1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! A dynamically-sized view into a contiguous sequence, `[T]`. 4 //! 5 //! *[See also the slice primitive type](slice).* 6 //! 7 //! Slices are a view into a block of memory represented as a pointer and a 8 //! length. 9 //! 10 //! ``` 11 //! // slicing a Vec 12 //! let vec = vec![1, 2, 3]; 13 //! let int_slice = &vec[..]; 14 //! // coercing an array to a slice 15 //! let str_slice: &[&str] = &["one", "two", "three"]; 16 //! ``` 17 //! 18 //! Slices are either mutable or shared. The shared slice type is `&[T]`, 19 //! while the mutable slice type is `&mut [T]`, where `T` represents the element 20 //! type. For example, you can mutate the block of memory that a mutable slice 21 //! points to: 22 //! 23 //! ``` 24 //! let x = &mut [1, 2, 3]; 25 //! x[1] = 7; 26 //! assert_eq!(x, &[1, 7, 3]); 27 //! ``` 28 //! 29 //! Here are some of the things this module contains: 30 //! 31 //! ## Structs 32 //! 33 //! There are several structs that are useful for slices, such as [`Iter`], which 34 //! represents iteration over a slice. 35 //! 36 //! ## Trait Implementations 37 //! 38 //! There are several implementations of common traits for slices. Some examples 39 //! include: 40 //! 41 //! * [`Clone`] 42 //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. 43 //! * [`Hash`] - for slices whose element type is [`Hash`]. 44 //! 45 //! ## Iteration 46 //! 47 //! The slices implement `IntoIterator`. The iterator yields references to the 48 //! slice elements. 49 //! 50 //! ``` 51 //! let numbers = &[0, 1, 2]; 52 //! for n in numbers { 53 //! println!("{n} is a number!"); 54 //! } 55 //! ``` 56 //! 57 //! The mutable slice yields mutable references to the elements: 58 //! 59 //! ``` 60 //! let mut scores = [7, 8, 9]; 61 //! for score in &mut scores[..] { 62 //! *score += 1; 63 //! } 64 //! ``` 65 //! 66 //! This iterator yields mutable references to the slice's elements, so while 67 //! the element type of the slice is `i32`, the element type of the iterator is 68 //! `&mut i32`. 69 //! 70 //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default 71 //! iterators. 72 //! * Further methods that return iterators are [`.split`], [`.splitn`], 73 //! [`.chunks`], [`.windows`] and more. 74 //! 75 //! [`Hash`]: core::hash::Hash 76 //! [`.iter`]: slice::iter 77 //! [`.iter_mut`]: slice::iter_mut 78 //! [`.split`]: slice::split 79 //! [`.splitn`]: slice::splitn 80 //! [`.chunks`]: slice::chunks 81 //! [`.windows`]: slice::windows 82 #![stable(feature = "rust1", since = "1.0.0")] 83 // Many of the usings in this module are only used in the test configuration. 84 // It's cleaner to just turn off the unused_imports warning than to fix them. 85 #![cfg_attr(test, allow(unused_imports, dead_code))] 86 87 use core::borrow::{Borrow, BorrowMut}; 88 #[cfg(not(no_global_oom_handling))] 89 use core::cmp::Ordering::{self, Less}; 90 #[cfg(not(no_global_oom_handling))] 91 use core::mem; 92 #[cfg(not(no_global_oom_handling))] 93 use core::mem::size_of; 94 #[cfg(not(no_global_oom_handling))] 95 use core::ptr; 96 97 use crate::alloc::Allocator; 98 #[cfg(not(no_global_oom_handling))] 99 use crate::alloc::Global; 100 #[cfg(not(no_global_oom_handling))] 101 use crate::borrow::ToOwned; 102 use crate::boxed::Box; 103 use crate::vec::Vec; 104 105 #[unstable(feature = "slice_range", issue = "76393")] 106 pub use core::slice::range; 107 #[unstable(feature = "array_chunks", issue = "74985")] 108 pub use core::slice::ArrayChunks; 109 #[unstable(feature = "array_chunks", issue = "74985")] 110 pub use core::slice::ArrayChunksMut; 111 #[unstable(feature = "array_windows", issue = "75027")] 112 pub use core::slice::ArrayWindows; 113 #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] 114 pub use core::slice::EscapeAscii; 115 #[stable(feature = "slice_get_slice", since = "1.28.0")] 116 pub use core::slice::SliceIndex; 117 #[stable(feature = "from_ref", since = "1.28.0")] 118 pub use core::slice::{from_mut, from_ref}; 119 #[stable(feature = "rust1", since = "1.0.0")] 120 pub use core::slice::{from_raw_parts, from_raw_parts_mut}; 121 #[stable(feature = "rust1", since = "1.0.0")] 122 pub use core::slice::{Chunks, Windows}; 123 #[stable(feature = "chunks_exact", since = "1.31.0")] 124 pub use core::slice::{ChunksExact, ChunksExactMut}; 125 #[stable(feature = "rust1", since = "1.0.0")] 126 pub use core::slice::{ChunksMut, Split, SplitMut}; 127 #[unstable(feature = "slice_group_by", issue = "80552")] 128 pub use core::slice::{GroupBy, GroupByMut}; 129 #[stable(feature = "rust1", since = "1.0.0")] 130 pub use core::slice::{Iter, IterMut}; 131 #[stable(feature = "rchunks", since = "1.31.0")] 132 pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; 133 #[stable(feature = "slice_rsplit", since = "1.27.0")] 134 pub use core::slice::{RSplit, RSplitMut}; 135 #[stable(feature = "rust1", since = "1.0.0")] 136 pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; 137 #[stable(feature = "split_inclusive", since = "1.51.0")] 138 pub use core::slice::{SplitInclusive, SplitInclusiveMut}; 139 140 //////////////////////////////////////////////////////////////////////////////// 141 // Basic slice extension methods 142 //////////////////////////////////////////////////////////////////////////////// 143 144 // HACK(japaric) needed for the implementation of `vec!