1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Utilities for the slice primitive type. 4 //! 5 //! *[See also the slice primitive type](slice).* 6 //! 7 //! Most of the structs in this module are iterator types which can only be created 8 //! using a certain function. For example, `slice.iter()` yields an [`Iter`]. 9 //! 10 //! A few functions are provided to create a slice from a value reference 11 //! or from a raw pointer. 12 #![stable(feature = "rust1", since = "1.0.0")] 13 // Many of the usings in this module are only used in the test configuration. 14 // It's cleaner to just turn off the unused_imports warning than to fix them. 15 #![cfg_attr(test, allow(unused_imports, dead_code))] 16 17 use core::borrow::{Borrow, BorrowMut}; 18 #[cfg(not(no_global_oom_handling))] 19 use core::cmp::Ordering::{self, Less}; 20 #[cfg(not(no_global_oom_handling))] 21 use core::mem::{self, SizedTypeProperties}; 22 #[cfg(not(no_global_oom_handling))] 23 use core::ptr; 24 #[cfg(not(no_global_oom_handling))] 25 use core::slice::sort; 26 27 use crate::alloc::Allocator; 28 #[cfg(not(no_global_oom_handling))] 29 use crate::alloc::{self, Global}; 30 #[cfg(not(no_global_oom_handling))] 31 use crate::borrow::ToOwned; 32 use crate::boxed::Box; 33 use crate::vec::Vec; 34 35 #[cfg(test)] 36 mod tests; 37 38 #[unstable(feature = "slice_range", issue = "76393")] 39 pub use core::slice::range; 40 #[unstable(feature = "array_chunks", issue = "74985")] 41 pub use core::slice::ArrayChunks; 42 #[unstable(feature = "array_chunks", issue = "74985")] 43 pub use core::slice::ArrayChunksMut; 44 #[unstable(feature = "array_windows", issue = "75027")] 45 pub use core::slice::ArrayWindows; 46 #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] 47 pub use core::slice::EscapeAscii; 48 #[stable(feature = "slice_get_slice", since = "1.28.0")] 49 pub use core::slice::SliceIndex; 50 #[stable(feature = "from_ref", since = "1.28.0")] 51 pub use core::slice::{from_mut, from_ref}; 52 #[unstable(feature = "slice_from_ptr_range", issue = "89792")] 53 pub use core::slice::{from_mut_ptr_range, from_ptr_range}; 54 #[stable(feature = "rust1", since = "1.0.0")] 55 pub use core::slice::{from_raw_parts, from_raw_parts_mut}; 56 #[stable(feature = "rust1", since = "1.0.0")] 57 pub use core::slice::{Chunks, Windows}; 58 #[stable(feature = "chunks_exact", since = "1.31.0")] 59 pub use core::slice::{ChunksExact, ChunksExactMut}; 60 #[stable(feature = "rust1", since = "1.0.0")] 61 pub use core::slice::{ChunksMut, Split, SplitMut}; 62 #[unstable(feature = "slice_group_by", issue = "80552")] 63 pub use core::slice::{GroupBy, GroupByMut}; 64 #[stable(feature = "rust1", since = "1.0.0")] 65 pub use core::slice::{Iter, IterMut}; 66 #[stable(feature = "rchunks", since = "1.31.0")] 67 pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; 68 #[stable(feature = "slice_rsplit", since = "1.27.0")] 69 pub use core::slice::{RSplit, RSplitMut}; 70 #[stable(feature = "rust1", since = "1.0.0")] 71 pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; 72 #[stable(feature = "split_inclusive", since = "1.51.0")] 73 pub use core::slice::{SplitInclusive, SplitInclusiveMut}; 74 75 //////////////////////////////////////////////////////////////////////////////// 76 // Basic slice extension methods 77 //////////////////////////////////////////////////////////////////////////////// 78 79 // HACK(japaric) needed for the implementation of `vec!` macro during testing 80 // N.B., see the `hack` module in this file for more details. 81 #[cfg(test)] 82 pub use hack::into_vec; 83 84 // HACK(japaric) needed for the implementation of `Vec::clone` during testing 85 // N.B., see the `hack` module in this file for more details. 