(&mut self, src: R)
2629 where
2630 R: RangeBounds<usize>,
2631 {
2632 let range = slice::range(src, ..self.len());
2633 self.reserve(range.len());
2634
2635 // SAFETY:
2636 // - `slice::range` guarantees that the given range is valid for indexing self
2637 unsafe {
2638 self.spec_extend_from_within(range);
2639 }
2640 }
2641 }
2642
2643 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2644 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2645 ///
2646 /// # Panics
2647 ///
2648 /// Panics if the length of the resulting vector would overflow a `usize`.
2649 ///
2650 /// This is only possible when flattening a vector of arrays of zero-sized
2651 /// types, and thus tends to be irrelevant in practice. If
2652 /// `size_of::<T>() > 0`, this will never panic.
2653 ///
2654 /// # Examples
2655 ///
2656 /// ```
2657 /// #![feature(slice_flatten)]
2658 ///
2659 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2660 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2661 ///
2662 /// let mut flattened = vec.into_flattened();
2663 /// assert_eq!(flattened.pop(), Some(6));
2664 /// ```
2665 #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2666 pub fn into_flattened(self) -> Vec<T, A> {
2667 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2668 let (new_len, new_cap) = if T::IS_ZST {
2669 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2670 } else {
2671 // SAFETY:
2672 // - `cap * N` cannot overflow because the allocation is already in
2673 // the address space.
2674 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2675 // valid elements in the allocation.
2676 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2677 };
2678 // SAFETY:
2679 // - `ptr` was allocated by `self`
2680 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2681 // - `new_cap` refers to the same sized allocation as `cap` because
2682 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2683 // - `len` <= `cap`, so `len * N` <= `cap * N`.
2684 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2685 }
2686 }
2687
2688 impl<T: Clone, A: Allocator> Vec<T, A> {
2689 #[cfg(not(no_global_oom_handling))]
2690 /// Extend the vector by `n` clones of value.
extend_with(&mut self, n: usize, value: T)2691 fn extend_with(&mut self, n: usize, value: T) {
2692 self.reserve(n);
2693
2694 unsafe {
2695 let mut ptr = self.as_mut_ptr().add(self.len());
2696 // Use SetLenOnDrop to work around bug where compiler
2697 // might not realize the store through `ptr` through self.set_len()
2698 // don't alias.
2699 let mut local_len = SetLenOnDrop::new(&mut self.len);
2700
2701 // Write all elements except the last one
2702 for _ in 1..n {
2703 ptr::write(ptr, value.clone());
2704 ptr = ptr.add(1);
2705 // Increment the length in every step in case clone() panics
2706 local_len.increment_len(1);
2707 }
2708
2709 if n > 0 {
2710 // We can write the last element directly without cloning needlessly
2711 ptr::write(ptr, value);
2712 local_len.increment_len(1);
2713 }
2714
2715 // len set by scope guard
2716 }
2717 }
2718
2719 /// Try to extend the vector by `n` clones of value.
try_extend_with(&mut self, n: usize, value: T) -> Result<(), TryReserveError>2720 fn try_extend_with(&mut self, n: usize, value: T) -> Result<(), TryReserveError> {
2721 self.try_reserve(n)?;
2722
2723 unsafe {
2724 let mut ptr = self.as_mut_ptr().add(self.len());
2725 // Use SetLenOnDrop to work around bug where compiler
2726 // might not realize the store through `ptr` through self.set_len()
2727 // don't alias.
2728 let mut local_len = SetLenOnDrop::new(&mut self.len);
2729
2730 // Write all elements except the last one
2731 for _ in 1..n {
2732 ptr::write(ptr, value.clone());
2733 ptr = ptr.add(1);
2734 // Increment the length in every step in case clone() panics
2735 local_len.increment_len(1);
2736 }
2737
2738 if n > 0 {
2739 // We can write the last element directly without cloning needlessly
2740 ptr::write(ptr, value);
2741 local_len.increment_len(1);
2742 }
2743
2744 // len set by scope guard
2745 Ok(())
2746 }
2747 }
2748 }
2749
2750 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2751 /// Removes consecutive repeated elements in the vector according to the
2752 /// [`PartialEq`] trait implementation.
2753 ///
2754 /// If the vector is sorted, this removes all duplicates.