` macro during testing 145 // N.B., see the `hack` module in this file for more details. 146 #[cfg(test)] 147 pub use hack::into_vec; 148 149 // HACK(japaric) needed for the implementation of `Vec::clone` during testing 150 // N.B., see the `hack` module in this file for more details. 151 #[cfg(test)] 152 pub use hack::to_vec; 153 154 // HACK(japaric): With cfg(test) `impl [T]` is not available, these three 155 // functions are actually methods that are in `impl [T]` but not in 156 // `core::slice::SliceExt` - we need to supply these functions for the 157 // `test_permutations` test 158 pub(crate) mod hack { 159 use core::alloc::Allocator; 160 161 use crate::boxed::Box; 162 use crate::vec::Vec; 163 164 // We shouldn't add inline attribute to this since this is used in 165 // `vec!` macro mostly and causes perf regression. See #71204 for 166 // discussion and perf results. 167 pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> { 168 unsafe { 169 let len = b.len(); 170 let (b, alloc) = Box::into_raw_with_allocator(b); 171 Vec::from_raw_parts_in(b as *mut T, len, len, alloc) 172 } 173 } 174 175 #[cfg(not(no_global_oom_handling))] 176 #[inline] 177 pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> { 178 T::to_vec(s, alloc) 179 } 180 181 #[cfg(not(no_global_oom_handling))] 182 pub trait ConvertVec { 183 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> 184 where 185 Self: Sized; 186 } 187 188 #[cfg(not(no_global_oom_handling))] 189 impl<T: Clone> ConvertVec for T { 190 #[inline] 191 default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { 192 struct DropGuard<'a, T, A: Allocator> { 193 vec: &'a mut Vec<T, A>, 194 num_init: usize, 195 } 196 impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { 197 #[inline] 198 fn drop(&mut self) { 199 // SAFETY: 200 // items were marked initialized in the loop below 201 unsafe { 202 self.vec.set_len(self.num_init); 203 } 204 } 205 } 206 let mut vec = Vec::with_capacity_in(s.len(), alloc); 207 let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; 208 let slots = guard.vec.spare_capacity_mut(); 209 // .take(slots.len()) is necessary for LLVM to remove bounds checks 210 // and has better codegen than zip. 211 for (i, b) in s.iter().enumerate().take(slots.len()) { 212 guard.num_init = i; 213 slots[i].write(b.clone()); 214 } 215 core::mem::forget(guard); 216 // SAFETY: 217 // the vec was allocated and initialized above to at least this length. 218 unsafe { 219 vec.set_len(s.len()); 220 } 221 vec 222 } 223 } 224 225 #[cfg(not(no_global_oom_handling))] 226 impl<T: Copy> ConvertVec for T { 227 #[inline] 228 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { 229 let mut v = Vec::with_capacity_in(s.len(), alloc); 230 // SAFETY: 231 // allocated above with the capacity of `s`, and initialize to `s.len()` in 232 // ptr::copy_to_non_overlapping below. 233 unsafe { 234 s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); 235 v.set_len(s.len()); 236 } 237 v 238 } 239 } 240 } 241 242 #[cfg(not(test))] 243 impl<T> [T] { 244 /// Sorts the slice. 245 /// 246 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. 247 /// 248 /// When applicable, unstable sorting is preferred because it is generally faster than stable 249 /// sorting and it doesn't allocate auxiliary memory. 250 /// See [`sort_unstable`](slice::sort_unstable). 251 /// 252 /// # Current implementation 253 /// 254 /// The current algorithm is an adaptive, iterative merge sort inspired by 255 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 256 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 257 /// two or more sorted sequences concatenated one after another. 258 /// 259 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 260 /// non-allocating insertion sort is used instead. 261 /// 262 /// # Examples 263 /// 264 /// ``` 265 /// let mut v = [-5, 4, 1, -3, 2]; 266 /// 267 /// v.sort(); 268 /// assert!(v == [-5, -3, 1, 2, 4]); 269 /// ``` 270 #[cfg(not(no_global_oom_handling))] 271 #[rustc_allow_incoherent_impl] 272 #[stable(feature = "rust1", since = "1.0.0")] 273 #[inline] 274 pub fn sort(&mut self) 275 where 276 T: Ord, 277 { 278 merge_sort(self, |a, b| a.lt(b)); 279 } 280 281 /// Sorts the slice with a comparator function. 