86 #[cfg(test)] 87 pub use hack::to_vec; 88 89 // HACK(japaric): With cfg(test) `impl [T]` is not available, these three 90 // functions are actually methods that are in `impl [T]` but not in 91 // `core::slice::SliceExt` - we need to supply these functions for the 92 // `test_permutations` test 93 pub(crate) mod hack { 94 use core::alloc::Allocator; 95 96 use crate::boxed::Box; 97 use crate::vec::Vec; 98 99 // We shouldn't add inline attribute to this since this is used in 100 // `vec!` macro mostly and causes perf regression. See #71204 for 101 // discussion and perf results. 102 pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> { 103 unsafe { 104 let len = b.len(); 105 let (b, alloc) = Box::into_raw_with_allocator(b); 106 Vec::from_raw_parts_in(b as *mut T, len, len, alloc) 107 } 108 } 109 110 #[cfg(not(no_global_oom_handling))] 111 #[inline] 112 pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> { 113 T::to_vec(s, alloc) 114 } 115 116 #[cfg(not(no_global_oom_handling))] 117 pub trait ConvertVec { 118 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> 119 where 120 Self: Sized; 121 } 122 123 #[cfg(not(no_global_oom_handling))] 124 impl<T: Clone> ConvertVec for T { 125 #[inline] 126 default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { 127 struct DropGuard<'a, T, A: Allocator> { 128 vec: &'a mut Vec<T, A>, 129 num_init: usize, 130 } 131 impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { 132 #[inline] 133 fn drop(&mut self) { 134 // SAFETY: 135 // items were marked initialized in the loop below 136 unsafe { 137 self.vec.set_len(self.num_init); 138 } 139 } 140 } 141 let mut vec = Vec::with_capacity_in(s.len(), alloc); 142 let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; 143 let slots = guard.vec.spare_capacity_mut(); 144 // .take(slots.len()) is necessary for LLVM to remove bounds checks 145 // and has better codegen than zip. 146 for (i, b) in s.iter().enumerate().take(slots.len()) { 147 guard.num_init = i; 148 slots[i].write(b.clone()); 149 } 150 core::mem::forget(guard); 151 // SAFETY: 152 // the vec was allocated and initialized above to at least this length. 153 unsafe { 154 vec.set_len(s.len()); 155 } 156 vec 157 } 158 } 159 160 #[cfg(not(no_global_oom_handling))] 161 impl<T: Copy> ConvertVec for T { 162 #[inline] 163 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { 164 let mut v = Vec::with_capacity_in(s.len(), alloc); 165 // SAFETY: 166 // allocated above with the capacity of `s`, and initialize to `s.len()` in 167 // ptr::copy_to_non_overlapping below. 168 unsafe { 169 s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); 170 v.set_len(s.len()); 171 } 172 v 173 } 174 } 175 } 176 177 #[cfg(not(test))] 178 impl<T> [T] { 179 /// Sorts the slice. 180 /// 181 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. 182 /// 183 /// When applicable, unstable sorting is preferred because it is generally faster than stable 184 /// sorting and it doesn't allocate auxiliary memory. 185 /// See [`sort_unstable`](slice::sort_unstable). 186 /// 187 /// # Current implementation 188 /// 189 /// The current algorithm is an adaptive, iterative merge sort inspired by 190 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 191 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 192 /// two or more sorted sequences concatenated one after another. 193 /// 194 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 195 /// non-allocating insertion sort is used instead. 196 /// 197 /// # Examples 198 /// 199 /// ``` 200 /// let mut v = [-5, 4, 1, -3, 2]; 201 /// 202 /// v.sort(); 203 /// assert!