2755 ///
2756 /// # Examples
2757 ///
2758 /// ```
2759 /// let mut vec = vec![1, 2, 2, 3, 2];
2760 ///
2761 /// vec.dedup();
2762 ///
2763 /// assert_eq!(vec, [1, 2, 3, 2]);
2764 /// ```
2765 #[stable(feature = "rust1", since = "1.0.0")]
2766 #[inline]
dedup(&mut self)2767 pub fn dedup(&mut self) {
2768 self.dedup_by(|a, b| a == b)
2769 }
2770 }
2771
2772 ////////////////////////////////////////////////////////////////////////////////
2773 // Internal methods and functions
2774 ////////////////////////////////////////////////////////////////////////////////
2775
2776 #[doc(hidden)]
2777 #[cfg(not(no_global_oom_handling))]
2778 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2779 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2780 <T as SpecFromElem>::from_elem(elem, n, Global)
2781 }
2782
2783 #[doc(hidden)]
2784 #[cfg(not(no_global_oom_handling))]
2785 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2786 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2787 <T as SpecFromElem>::from_elem(elem, n, alloc)
2788 }
2789
2790 trait ExtendFromWithinSpec {
2791 /// # Safety
2792 ///
2793 /// - `src` needs to be valid index
2794 /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2795 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2796 }
2797
2798 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2799 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2800 // SAFETY:
2801 // - len is increased only after initializing elements
2802 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2803
2804 // SAFETY:
2805 // - caller guarantees that src is a valid index
2806 let to_clone = unsafe { this.get_unchecked(src) };
2807
2808 iter::zip(to_clone, spare)
2809 .map(|(src, dst)| dst.write(src.clone()))
2810 // Note:
2811 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2812 // - len is increased after each element to prevent leaks (see issue #82533)
2813 .for_each(|_| *len += 1);
2814 }
2815 }
2816
2817 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2818 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2819 let count = src.len();
2820 {
2821 let (init, spare) = self.split_at_spare_mut();
2822
2823 // SAFETY:
2824 // - caller guarantees that `src` is a valid index
2825 let source = unsafe { init.get_unchecked(src) };
2826
2827 // SAFETY:
2828 // - Both pointers are created from unique slice references (`&mut [_]`)
2829 // so they are valid and do not overlap.
2830 // - Elements are :Copy so it's OK to copy them, without doing
2831 // anything with the original values
2832 // - `count` is equal to the len of `source`, so source is valid for
2833 // `count` reads
2834 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2835 // is valid for `count` writes
2836 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2837 }
2838
2839 // SAFETY:
2840 // - The elements were just initialized by `copy_nonoverlapping`
2841 self.len += count;
2842 }
2843 }
2844
2845 ////////////////////////////////////////////////////////////////////////////////
2846 // Common trait implementations for Vec
2847 ////////////////////////////////////////////////////////////////////////////////
2848
2849 #[stable(feature = "rust1", since = "1.0.0")]
2850 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2851 type Target = [T];
2852
2853 #[inline]
deref(&self) -> &[T]2854 fn deref(&self) -> &[T] {
2855 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2856 }
2857 }
2858
2859 #[stable(feature = "rust1", since = "1.0.0")]
2860 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2861 #[inline]
deref_mut(&mut self) -> &mut [T]2862 fn deref_mut(&mut self) -> &mut [T] {
2863 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2864 }
2865 }
2866
2867 #[cfg(not(no_global_oom_handling))]
2868 #[stable(feature = "rust1", since = "1.0.0")]
2869 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2870 #[cfg(not(test))]
clone(&self) -> Self2871 fn clone(&self) -> Self {
2872 let alloc = self.allocator().clone();
2873 <[T]>::to_vec_in(&**self, alloc)
2874 }
2875
2876 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2877 // required for this method definition, is not available. Instead use the
2878 // `slice::to_vec` function which is only available with cfg(test)
2879 // NB see the slice::hack module in slice.rs for more information
2880 #[cfg(test)]
clone(&self) -> Self2881 fn clone(&self) -> Self {
2882 let alloc = self.allocator().clone();
2883 crate::slice::to_vec(&**self, alloc)
2884 }
2885
clone_from(&mut self, other: &Self)2886 fn clone_from(&mut self, other: &Self) {
2887 crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2888 }
2889 }
2890
2891 /// The hash of a vector is the same as that of the corresponding slice,
2892 /// as required by the `core::borrow::Borrow` implementation.