282 /// 283 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. 284 /// 285 /// The comparator function must define a total ordering for the elements in the slice. If 286 /// the ordering is not total, the order of the elements is unspecified. An order is a 287 /// total order if it is (for all `a`, `b` and `c`): 288 /// 289 /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and 290 /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. 291 /// 292 /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use 293 /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. 294 /// 295 /// ``` 296 /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; 297 /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap()); 298 /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); 299 /// ``` 300 /// 301 /// When applicable, unstable sorting is preferred because it is generally faster than stable 302 /// sorting and it doesn't allocate auxiliary memory. 303 /// See [`sort_unstable_by`](slice::sort_unstable_by). 304 /// 305 /// # Current implementation 306 /// 307 /// The current algorithm is an adaptive, iterative merge sort inspired by 308 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 309 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 310 /// two or more sorted sequences concatenated one after another. 311 /// 312 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 313 /// non-allocating insertion sort is used instead. 314 /// 315 /// # Examples 316 /// 317 /// ``` 318 /// let mut v = [5, 4, 1, 3, 2]; 319 /// v.sort_by(|a, b| a.cmp(b)); 320 /// assert!(v == [1, 2, 3, 4, 5]); 321 /// 322 /// // reverse sorting 323 /// v.sort_by(|a, b| b.cmp(a)); 324 /// assert!(v == [5, 4, 3, 2, 1]); 325 /// ``` 326 #[cfg(not(no_global_oom_handling))] 327 #[rustc_allow_incoherent_impl] 328 #[stable(feature = "rust1", since = "1.0.0")] 329 #[inline] 330 pub fn sort_by<F>(&mut self, mut compare: F) 331 where 332 F: FnMut(&T, &T) -> Ordering, 333 { 334 merge_sort(self, |a, b| compare(a, b) == Less); 335 } 336 337 /// Sorts the slice with a key extraction function. 338 /// 339 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) 340 /// worst-case, where the key function is *O*(*m*). 341 /// 342 /// For expensive key functions (e.g. functions that are not simple property accesses or 343 /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be 344 /// significantly faster, as it does not recompute element keys. 345 /// 346 /// When applicable, unstable sorting is preferred because it is generally faster than stable 347 /// sorting and it doesn't allocate auxiliary memory. 348 /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key). 349 /// 350 /// # Current implementation 351 /// 352 /// The current algorithm is an adaptive, iterative merge sort inspired by 353 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 354 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 355 /// two or more sorted sequences concatenated one after another. 356 /// 357 /// Also, it allocates temporary storage half the size of `self`, but for short slices a 358 /// non-allocating insertion sort is used instead. 359 /// 360 /// # Examples 361 /// 362 /// ``` 363 /// let mut v = [-5i32, 4, 1, -3, 2]; 364 /// 365 /// v.sort_by_key(|k| k.abs()); 366 /// assert!(v == [1, 2, -3, 4, -5]); 367 /// ``` 368 #[cfg(not(no_global_oom_handling))] 369 #[rustc_allow_incoherent_impl] 370 #[stable(feature = "slice_sort_by_key", since = "1.7.0")] 371 #[inline] 372 pub fn sort_by_key<K, F>(&mut self, mut f: F) 373 where 374 F: FnMut(&T) -> K, 375 K: Ord, 376 { 377 merge_sort(self, |a, b| f(a).lt(&f(b))); 378 } 379 380 /// Sorts the slice with a key extraction function. 381 /// 382 /// During sorting, the key function is called at most once per element, by using 383 /// temporary storage to remember the results of key evaluation. 384 /// The order of calls to the key function is unspecified and may change in future versions 385 /// of the standard library. 386 /// 387 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) 388 /// worst-case, where the key function is *O*(*m*). 389 /// 390 /// For simple key functions (e.g., functions that are property accesses or 391 /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be 392 /// faster. 393 /// 394 /// # Current implementation 395 /// 396 /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, 397 /// which combines the fast average case of randomized quicksort with the fast worst case of 398 /// heapsort, while achieving linear time on slices with certain patterns. It uses some 399 /// randomization to avoid degenerate cases, but with a fixed seed to always provide 400 /// deterministic behavior. 