(v == [-5, -3, 1, 2, 4]); 204 /// ``` 205 #[cfg(not(no_global_oom_handling))] 206 #[rustc_allow_incoherent_impl] 207 #[stable(feature = "rust1", since = "1.0.0")] 208 #[inline] 209 pub fn sort(&mut self) 210 where 211 T: Ord, 212 { 213 stable_sort(self, T::lt); 214 } 215 216 /// Sorts the slice with a comparator function. 217 /// 218 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. 219 /// 220 /// The comparator function must define a total ordering for the elements in the slice. If 221 /// the ordering is not total, the order of the elements is unspecified. An order is a 222 /// total order if it is (for all `a`, `b` and `c`): 223 /// 224 /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and 225 /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. 226 /// 227 /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use 228 /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. 229 /// 230 /// ``` 231 /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; 232 /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap()); 233 /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); 234 /// ``` 235 /// 236 /// When applicable, unstable sorting is preferred because it is generally faster than stable 237 /// sorting and it doesn't allocate auxiliary memory. 238 /// See [`sort_unstable_by`](slice::sort_unstable_by). 239 /// 240 /// # Current implementation 241 /// 242 /// The current algorithm is an adaptive, iterative merge sort inspired by 243 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 244 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 245 /// two or more sorted sequences concatenated one after another. 246 /// 247 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 248 /// non-allocating insertion sort is used instead. 249 /// 250 /// # Examples 251 /// 252 /// ``` 253 /// let mut v = [5, 4, 1, 3, 2]; 254 /// v.sort_by(|a, b| a.cmp(b)); 255 /// assert!(v == [1, 2, 3, 4, 5]); 256 /// 257 /// // reverse sorting 258 /// v.sort_by(|a, b| b.cmp(a)); 259 /// assert!(v == [5, 4, 3, 2, 1]); 260 /// ``` 261 #[cfg(not(no_global_oom_handling))] 262 #[rustc_allow_incoherent_impl] 263 #[stable(feature = "rust1", since = "1.0.0")] 264 #[inline] 265 pub fn sort_by<F>(&mut self, mut compare: F) 266 where 267 F: FnMut(&T, &T) -> Ordering, 268 { 269 stable_sort(self, |a, b| compare(a, b) == Less); 270 } 271 272 /// Sorts the slice with a key extraction function. 273 /// 274 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) 275 /// worst-case, where the key function is *O*(*m*). 276 /// 277 /// For expensive key functions (e.g. functions that are not simple property accesses or 278 /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be 279 /// significantly faster, as it does not recompute element keys. 280 /// 281 /// When applicable, unstable sorting is preferred because it is generally faster than stable 282 /// sorting and it doesn't allocate auxiliary memory. 283 /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key). 284 /// 285 /// # Current implementation 286 /// 287 /// The current algorithm is an adaptive, iterative merge sort inspired by 288 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 289 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 290 /// two or more sorted sequences concatenated one after another. 291 /// 292 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 293 /// non-allocating insertion sort is used instead. 294 /// 295 /// # Examples 296 /// 297 /// ``` 298 /// let mut v = [-5i32, 4, 1, -3, 2]; 299 /// 300 /// v.sort_by_key(|k| k.abs()); 301 /// assert!