2893 ///
2894 /// ```
2895 /// use std::hash::BuildHasher;
2896 ///
2897 /// let b = std::collections::hash_map::RandomState::new();
2898 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2899 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2900 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2901 /// ```
2902 #[stable(feature = "rust1", since = "1.0.0")]
2903 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2904 #[inline]
hash<H: Hasher>(&self, state: &mut H)2905 fn hash<H: Hasher>(&self, state: &mut H) {
2906 Hash::hash(&**self, state)
2907 }
2908 }
2909
2910 #[stable(feature = "rust1", since = "1.0.0")]
2911 #[rustc_on_unimplemented(
2912 message = "vector indices are of type `usize` or ranges of `usize`",
2913 label = "vector indices are of type `usize` or ranges of `usize`"
2914 )]
2915 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2916 type Output = I::Output;
2917
2918 #[inline]
index(&self, index: I) -> &Self::Output2919 fn index(&self, index: I) -> &Self::Output {
2920 Index::index(&**self, index)
2921 }
2922 }
2923
2924 #[stable(feature = "rust1", since = "1.0.0")]
2925 #[rustc_on_unimplemented(
2926 message = "vector indices are of type `usize` or ranges of `usize`",
2927 label = "vector indices are of type `usize` or ranges of `usize`"
2928 )]
2929 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2930 #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2931 fn index_mut(&mut self, index: I) -> &mut Self::Output {
2932 IndexMut::index_mut(&mut **self, index)
2933 }
2934 }
2935
2936 #[cfg(not(no_global_oom_handling))]
2937 #[stable(feature = "rust1", since = "1.0.0")]
2938 impl<T> FromIterator<T> for Vec<T> {
2939 #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2940 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2941 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2942 }
2943 }
2944
2945 #[stable(feature = "rust1", since = "1.0.0")]
2946 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2947 type Item = T;
2948 type IntoIter = IntoIter<T, A>;
2949
2950 /// Creates a consuming iterator, that is, one that moves each value out of
2951 /// the vector (from start to end). The vector cannot be used after calling
2952 /// this.
2953 ///
2954 /// # Examples
2955 ///
2956 /// ```
2957 /// let v = vec!["a".to_string(), "b".to_string()];
2958 /// let mut v_iter = v.into_iter();
2959 ///
2960 /// let first_element: Option<String> = v_iter.next();
2961 ///
2962 /// assert_eq!(first_element, Some("a".to_string()));
2963 /// assert_eq!(v_iter.next(), Some("b".to_string()));
2964 /// assert_eq!(v_iter.next(), None);
2965 /// ```
2966 #[inline]
into_iter(self) -> Self::IntoIter2967 fn into_iter(self) -> Self::IntoIter {
2968 unsafe {
2969 let mut me = ManuallyDrop::new(self);
2970 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2971 let begin = me.as_mut_ptr();
2972 let end = if T::IS_ZST {
2973 begin.wrapping_byte_add(me.len())
2974 } else {
2975 begin.add(me.len()) as *const T
2976 };
2977 let cap = me.buf.capacity();
2978 IntoIter {
2979 buf: NonNull::new_unchecked(begin),
2980 phantom: PhantomData,
2981 cap,
2982 alloc,
2983 ptr: begin,
2984 end,
2985 }
2986 }
2987 }
2988 }
2989
2990 #[stable(feature = "rust1", since = "1.0.0")]
2991 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2992 type Item = &'a T;
2993 type IntoIter = slice::Iter<'a, T>;
2994
into_iter(self) -> Self::IntoIter2995 fn into_iter(self) -> Self::IntoIter {
2996 self.iter()
2997 }
2998 }
2999
3000 #[stable(feature = "rust1", since = "1.0.0")]
3001 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3002 type Item = &'a mut T;
3003 type IntoIter = slice::IterMut<'a, T>;
3004
into_iter(self) -> Self::IntoIter3005 fn into_iter(self) -> Self::IntoIter {
3006 self.iter_mut()
3007 }
3008 }
3009
3010 #[cfg(not(no_global_oom_handling))]
3011 #[stable(feature = "rust1", since = "1.0.0")]
3012 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3013 #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)3014 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3015 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3016 }
3017
3018 #[inline]
extend_one(&mut self, item: T)3019 fn extend_one(&mut self, item: T) {
3020 self.push(item);
3021 }
3022
3023 #[inline]
extend_reserve(&mut self, additional: usize)3024 fn extend_reserve(&mut self, additional: usize) {
3025 self.reserve(additional);
3026 }
3027 }
3028
3029 impl<T, A: Allocator> Vec<T, A> {
3030 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3031 // they have no further optimizations to apply
3032 #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)3033 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3034 // This is the case for a general iterator.