401 /// 402 /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the 403 /// length of the slice. 404 /// 405 /// # Examples 406 /// 407 /// ``` 408 /// let mut v = [-5i32, 4, 32, -3, 2]; 409 /// 410 /// v.sort_by_cached_key(|k| k.to_string()); 411 /// assert!(v == [-3, -5, 2, 32, 4]); 412 /// ``` 413 /// 414 /// [pdqsort]: https://github.com/orlp/pdqsort 415 #[cfg(not(no_global_oom_handling))] 416 #[rustc_allow_incoherent_impl] 417 #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] 418 #[inline] 419 pub fn sort_by_cached_key<K, F>(&mut self, f: F) 420 where 421 F: FnMut(&T) -> K, 422 K: Ord, 423 { 424 // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. 425 macro_rules! sort_by_key { 426 ($t:ty, $slice:ident, $f:ident) => {{ 427 let mut indices: Vec<_> = 428 $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); 429 // The elements of `indices` are unique, as they are indexed, so any sort will be 430 // stable with respect to the original slice. We use `sort_unstable` here because 431 // it requires less memory allocation. 432 indices.sort_unstable(); 433 for i in 0..$slice.len() { 434 let mut index = indices[i].1; 435 while (index as usize) < i { 436 index = indices[index as usize].1; 437 } 438 indices[i].1 = index; 439 $slice.swap(i, index as usize); 440 } 441 }}; 442 } 443 444 let sz_u8 = mem::size_of::<(K, u8)>(); 445 let sz_u16 = mem::size_of::<(K, u16)>(); 446 let sz_u32 = mem::size_of::<(K, u32)>(); 447 let sz_usize = mem::size_of::<(K, usize)>(); 448 449 let len = self.len(); 450 if len < 2 { 451 return; 452 } 453 if sz_u8 < sz_u16 && len <= (u8::MAX as usize) { 454 return sort_by_key!(u8, self, f); 455 } 456 if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { 457 return sort_by_key!(u16, self, f); 458 } 459 if sz_u32 < sz_usize && len <= (u32::MAX as usize) { 460 return sort_by_key!(u32, self, f); 461 } 462 sort_by_key!(usize, self, f) 463 } 464 465 /// Copies `self` into a new `Vec`. 466 /// 467 /// # Examples 468 /// 469 /// ``` 470 /// let s = [10, 40, 30]; 471 /// let x = s.to_vec(); 472 /// // Here, `s` and `x` can be modified independently. 473 /// ``` 474 #[cfg(not(no_global_oom_handling))] 475 #[rustc_allow_incoherent_impl] 476 #[rustc_conversion_suggestion] 477 #[stable(feature = "rust1", since = "1.0.0")] 478 #[inline] 479 pub fn to_vec(&self) -> Vec<T> 480 where 481 T: Clone, 482 { 483 self.to_vec_in(Global) 484 } 485 486 /// Copies `self` into a new `Vec` with an allocator. 487 /// 488 /// # Examples 489 /// 490 /// ``` 491 /// #![feature(allocator_api)] 492 /// 493 /// use std::alloc::System; 494 /// 495 /// let s = [10, 40, 30]; 496 /// let x = s.to_vec_in(System); 497 /// // Here, `s` and `x` can be modified independently. 498 /// ``` 499 #[cfg(not(no_global_oom_handling))] 500 #[rustc_allow_incoherent_impl] 501 #[inline] 502 #[unstable(feature = "allocator_api", issue = "32838")] 503 pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> 504 where 505 T: Clone, 506 { 507 // N.B., see the `hack` module in this file for more details. 508 hack::to_vec(self, alloc) 509 } 510 511 /// Converts `self` into a vector without clones or allocation. 512 /// 513 /// The resulting vector can be converted back into a box via 514 /// `Vec<T>`'s `into_boxed_slice` method. 515 /// 516 /// # Examples 517 /// 518 /// ``` 519 /// let s: Box<[i32]> = Box::new([10, 40, 30]); 520 /// let x = s.into_vec(); 521 /// // `s` cannot be used anymore because it has been converted into `x`. 522 /// 523 /// assert_eq!(x, vec![10, 40, 30]); 524 /// ``` 525 #[rustc_allow_incoherent_impl] 526 #[stable(feature = "rust1", since = "1.0.0")] 527 #[inline] 528 pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> { 529 // N.B., see the `hack` module in this file for more details. 530 hack::into_vec(self) 531 } 532 533 /// Creates a vector by repeating a slice `n` times. 534 /// 535 /// # Panics 536 /// 537 /// This function will panic if the capacity would overflow. 538 /// 539 /// # Examples 540 /// 541 /// Basic usage: 542 /// 543 /// ``` 544 /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); 545 /// ``` 546 /// 547 /// A panic upon overflow: 548 /// 549 /// ```should_panic 550 /// // this will panic at runtime 551 /// b"0123456789abcdef".repeat(usize::MAX); 552 /// ``` 553 #[rustc_allow_incoherent_impl] 554 #[cfg(not(no_global_oom_handling))] 555 #[stable(feature = "repeat_generic_slice", since = "1.40.0")] 556 pub fn repeat(&self, n: usize) -> Vec<T> 557 where 558 T: Copy, 559 { 560 if n == 0 { 561 return Vec::new(); 562 } 563 564 // If `n` is larger than zero, it can be split as 565 // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. 566 // `2^expn` is the number represented by the leftmost '1' bit of `n`, 567 // and `rem` is the remaining part of `n`. 