(v == [1, 2, -3, 4, -5]); 302 /// ``` 303 #[cfg(not(no_global_oom_handling))] 304 #[rustc_allow_incoherent_impl] 305 #[stable(feature = "slice_sort_by_key", since = "1.7.0")] 306 #[inline] 307 pub fn sort_by_key<K, F>(&mut self, mut f: F) 308 where 309 F: FnMut(&T) -> K, 310 K: Ord, 311 { 312 stable_sort(self, |a, b| f(a).lt(&f(b))); 313 } 314 315 /// Sorts the slice with a key extraction function. 316 /// 317 /// During sorting, the key function is called at most once per element, by using 318 /// temporary storage to remember the results of key evaluation. 319 /// The order of calls to the key function is unspecified and may change in future versions 320 /// of the standard library. 321 /// 322 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) 323 /// worst-case, where the key function is *O*(*m*). 324 /// 325 /// For simple key functions (e.g., functions that are property accesses or 326 /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be 327 /// faster. 328 /// 329 /// # Current implementation 330 /// 331 /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, 332 /// which combines the fast average case of randomized quicksort with the fast worst case of 333 /// heapsort, while achieving linear time on slices with certain patterns. It uses some 334 /// randomization to avoid degenerate cases, but with a fixed seed to always provide 335 /// deterministic behavior. 336 /// 337 /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the 338 /// length of the slice. 339 /// 340 /// # Examples 341 /// 342 /// ``` 343 /// let mut v = [-5i32, 4, 32, -3, 2]; 344 /// 345 /// v.sort_by_cached_key(|k| k.to_string()); 346 /// assert!(v == [-3, -5, 2, 32, 4]); 347 /// ``` 348 /// 349 /// [pdqsort]: https://github.com/orlp/pdqsort 350 #[cfg(not(no_global_oom_handling))] 351 #[rustc_allow_incoherent_impl] 352 #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] 353 #[inline] 354 pub fn sort_by_cached_key<K, F>(&mut self, f: F) 355 where 356 F: FnMut(&T) -> K, 357 K: Ord, 358 { 359 // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. 360 macro_rules! sort_by_key { 361 ($t:ty, $slice:ident, $f:ident) => {{ 362 let mut indices: Vec<_> = 363 $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); 364 // The elements of `indices` are unique, as they are indexed, so any sort will be 365 // stable with respect to the original slice. We use `sort_unstable` here because 366 // it requires less memory allocation. 367 indices.sort_unstable(); 368 for i in 0..$slice.len() { 369 let mut index = indices[i].1; 370 while (index as usize) < i { 371 index = indices[index as usize].1; 372 } 373 indices[i].1 = index; 374 $slice.swap(i, index as usize); 375 } 376 }}; 377 } 378 379 let sz_u8 = mem::size_of::<(K, u8)>(); 380 let sz_u16 = mem::size_of::<(K, u16)>(); 381 let sz_u32 = mem::size_of::<(K, u32)>(); 382 let sz_usize = mem::size_of::<(K, usize)>(); 383 384 let len = self.len(); 385 if len < 2 { 386 return; 387 } 388 if sz_u8 < sz_u16 && len <= (u8::MAX as usize) { 389 return sort_by_key!(u8, self, f); 390 } 391 if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { 392 return sort_by_key!(u16, self, f); 393 } 394 if sz_u32 < sz_usize && len <= (u32::MAX as usize) { 395 return sort_by_key!(u32, self, f); 396 } 397 sort_by_key!(usize, self, f) 398 } 399 400 /// Copies `self` into a new `Vec`. 401 /// 402 /// # Examples 403 /// 404 /// ``` 405 /// let s = [10, 40, 30]; 406 /// let x = s.to_vec(); 407 /// // Here, `s` and `x` can be modified independently. 408 /// ``` 409 #[cfg(not(no_global_oom_handling))] 410 #[rustc_allow_incoherent_impl] 411 #[rustc_conversion_suggestion] 412 #[stable(feature = "rust1", since = "1.0.0")] 413 #[inline] 414 pub fn to_vec(&self) -> Vec<T> 415 where 416 T: Clone, 417 { 418 self.to_vec_in(Global) 419 } 420 421 /// Copies `self` into a new `Vec` with an allocator. 