3035 //
3036 // This function should be the moral equivalent of:
3037 //
3038 // for item in iterator {
3039 // self.push(item);
3040 // }
3041 while let Some(element) = iterator.next() {
3042 let len = self.len();
3043 if len == self.capacity() {
3044 let (lower, _) = iterator.size_hint();
3045 self.reserve(lower.saturating_add(1));
3046 }
3047 unsafe {
3048 ptr::write(self.as_mut_ptr().add(len), element);
3049 // Since next() executes user code which can panic we have to bump the length
3050 // after each step.
3051 // NB can't overflow since we would have had to alloc the address space
3052 self.set_len(len + 1);
3053 }
3054 }
3055 }
3056
3057 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3058 // they have no further optimizations to apply
try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError>3059 fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
3060 // This is the case for a general iterator.
3061 //
3062 // This function should be the moral equivalent of:
3063 //
3064 // for item in iterator {
3065 // self.push(item);
3066 // }
3067 while let Some(element) = iterator.next() {
3068 let len = self.len();
3069 if len == self.capacity() {
3070 let (lower, _) = iterator.size_hint();
3071 self.try_reserve(lower.saturating_add(1))?;
3072 }
3073 unsafe {
3074 ptr::write(self.as_mut_ptr().add(len), element);
3075 // Since next() executes user code which can panic we have to bump the length
3076 // after each step.
3077 // NB can't overflow since we would have had to alloc the address space
3078 self.set_len(len + 1);
3079 }
3080 }
3081
3082 Ok(())
3083 }
3084
3085 // specific extend for `TrustedLen` iterators, called both by the specializations
3086 // and internal places where resolving specialization makes compilation slower
3087 #[cfg(not(no_global_oom_handling))]
extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>)3088 fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3089 let (low, high) = iterator.size_hint();
3090 if let Some(additional) = high {
3091 debug_assert_eq!(
3092 low,
3093 additional,
3094 "TrustedLen iterator's size hint is not exact: {:?}",
3095 (low, high)
3096 );
3097 self.reserve(additional);
3098 unsafe {
3099 let ptr = self.as_mut_ptr();
3100 let mut local_len = SetLenOnDrop::new(&mut self.len);
3101 iterator.for_each(move |element| {
3102 ptr::write(ptr.add(local_len.current_len()), element);
3103 // Since the loop executes user code which can panic we have to update
3104 // the length every step to correctly drop what we've written.
3105 // NB can't overflow since we would have had to alloc the address space
3106 local_len.increment_len(1);
3107 });
3108 }
3109 } else {
3110 // Per TrustedLen contract a `None` upper bound means that the iterator length
3111 // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3112 // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3113 // This avoids additional codegen for a fallback code path which would eventually
3114 // panic anyway.
3115 panic!("capacity overflow");
3116 }
3117 }
3118
3119 // specific extend for `TrustedLen` iterators, called both by the specializations
3120 // and internal places where resolving specialization makes compilation slower
try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError>3121 fn try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError> {
3122 let (low, high) = iterator.size_hint();
3123 if let Some(additional) = high {
3124 debug_assert_eq!(
3125 low,
3126 additional,
3127 "TrustedLen iterator's size hint is not exact: {:?}",
3128 (low, high)
3129 );
3130 self.try_reserve(additional)?;
3131 unsafe {
3132 let ptr = self.as_mut_ptr();
3133 let mut local_len = SetLenOnDrop::new(&mut self.len);
3134 iterator.for_each(move |element| {
3135 ptr::write(ptr.add(local_len.current_len()), element);
3136 // Since the loop executes user code which can panic we have to update
3137 // the length every step to correctly drop what we've written.