568 569 // Using `Vec` to access `set_len()`. 570 let capacity = self.len().checked_mul(n).expect("capacity overflow"); 571 let mut buf = Vec::with_capacity(capacity); 572 573 // `2^expn` repetition is done by doubling `buf` `expn`-times. 574 buf.extend(self); 575 { 576 let mut m = n >> 1; 577 // If `m > 0`, there are remaining bits up to the leftmost '1'. 578 while m > 0 { 579 // `buf.extend(buf)`: 580 unsafe { 581 ptr::copy_nonoverlapping( 582 buf.as_ptr(), 583 (buf.as_mut_ptr() as *mut T).add(buf.len()), 584 buf.len(), 585 ); 586 // `buf` has capacity of `self.len() * n`. 587 let buf_len = buf.len(); 588 buf.set_len(buf_len * 2); 589 } 590 591 m >>= 1; 592 } 593 } 594 595 // `rem` (`= n - 2^expn`) repetition is done by copying 596 // first `rem` repetitions from `buf` itself. 597 let rem_len = capacity - buf.len(); // `self.len() * rem` 598 if rem_len > 0 { 599 // `buf.extend(buf[0 .. rem_len])`: 600 unsafe { 601 // This is non-overlapping since `2^expn > rem`. 602 ptr::copy_nonoverlapping( 603 buf.as_ptr(), 604 (buf.as_mut_ptr() as *mut T).add(buf.len()), 605 rem_len, 606 ); 607 // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). 608 buf.set_len(capacity); 609 } 610 } 611 buf 612 } 613 614 /// Flattens a slice of `T` into a single value `Self::Output`. 615 /// 616 /// # Examples 617 /// 618 /// ``` 619 /// assert_eq!(["hello", "world"].concat(), "helloworld"); 620 /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); 621 /// ``` 622 #[rustc_allow_incoherent_impl] 623 #[stable(feature = "rust1", since = "1.0.0")] 624 pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output 625 where 626 Self: Concat<Item>, 627 { 628 Concat::concat(self) 629 } 630 631 /// Flattens a slice of `T` into a single value `Self::Output`, placing a 632 /// given separator between each. 633 /// 634 /// # Examples 635 /// 636 /// ``` 637 /// assert_eq!(["hello", "world"].join(" "), "hello world"); 638 /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); 639 /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); 640 /// ``` 641 #[rustc_allow_incoherent_impl] 642 #[stable(feature = "rename_connect_to_join", since = "1.3.0")] 643 pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output 644 where 645 Self: Join<Separator>, 646 { 647 Join::join(self, sep) 648 } 649 650 /// Flattens a slice of `T` into a single value `Self::Output`, placing a 651 /// given separator between each. 652 /// 653 /// # Examples 654 /// 655 /// ``` 656 /// # #![allow(deprecated)] 657 /// assert_eq!(["hello", "world"].connect(" "), "hello world"); 658 /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); 659 /// ``` 660 #[rustc_allow_incoherent_impl] 661 #[stable(feature = "rust1", since = "1.0.0")] 662 #[deprecated(since = "1.3.0", note = "renamed to join")] 663 pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output 664 where 665 Self: Join<Separator>, 666 { 667 Join::join(self, sep) 668 } 669 } 670 671 #[cfg(not(test))] 672 impl [u8] { 673 /// Returns a vector containing a copy of this slice where each byte 674 /// is mapped to its ASCII upper case equivalent. 675 /// 676 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 677 /// but non-ASCII letters are unchanged. 678 /// 679 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 680 /// 681 /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase 682 #[cfg(not(no_global_oom_handling))] 683 #[rustc_allow_incoherent_impl] 684 #[must_use = "this returns the uppercase bytes as a new Vec, \ 685 without modifying the original"] 686 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] 687 #[inline] 688 pub fn to_ascii_uppercase(&self) -> Vec<u8> { 689 let mut me = self.to_vec(); 690 me.make_ascii_uppercase(); 691 me 692 } 693 694 /// Returns a vector containing a copy of this slice where each byte 695 /// is mapped to its ASCII lower case equivalent. 696 /// 697 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 698 /// but non-ASCII letters are unchanged. 699 /// 700 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 701 /// 702 /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase 703 #[cfg(not(no_global_oom_handling))] 704 #[rustc_allow_incoherent_impl] 705 #[must_use = "this returns the lowercase bytes as a new Vec, \ 706 without modifying the original"] 707 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] 708 #[inline] 709 pub fn to_ascii_lowercase(&self) -> Vec<u8> { 710 let mut me = self.to_vec(); 711 me.make_ascii_lowercase(); 712 me 713 } 714 } 715 716 //////////////////////////////////////////////////////////////////////////////// 717 // Extension traits for slices over specific kinds of data 718 //////////////////////////////////////////////////////////////////////////////// 719 720 /// Helper trait for [`[T]::concat`](slice::concat). 