422 /// 423 /// # Examples 424 /// 425 /// ``` 426 /// #![feature(allocator_api)] 427 /// 428 /// use std::alloc::System; 429 /// 430 /// let s = [10, 40, 30]; 431 /// let x = s.to_vec_in(System); 432 /// // Here, `s` and `x` can be modified independently. 433 /// ``` 434 #[cfg(not(no_global_oom_handling))] 435 #[rustc_allow_incoherent_impl] 436 #[inline] 437 #[unstable(feature = "allocator_api", issue = "32838")] 438 pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> 439 where 440 T: Clone, 441 { 442 // N.B., see the `hack` module in this file for more details. 443 hack::to_vec(self, alloc) 444 } 445 446 /// Converts `self` into a vector without clones or allocation. 447 /// 448 /// The resulting vector can be converted back into a box via 449 /// `Vec<T>`'s `into_boxed_slice` method. 450 /// 451 /// # Examples 452 /// 453 /// ``` 454 /// let s: Box<[i32]> = Box::new([10, 40, 30]); 455 /// let x = s.into_vec(); 456 /// // `s` cannot be used anymore because it has been converted into `x`. 457 /// 458 /// assert_eq!(x, vec![10, 40, 30]); 459 /// ``` 460 #[rustc_allow_incoherent_impl] 461 #[stable(feature = "rust1", since = "1.0.0")] 462 #[inline] 463 pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> { 464 // N.B., see the `hack` module in this file for more details. 465 hack::into_vec(self) 466 } 467 468 /// Creates a vector by copying a slice `n` times. 469 /// 470 /// # Panics 471 /// 472 /// This function will panic if the capacity would overflow. 473 /// 474 /// # Examples 475 /// 476 /// Basic usage: 477 /// 478 /// ``` 479 /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); 480 /// ``` 481 /// 482 /// A panic upon overflow: 483 /// 484 /// ```should_panic 485 /// // this will panic at runtime 486 /// b"0123456789abcdef".repeat(usize::MAX); 487 /// ``` 488 #[rustc_allow_incoherent_impl] 489 #[cfg(not(no_global_oom_handling))] 490 #[stable(feature = "repeat_generic_slice", since = "1.40.0")] 491 pub fn repeat(&self, n: usize) -> Vec<T> 492 where 493 T: Copy, 494 { 495 if n == 0 { 496 return Vec::new(); 497 } 498 499 // If `n` is larger than zero, it can be split as 500 // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. 501 // `2^expn` is the number represented by the leftmost '1' bit of `n`, 502 // and `rem` is the remaining part of `n`. 503 504 // Using `Vec` to access `set_len()`. 505 let capacity = self.len().checked_mul(n).expect("capacity overflow"); 506 let mut buf = Vec::with_capacity(capacity); 507 508 // `2^expn` repetition is done by doubling `buf` `expn`-times. 509 buf.extend(self); 510 { 511 let mut m = n >> 1; 512 // If `m > 0`, there are remaining bits up to the leftmost '1'. 513 while m > 0 { 514 // `buf.extend(buf)`: 515 unsafe { 516 ptr::copy_nonoverlapping( 517 buf.as_ptr(), 518 (buf.as_mut_ptr() as *mut T).add(buf.len()), 519 buf.len(), 520 ); 521 // `buf` has capacity of `self.len() * n`. 522 let buf_len = buf.len(); 523 buf.set_len(buf_len * 2); 524 } 525 526 m >>= 1; 527 } 528 } 529 530 // `rem` (`= n - 2^expn`) repetition is done by copying 531 // first `rem` repetitions from `buf` itself. 532 let rem_len = capacity - buf.len(); // `self.len() * rem` 533 if rem_len > 0 { 534 // `buf.extend(buf[0 .. rem_len])`: 535 unsafe { 536 // This is non-overlapping since `2^expn > rem`. 537 ptr::copy_nonoverlapping( 538 buf.as_ptr(), 539 (buf.as_mut_ptr() as *mut T).add(buf.len()), 540 rem_len, 541 ); 542 // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). 543 buf.set_len(capacity); 544 } 545 } 546 buf 547 } 548 549 /// Flattens a slice of `T` into a single value `Self::Output`. 550 /// 551 /// # Examples 552 /// 553 /// ``` 554 /// assert_eq!