3138 // NB can't overflow since we would have had to alloc the address space
3139 local_len.increment_len(1);
3140 });
3141 }
3142 Ok(())
3143 } else {
3144 Err(TryReserveErrorKind::CapacityOverflow.into())
3145 }
3146 }
3147
3148 /// Creates a splicing iterator that replaces the specified range in the vector
3149 /// with the given `replace_with` iterator and yields the removed items.
3150 /// `replace_with` does not need to be the same length as `range`.
3151 ///
3152 /// `range` is removed even if the iterator is not consumed until the end.
3153 ///
3154 /// It is unspecified how many elements are removed from the vector
3155 /// if the `Splice` value is leaked.
3156 ///
3157 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3158 ///
3159 /// This is optimal if:
3160 ///
3161 /// * The tail (elements in the vector after `range`) is empty,
3162 /// * or `replace_with` yields fewer or equal elements than `range`’s length
3163 /// * or the lower bound of its `size_hint()` is exact.
3164 ///
3165 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3166 ///
3167 /// # Panics
3168 ///
3169 /// Panics if the starting point is greater than the end point or if
3170 /// the end point is greater than the length of the vector.
3171 ///
3172 /// # Examples
3173 ///
3174 /// ```
3175 /// let mut v = vec![1, 2, 3, 4];
3176 /// let new = [7, 8, 9];
3177 /// let u: Vec<_> = v.splice(1..3, new).collect();
3178 /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3179 /// assert_eq!(u, &[2, 3]);
3180 /// ```
3181 #[cfg(not(no_global_oom_handling))]
3182 #[inline]
3183 #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,3184 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3185 where
3186 R: RangeBounds<usize>,
3187 I: IntoIterator<Item = T>,
3188 {
3189 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3190 }
3191
3192 /// Creates an iterator which uses a closure to determine if an element should be removed.
3193 ///
3194 /// If the closure returns true, then the element is removed and yielded.
3195 /// If the closure returns false, the element will remain in the vector and will not be yielded
3196 /// by the iterator.
3197 ///
3198 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3199 /// or the iteration short-circuits, then the remaining elements will be retained.
3200 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
3201 ///
3202 /// [`retain`]: Vec::retain
3203 ///
3204 /// Using this method is equivalent to the following code:
3205 ///
3206 /// ```
3207 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3208 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3209 /// let mut i = 0;
3210 /// while i < vec.len() {
3211 /// if some_predicate(&mut vec[i]) {
3212 /// let val = vec.remove(i);
3213 /// // your code here
3214 /// } else {
3215 /// i += 1;
3216 /// }
3217 /// }
3218 ///
3219 /// # assert_eq!(vec, vec![1, 4, 5]);
3220 /// ```
3221 ///
3222 /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3223 /// because it can backshift the elements of the array in bulk.
3224 ///
3225 /// Note that `extract_if` also lets you mutate every element in the filter closure,
3226 /// regardless of whether you choose to keep or remove it.
3227 ///
3228 /// # Examples
3229 ///
3230 /// Splitting an array into evens and odds, reusing the original allocation:
3231 ///
3232 /// ```
3233 /// #![feature(extract_if)]
3234 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3235 ///
3236 /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<Vec<_>>();
3237 /// let odds = numbers;
3238 ///
3239 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3240 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3241 /// ```
3242 #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A> where F: FnMut(&mut T) -> bool,3243 pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
3244 where
3245 F: FnMut(&mut T) -> bool,
3246 {
3247 let old_len = self.len();
3248
3249 // Guard against us getting leaked (leak amplification)
3250 unsafe {
3251 self.set_len(0);
3252 }
3253
3254 ExtractIf { vec: self, idx: 0, del: 0, old_len, pred: filter }
3255 }
3256 }
3257
3258 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
3259 ///
3260 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3261 /// append the entire slice at once.