721 /// 722 /// Note: the `Item` type parameter is not used in this trait, 723 /// but it allows impls to be more generic. 724 /// Without it, we get this error: 725 /// 726 /// ```error 727 /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica 728 /// --> src/liballoc/slice.rs:608:6 729 /// | 730 /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] { 731 /// | ^ unconstrained type parameter 732 /// ``` 733 /// 734 /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, 735 /// such that multiple `T` types would apply: 736 /// 737 /// ``` 738 /// # #[allow(dead_code)] 739 /// pub struct Foo(Vec<u32>, Vec<String>); 740 /// 741 /// impl std::borrow::Borrow<[u32]> for Foo { 742 /// fn borrow(&self) -> &[u32] { &self.0 } 743 /// } 744 /// 745 /// impl std::borrow::Borrow<[String]> for Foo { 746 /// fn borrow(&self) -> &[String] { &self.1 } 747 /// } 748 /// ``` 749 #[unstable(feature = "slice_concat_trait", issue = "27747")] 750 pub trait Concat<Item: ?Sized> { 751 #[unstable(feature = "slice_concat_trait", issue = "27747")] 752 /// The resulting type after concatenation 753 type Output; 754 755 /// Implementation of [`[T]::concat`](slice::concat) 756 #[unstable(feature = "slice_concat_trait", issue = "27747")] 757 fn concat(slice: &Self) -> Self::Output; 758 } 759 760 /// Helper trait for [`[T]::join`](slice::join) 761 #[unstable(feature = "slice_concat_trait", issue = "27747")] 762 pub trait Join<Separator> { 763 #[unstable(feature = "slice_concat_trait", issue = "27747")] 764 /// The resulting type after concatenation 765 type Output; 766 767 /// Implementation of [`[T]::join`](slice::join) 768 #[unstable(feature = "slice_concat_trait", issue = "27747")] 769 fn join(slice: &Self, sep: Separator) -> Self::Output; 770 } 771 772 #[cfg(not(no_global_oom_handling))] 773 #[unstable(feature = "slice_concat_ext", issue = "27747")] 774 impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] { 775 type Output = Vec<T>; 776 777 fn concat(slice: &Self) -> Vec<T> { 778 let size = slice.iter().map(|slice| slice.borrow().len()).sum(); 779 let mut result = Vec::with_capacity(size); 780 for v in slice { 781 result.extend_from_slice(v.borrow()) 782 } 783 result 784 } 785 } 786 787 #[cfg(not(no_global_oom_handling))] 788 #[unstable(feature = "slice_concat_ext", issue = "27747")] 789 impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] { 790 type Output = Vec<T>; 791 792 fn join(slice: &Self, sep: &T) -> Vec<T> { 793 let mut iter = slice.iter(); 794 let first = match iter.next() { 795 Some(first) => first, 796 None => return vec![], 797 }; 798 let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1; 799 let mut result = Vec::with_capacity(size); 800 result.extend_from_slice(first.borrow()); 801 802 for v in iter { 803 result.push(sep.clone()); 804 result.extend_from_slice(v.borrow()) 805 } 806 result 807 } 808 } 809 810 #[cfg(not(no_global_oom_handling))] 811 #[unstable(feature = "slice_concat_ext", issue = "27747")] 812 impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] { 813 type Output = Vec<T>; 814 815 fn join(slice: &Self, sep: &[T]) -> Vec<T> { 816 let mut iter = slice.iter(); 817 let first = match iter.next() { 818 Some(first) => first, 819 None => return vec![], 820 }; 821 let size = 822 slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1); 823 let mut result = Vec::with_capacity(size); 824 result.extend_from_slice(first.borrow()); 825 826 for v in iter { 827 result.extend_from_slice(sep); 828 result.extend_from_slice(v.borrow()) 829 } 830 result 831 } 832 } 833 834 //////////////////////////////////////////////////////////////////////////////// 835 // Standard trait implementations for slices 836 //////////////////////////////////////////////////////////////////////////////// 837 838 #[stable(feature = "rust1", since = "1.0.0")] 839 impl<T> Borrow<[T]> for Vec<T> { 840 fn borrow(&self) -> &[T] { 841 &self[..] 842 } 843 } 844 845 #[stable(feature = "rust1", since = "1.0.0")] 846 impl<T> BorrowMut<[T]> for Vec<T> { 847 fn borrow_mut(&mut self) -> &mut [T] { 848 &mut self[..] 849 } 850 } 851 852 #[cfg(not(no_global_oom_handling))] 853 #[stable(feature = "rust1", since = "1.0.0")] 854 impl<T: Clone> ToOwned for [T] { 855 type Owned = Vec<T>; 856 #[cfg(not(test))] 857 fn to_owned(&self) -> Vec<T> { 858 self.to_vec() 859 } 860 861 #[cfg(test)] 862 fn to_owned(&self) -> Vec<T> { 863 hack::to_vec(self, Global) 864 } 865 866 fn clone_into(&self, target: &mut Vec<T>) { 867 // drop anything in target that will not be overwritten 868 target.truncate(self.len()); 869 870 // target.len <= self.len due to the truncate above, so the 871 // slices here are always in-bounds. 872 let (init, tail) = self.split_at(target.len()); 873 874 // reuse the contained values' allocations/resources. 