(["hello", "world"].concat(), "helloworld"); 555 /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); 556 /// ``` 557 #[rustc_allow_incoherent_impl] 558 #[stable(feature = "rust1", since = "1.0.0")] 559 pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output 560 where 561 Self: Concat<Item>, 562 { 563 Concat::concat(self) 564 } 565 566 /// Flattens a slice of `T` into a single value `Self::Output`, placing a 567 /// given separator between each. 568 /// 569 /// # Examples 570 /// 571 /// ``` 572 /// assert_eq!(["hello", "world"].join(" "), "hello world"); 573 /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); 574 /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); 575 /// ``` 576 #[rustc_allow_incoherent_impl] 577 #[stable(feature = "rename_connect_to_join", since = "1.3.0")] 578 pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output 579 where 580 Self: Join<Separator>, 581 { 582 Join::join(self, sep) 583 } 584 585 /// Flattens a slice of `T` into a single value `Self::Output`, placing a 586 /// given separator between each. 587 /// 588 /// # Examples 589 /// 590 /// ``` 591 /// # #![allow(deprecated)] 592 /// assert_eq!(["hello", "world"].connect(" "), "hello world"); 593 /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); 594 /// ``` 595 #[rustc_allow_incoherent_impl] 596 #[stable(feature = "rust1", since = "1.0.0")] 597 #[deprecated(since = "1.3.0", note = "renamed to join")] 598 pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output 599 where 600 Self: Join<Separator>, 601 { 602 Join::join(self, sep) 603 } 604 } 605 606 #[cfg(not(test))] 607 impl [u8] { 608 /// Returns a vector containing a copy of this slice where each byte 609 /// is mapped to its ASCII upper case equivalent. 610 /// 611 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 612 /// but non-ASCII letters are unchanged. 613 /// 614 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 615 /// 616 /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase 617 #[cfg(not(no_global_oom_handling))] 618 #[rustc_allow_incoherent_impl] 619 #[must_use = "this returns the uppercase bytes as a new Vec, \ 620 without modifying the original"] 621 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] 622 #[inline] 623 pub fn to_ascii_uppercase(&self) -> Vec<u8> { 624 let mut me = self.to_vec(); 625 me.make_ascii_uppercase(); 626 me 627 } 628 629 /// Returns a vector containing a copy of this slice where each byte 630 /// is mapped to its ASCII lower case equivalent. 631 /// 632 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 633 /// but non-ASCII letters are unchanged. 634 /// 635 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 636 /// 637 /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase 638 #[cfg(not(no_global_oom_handling))] 639 #[rustc_allow_incoherent_impl] 640 #[must_use = "this returns the lowercase bytes as a new Vec, \ 641 without modifying the original"] 642 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] 643 #[inline] 644 pub fn to_ascii_lowercase(&self) -> Vec<u8> { 645 let mut me = self.to_vec(); 646 me.make_ascii_lowercase(); 647 me 648 } 649 } 650 651 //////////////////////////////////////////////////////////////////////////////// 652 // Extension traits for slices over specific kinds of data 653 //////////////////////////////////////////////////////////////////////////////// 654 655 /// Helper trait for [`[T]::concat`](slice::concat). 656 /// 657 /// Note: the `Item` type parameter is not used in this trait, 658 /// but it allows impls to be more generic. 