3262 ///
3263 /// [`copy_from_slice`]: slice::copy_from_slice
3264 #[cfg(not(no_global_oom_handling))]
3265 #[stable(feature = "extend_ref", since = "1.2.0")]
3266 impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)3267 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3268 self.spec_extend(iter.into_iter())
3269 }
3270
3271 #[inline]
extend_one(&mut self, &item: &'a T)3272 fn extend_one(&mut self, &item: &'a T) {
3273 self.push(item);
3274 }
3275
3276 #[inline]
extend_reserve(&mut self, additional: usize)3277 fn extend_reserve(&mut self, additional: usize) {
3278 self.reserve(additional);
3279 }
3280 }
3281
3282 /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3283 #[stable(feature = "rust1", since = "1.0.0")]
3284 impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3285 where
3286 T: PartialOrd,
3287 A1: Allocator,
3288 A2: Allocator,
3289 {
3290 #[inline]
partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering>3291 fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3292 PartialOrd::partial_cmp(&**self, &**other)
3293 }
3294 }
3295
3296 #[stable(feature = "rust1", since = "1.0.0")]
3297 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3298
3299 /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3300 #[stable(feature = "rust1", since = "1.0.0")]
3301 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3302 #[inline]
cmp(&self, other: &Self) -> Ordering3303 fn cmp(&self, other: &Self) -> Ordering {
3304 Ord::cmp(&**self, &**other)
3305 }
3306 }
3307
3308 #[stable(feature = "rust1", since = "1.0.0")]
3309 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)3310 fn drop(&mut self) {
3311 unsafe {
3312 // use drop for [T]
3313 // use a raw slice to refer to the elements of the vector as weakest necessary type;
3314 // could avoid questions of validity in certain cases
3315 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3316 }
3317 // RawVec handles deallocation
3318 }
3319 }
3320
3321 #[stable(feature = "rust1", since = "1.0.0")]
3322 impl<T> Default for Vec<T> {
3323 /// Creates an empty `Vec<T>`.
3324 ///
3325 /// The vector will not allocate until elements are pushed onto it.
default() -> Vec<T>3326 fn default() -> Vec<T> {
3327 Vec::new()
3328 }
3329 }
3330
3331 #[stable(feature = "rust1", since = "1.0.0")]
3332 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3333 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3334 fmt::Debug::fmt(&**self, f)
3335 }
3336 }
3337
3338 #[stable(feature = "rust1", since = "1.0.0")]
3339 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3340 fn as_ref(&self) -> &Vec<T, A> {
3341 self
3342 }
3343 }
3344
3345 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3346 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3347 fn as_mut(&mut self) -> &mut Vec<T, A> {
3348 self
3349 }
3350 }
3351
3352 #[stable(feature = "rust1", since = "1.0.0")]
3353 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3354 fn as_ref(&self) -> &[T] {
3355 self
3356 }
3357 }
3358
3359 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3360 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3361 fn as_mut(&mut self) -> &mut [T] {
3362 self
3363 }
3364 }
3365
3366 #[cfg(not(no_global_oom_handling))]
3367 #[stable(feature = "rust1", since = "1.0.0")]
3368 impl<T: Clone> From<&[T]> for Vec<T> {
3369 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3370 ///
3371 /// # Examples
3372 ///
3373 /// ```
3374 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3375 /// ```
3376 #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3377 fn from(s: &[T]) -> Vec<T> {
3378 s.to_vec()
3379 }
3380 #[cfg(test)]
from(s: &[T]) -> Vec<T>3381 fn from(s: &[T]) -> Vec<T> {
3382 crate::slice::to_vec(s, Global)
3383 }
3384 }
3385
3386 #[cfg(not(no_global_oom_handling))]
3387 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3388 impl<T: Clone> From<&mut [T]> for Vec<T> {
3389 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3390 ///
3391 /// # Examples
3392 ///
3393 /// ```
3394 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3395 /// ```
3396 #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3397 fn from(s: &mut [T]) -> Vec<T> {
3398 s.to_vec()
3399 }
3400 #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3401 fn from(s: &mut [T]) -> Vec<T> {
3402 crate::slice::to_vec(s, Global)
3403 }
3404 }
3405
3406 #[cfg(not(no_global_oom_handling))]
3407 #[stable(feature = "vec_from_array", since = "1.44.0")]
3408 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3409 /// Allocate a `Vec<T>` and move `s`'s items into it.
3410 ///
3411 /// # Examples
3412 ///
3413 /// ```
3414 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3415 /// ```
3416 #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3417 fn from(s: [T; N]) -> Vec<T> {
3418 <[T]>::into_vec(Box::new(s))
3419 }
3420
3421 #[cfg(test)]
from(s: [T; N]) -> Vec<T>3422 fn from(s: [T; N]) -> Vec<T> {
3423 crate::slice::into_vec(Box::new(s))
3424 }
3425 }
3426
3427 #[cfg(not(no_borrow))]
3428 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3429 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3430 where
3431 [T]: ToOwned<Owned = Vec<T>>,
3432 {
3433 /// Convert a clone-on-write slice into a vector.