875 target.clone_from_slice(init); 876 target.extend_from_slice(tail); 877 } 878 } 879 880 //////////////////////////////////////////////////////////////////////////////// 881 // Sorting 882 //////////////////////////////////////////////////////////////////////////////// 883 884 /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. 885 /// 886 /// This is the integral subroutine of insertion sort. 887 #[cfg(not(no_global_oom_handling))] 888 fn insert_head<T, F>(v: &mut [T], is_less: &mut F) 889 where 890 F: FnMut(&T, &T) -> bool, 891 { 892 if v.len() >= 2 && is_less(&v[1], &v[0]) { 893 unsafe { 894 // There are three ways to implement insertion here: 895 // 896 // 1. Swap adjacent elements until the first one gets to its final destination. 897 // However, this way we copy data around more than is necessary. If elements are big 898 // structures (costly to copy), this method will be slow. 899 // 900 // 2. Iterate until the right place for the first element is found. Then shift the 901 // elements succeeding it to make room for it and finally place it into the 902 // remaining hole. This is a good method. 903 // 904 // 3. Copy the first element into a temporary variable. Iterate until the right place 905 // for it is found. As we go along, copy every traversed element into the slot 906 // preceding it. Finally, copy data from the temporary variable into the remaining 907 // hole. This method is very good. Benchmarks demonstrated slightly better 908 // performance than with the 2nd method. 909 // 910 // All methods were benchmarked, and the 3rd showed best results. So we chose that one. 911 let tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); 912 913 // Intermediate state of the insertion process is always tracked by `hole`, which 914 // serves two purposes: 915 // 1. Protects integrity of `v` from panics in `is_less`. 916 // 2. Fills the remaining hole in `v` in the end. 917 // 918 // Panic safety: 919 // 920 // If `is_less` panics at any point during the process, `hole` will get dropped and 921 // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it 922 // initially held exactly once. 923 let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] }; 924 ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); 925 926 for i in 2..v.len() { 927 if !is_less(&v[i], &*tmp) { 928 break; 929 } 930 ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); 931 hole.dest = &mut v[i]; 932 } 933 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. 934 } 935 } 936 937 // When dropped, copies from `src` into `dest`. 938 struct InsertionHole<T> { 939 src: *const T, 940 dest: *mut T, 941 } 942 943 impl<T> Drop for InsertionHole<T> { 944 fn drop(&mut self) { 945 unsafe { 946 ptr::copy_nonoverlapping(self.src, self.dest, 1); 947 } 948 } 949 } 950 } 951 952 /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and 953 /// stores the result into `v[..]`. 954 /// 955 /// # Safety 956 /// 957 /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough 958 /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. 959 #[cfg(not(no_global_oom_handling))] 960 unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) 961 where 962 F: FnMut(&T, &T) -> bool, 963 { 964 let len = v.len(); 965 let v = v.as_mut_ptr(); 966 let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) }; 967 968 // The merge process first copies the shorter run into `buf`. Then it traces the newly copied 969 // run and the longer run forwards (or backwards), comparing their next unconsumed elements and 970 // copying the lesser (or greater) one into `v`. 971 // 972 // As soon as the shorter run is fully consumed, the process is done. If the longer run gets 973 // consumed first, then we must copy whatever is left of the shorter run into the remaining 974 // hole in `v`. 975 // 976 // Intermediate state of the process is always tracked by `hole`, which serves two purposes: 977 // 1. Protects integrity of `v` from panics in `is_less`. 978 // 2. Fills the remaining hole in `v` if the longer run gets consumed first. 979 // 980 // Panic safety: 981 // 982 // If `is_less` panics at any point during the process, `hole` will get dropped and fill the 983 // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every 984 // object it initially held exactly once. 985 let mut hole; 986 987 if mid <= len - mid { 988 // The left run is shorter. 989 unsafe { 990 ptr::copy_nonoverlapping(v, buf, mid); 991 hole = MergeHole { start: buf, end: buf.add(mid), dest: v }; 992 } 993 994 // Initially, these pointers point to the beginnings of their arrays. 995 let left = &mut hole.start; 996 let mut right = v_mid; 997 let out = &mut hole.dest; 998 999 while *left < hole.end && right < v_end { 1000 // Consume the lesser side. 1001 // If equal, prefer the left run to maintain stability. 