659 /// Without it, we get this error: 660 /// 661 /// ```error 662 /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica 663 /// --> library/alloc/src/slice.rs:608:6 664 /// | 665 /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] { 666 /// | ^ unconstrained type parameter 667 /// ``` 668 /// 669 /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, 670 /// such that multiple `T` types would apply: 671 /// 672 /// ``` 673 /// # #[allow(dead_code)] 674 /// pub struct Foo(Vec<u32>, Vec<String>); 675 /// 676 /// impl std::borrow::Borrow<[u32]> for Foo { 677 /// fn borrow(&self) -> &[u32] { &self.0 } 678 /// } 679 /// 680 /// impl std::borrow::Borrow<[String]> for Foo { 681 /// fn borrow(&self) -> &[String] { &self.1 } 682 /// } 683 /// ``` 684 #[unstable(feature = "slice_concat_trait", issue = "27747")] 685 pub trait Concat<Item: ?Sized> { 686 #[unstable(feature = "slice_concat_trait", issue = "27747")] 687 /// The resulting type after concatenation 688 type Output; 689 690 /// Implementation of [`[T]::concat`](slice::concat) 691 #[unstable(feature = "slice_concat_trait", issue = "27747")] 692 fn concat(slice: &Self) -> Self::Output; 693 } 694 695 /// Helper trait for [`[T]::join`](slice::join) 696 #[unstable(feature = "slice_concat_trait", issue = "27747")] 697 pub trait Join<Separator> { 698 #[unstable(feature = "slice_concat_trait", issue = "27747")] 699 /// The resulting type after concatenation 700 type Output; 701 702 /// Implementation of [`[T]::join`](slice::join) 703 #[unstable(feature = "slice_concat_trait", issue = "27747")] 704 fn join(slice: &Self, sep: Separator) -> Self::Output; 705 } 706 707 #[cfg(not(no_global_oom_handling))] 708 #[unstable(feature = "slice_concat_ext", issue = "27747")] 709 impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] { 710 type Output = Vec<T>; 711 712 fn concat(slice: &Self) -> Vec<T> { 713 let size = slice.iter().map(|slice| slice.borrow().len()).sum(); 714 let mut result = Vec::with_capacity(size); 715 for v in slice { 716 result.extend_from_slice(v.borrow()) 717 } 718 result 719 } 720 } 721 722 #[cfg(not(no_global_oom_handling))] 723 #[unstable(feature = "slice_concat_ext", issue = "27747")] 724 impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] { 725 type Output = Vec<T>; 726 727 fn join(slice: &Self, sep: &T) -> Vec<T> { 728 let mut iter = slice.iter(); 729 let first = match iter.next() { 730 Some(first) => first, 731 None => return vec![], 732 }; 733 let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1; 734 let mut result = Vec::with_capacity(size); 735 result.extend_from_slice(first.borrow()); 736 737 for v in iter { 738 result.push(sep.clone()); 739 result.extend_from_slice(v.borrow()) 740 } 741 result 742 } 743 } 744 745 #[cfg(not(no_global_oom_handling))] 746 #[unstable(feature = "slice_concat_ext", issue = "27747")] 747 impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] { 748 type Output = Vec<T>; 749 750 fn join(slice: &Self, sep: &[T]) -> Vec<T> { 751 let mut iter = slice.iter(); 752 let first = match iter.next() { 753 Some(first) => first, 754 None => return vec![], 755 }; 756 let size = 757 slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1); 758 let mut result = Vec::with_capacity(size); 759 result.extend_from_slice(first.borrow()); 760 761 for v in iter { 762 result.extend_from_slice(sep); 763 result.extend_from_slice(v.borrow()) 764 } 765 result 766 } 767 } 768 769 //////////////////////////////////////////////////////////////////////////////// 770 // Standard trait implementations for slices 771 //////////////////////////////////////////////////////////////////////////////// 772 773 #[stable(feature = "rust1", since = "1.0.0")] 774 impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> { 775 fn borrow(&self) -> &[T] { 776 &self[..] 