3434 ///
3435 /// If `s` already owns a `Vec<T>`, it will be returned directly.
3436 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3437 /// filled by cloning `s`'s items into it.
3438 ///
3439 /// # Examples
3440 ///
3441 /// ```
3442 /// # use std::borrow::Cow;
3443 /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3444 /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3445 /// assert_eq!(Vec::from(o), Vec::from(b));
3446 /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3447 fn from(s: Cow<'a, [T]>) -> Vec<T> {
3448 s.into_owned()
3449 }
3450 }
3451
3452 // note: test pulls in std, which causes errors here
3453 #[cfg(not(test))]
3454 #[stable(feature = "vec_from_box", since = "1.18.0")]
3455 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3456 /// Convert a boxed slice into a vector by transferring ownership of
3457 /// the existing heap allocation.
3458 ///
3459 /// # Examples
3460 ///
3461 /// ```
3462 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3463 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3464 /// ```
from(s: Box<[T], A>) -> Self3465 fn from(s: Box<[T], A>) -> Self {
3466 s.into_vec()
3467 }
3468 }
3469
3470 // note: test pulls in std, which causes errors here
3471 #[cfg(not(no_global_oom_handling))]
3472 #[cfg(not(test))]
3473 #[stable(feature = "box_from_vec", since = "1.20.0")]
3474 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3475 /// Convert a vector into a boxed slice.
3476 ///
3477 /// If `v` has excess capacity, its items will be moved into a
3478 /// newly-allocated buffer with exactly the right capacity.
3479 ///
3480 /// # Examples
3481 ///
3482 /// ```
3483 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3484 /// ```
3485 ///
3486 /// Any excess capacity is removed:
3487 /// ```
3488 /// let mut vec = Vec::with_capacity(10);
3489 /// vec.extend([1, 2, 3]);
3490 ///
3491 /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3492 /// ```
from(v: Vec<T, A>) -> Self3493 fn from(v: Vec<T, A>) -> Self {
3494 v.into_boxed_slice()
3495 }
3496 }
3497
3498 #[cfg(not(no_global_oom_handling))]
3499 #[stable(feature = "rust1", since = "1.0.0")]
3500 impl From<&str> for Vec<u8> {
3501 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3502 ///
3503 /// # Examples
3504 ///
3505 /// ```
3506 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3507 /// ```
from(s: &str) -> Vec<u8>3508 fn from(s: &str) -> Vec<u8> {
3509 From::from(s.as_bytes())
3510 }
3511 }
3512
3513 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3514 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3515 type Error = Vec<T, A>;
3516
3517 /// Gets the entire contents of the `Vec<T>` as an array,
3518 /// if its size exactly matches that of the requested array.
3519 ///
3520 /// # Examples
3521 ///
3522 /// ```
3523 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3524 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3525 /// ```
3526 ///
3527 /// If the length doesn't match, the input comes back in `Err`:
3528 /// ```
3529 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3530 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3531 /// ```
3532 ///
3533 /// If you're fine with just getting a prefix of the `Vec<T>`,
3534 /// you can call [`.truncate(N)`](Vec::truncate) first.
3535 /// ```
3536 /// let mut v = String::from("hello world").into_bytes();
3537 /// v.sort();
3538 /// v.truncate(2);
3539 /// let [a, b]: [_; 2] = v.try_into().unwrap();
3540 /// assert_eq!(a, b' ');
3541 /// assert_eq!(b, b'd');
3542 /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3543 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3544 if vec.len() != N {
3545 return Err(vec);
3546 }
3547
3548 // SAFETY: `.set_len(0)` is always sound.
3549 unsafe { vec.set_len(0) };
3550
3551 // SAFETY: A `Vec`'s pointer is always aligned properly, and
3552 // the alignment the array needs is the same as the items.
3553 // We checked earlier that we have sufficient items.
3554 // The items will not double-drop as the `set_len`
3555 // tells the `Vec` not to also drop them.
3556 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3557 Ok(array)
3558 }
3559 }
3560