777 } 778 } 779 780 #[stable(feature = "rust1", since = "1.0.0")] 781 impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> { 782 fn borrow_mut(&mut self) -> &mut [T] { 783 &mut self[..] 784 } 785 } 786 787 // Specializable trait for implementing ToOwned::clone_into. This is 788 // public in the crate and has the Allocator parameter so that 789 // vec::clone_from use it too. 790 #[cfg(not(no_global_oom_handling))] 791 pub(crate) trait SpecCloneIntoVec<T, A: Allocator> { 792 fn clone_into(&self, target: &mut Vec<T, A>); 793 } 794 795 #[cfg(not(no_global_oom_handling))] 796 impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] { 797 default fn clone_into(&self, target: &mut Vec<T, A>) { 798 // drop anything in target that will not be overwritten 799 target.truncate(self.len()); 800 801 // target.len <= self.len due to the truncate above, so the 802 // slices here are always in-bounds. 803 let (init, tail) = self.split_at(target.len()); 804 805 // reuse the contained values' allocations/resources. 806 target.clone_from_slice(init); 807 target.extend_from_slice(tail); 808 } 809 } 810 811 #[cfg(not(no_global_oom_handling))] 812 impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] { 813 fn clone_into(&self, target: &mut Vec<T, A>) { 814 target.clear(); 815 target.extend_from_slice(self); 816 } 817 } 818 819 #[cfg(not(no_global_oom_handling))] 820 #[stable(feature = "rust1", since = "1.0.0")] 821 impl<T: Clone> ToOwned for [T] { 822 type Owned = Vec<T>; 823 #[cfg(not(test))] 824 fn to_owned(&self) -> Vec<T> { 825 self.to_vec() 826 } 827 828 #[cfg(test)] 829 fn to_owned(&self) -> Vec<T> { 830 hack::to_vec(self, Global) 831 } 832 833 fn clone_into(&self, target: &mut Vec<T>) { 834 SpecCloneIntoVec::clone_into(self, target); 835 } 836 } 837 838 //////////////////////////////////////////////////////////////////////////////// 839 // Sorting 840 //////////////////////////////////////////////////////////////////////////////// 841 842 #[inline] 843 #[cfg(not(no_global_oom_handling))] 844 fn stable_sort<T, F>(v: &mut [T], mut is_less: F) 845 where 846 F: FnMut(&T, &T) -> bool, 847 { 848 if T::IS_ZST { 849 // Sorting has no meaningful behavior on zero-sized types. Do nothing. 850 return; 851 } 852 853 let elem_alloc_fn = |len: usize| -> *mut T { 854 // SAFETY: Creating the layout is safe as long as merge_sort never calls this with len > 855 // v.len(). Alloc in general will only be used as 'shadow-region' to store temporary swap 856 // elements. 857 unsafe { alloc::alloc(alloc::Layout::array::<T>(len).unwrap_unchecked()) as *mut T } 858 }; 859 860 let elem_dealloc_fn = |buf_ptr: *mut T, len: usize| { 861 // SAFETY: Creating the layout is safe as long as merge_sort never calls this with len > 862 // v.len(). The caller must ensure that buf_ptr was created by elem_alloc_fn with the same 863 // len. 864 unsafe { 865 alloc::dealloc(buf_ptr as *mut u8, alloc::Layout::array::<T>(len).unwrap_unchecked()); 866 } 867 }; 868 869 let run_alloc_fn = |len: usize| -> *mut sort::TimSortRun { 870 // SAFETY: Creating the layout is safe as long as merge_sort never calls this with an 871 // obscene length or 0. 872 unsafe { 873 alloc::alloc(alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked()) 874 as *mut sort::TimSortRun 875 } 876 }; 877 878 let run_dealloc_fn = |buf_ptr: *mut sort::TimSortRun, len: usize| { 879 // SAFETY: The caller must ensure that buf_ptr was created by elem_alloc_fn with the same 880 // len. 881 unsafe { 882 alloc::dealloc( 883 buf_ptr as *mut u8, 884 alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked(), 885 ); 886 } 887 }; 888 889 sort::merge_sort(v, &mut is_less, elem_alloc_fn, elem_dealloc_fn, run_alloc_fn, run_dealloc_fn); 890 } 891