1002 unsafe { 1003 let to_copy = if is_less(&*right, &**left) { 1004 get_and_increment(&mut right) 1005 } else { 1006 get_and_increment(left) 1007 }; 1008 ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); 1009 } 1010 } 1011 } else { 1012 // The right run is shorter. 1013 unsafe { 1014 ptr::copy_nonoverlapping(v_mid, buf, len - mid); 1015 hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid }; 1016 } 1017 1018 // Initially, these pointers point past the ends of their arrays. 1019 let left = &mut hole.dest; 1020 let right = &mut hole.end; 1021 let mut out = v_end; 1022 1023 while v < *left && buf < *right { 1024 // Consume the greater side. 1025 // If equal, prefer the right run to maintain stability. 1026 unsafe { 1027 let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { 1028 decrement_and_get(left) 1029 } else { 1030 decrement_and_get(right) 1031 }; 1032 ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); 1033 } 1034 } 1035 } 1036 // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of 1037 // it will now be copied into the hole in `v`. 1038 1039 unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { 1040 let old = *ptr; 1041 *ptr = unsafe { ptr.offset(1) }; 1042 old 1043 } 1044 1045 unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { 1046 *ptr = unsafe { ptr.offset(-1) }; 1047 *ptr 1048 } 1049 1050 // When dropped, copies the range `start..end` into `dest..`. 1051 struct MergeHole<T> { 1052 start: *mut T, 1053 end: *mut T, 1054 dest: *mut T, 1055 } 1056 1057 impl<T> Drop for MergeHole<T> { 1058 fn drop(&mut self) { 1059 // `T` is not a zero-sized type, and these are pointers into a slice's elements. 1060 unsafe { 1061 let len = self.end.sub_ptr(self.start); 1062 ptr::copy_nonoverlapping(self.start, self.dest, len); 1063 } 1064 } 1065 } 1066 } 1067 1068 /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail 1069 /// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). 1070 /// 1071 /// The algorithm identifies strictly descending and non-descending subsequences, which are called 1072 /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed 1073 /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are 1074 /// satisfied: 1075 /// 1076 /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` 1077 /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` 1078 /// 1079 /// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case. 1080 #[cfg(not(no_global_oom_handling))] 1081 fn merge_sort<T, F>(v: &mut [T], mut is_less: F) 1082 where 1083 F: FnMut(&T, &T) -> bool, 1084 { 1085 // Slices of up to this length get sorted using insertion sort. 1086 const MAX_INSERTION: usize = 20; 1087 // Very short runs are extended using insertion sort to span at least this many elements. 1088 const MIN_RUN: usize = 10; 1089 1090 // Sorting has no meaningful behavior on zero-sized types. 1091 if size_of::<T>() == 0 { 1092 return; 1093 } 1094 1095 let len = v.len(); 1096 1097 // Short arrays get sorted in-place via insertion sort to avoid allocations. 1098 if len <= MAX_INSERTION { 1099 if len >= 2 { 1100 for i in (0..len - 1).rev() { 1101 insert_head(&mut v[i..], &mut is_less); 1102 } 1103 } 1104 return; 1105 } 1106 1107 // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it 1108 // shallow copies of the contents of `v` without risking the dtors running on copies if 1109 // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, 1110 // which will always have length at most `len / 2`. 1111 let mut buf = Vec::with_capacity(len / 2); 1112 1113 // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a 1114 // strange decision, but consider the fact that merges more often go in the opposite direction 1115 // (forwards). According to benchmarks, merging forwards is slightly faster than merging 1116 // backwards. To conclude, identifying runs by traversing backwards improves performance. 1117 let mut runs = vec![]; 1118 let mut end = len; 1119 while end > 0 { 1120 // Find the next natural run, and reverse it if it's strictly descending. 1121 let mut start = end - 1; 1122 if start > 0 { 1123 start -= 1; 1124 unsafe { 1125 if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { 1126 while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { 1127 start -= 1; 1128 } 1129 v[start..end].reverse(); 1130 } else { 1131 while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) 1132 { 1133 start -= 1; 1134 } 1135 } 1136 } 1137 } 1138 1139 // Insert some more elements into the run if it's too short. Insertion sort is faster than 1140 // merge sort on short sequences, so this significantly improves performance. 1141 while start > 0 && end - start < MIN_RUN { 1142 start -= 1; 1143 insert_head(&mut v[start..end], &mut is_less); 1144 } 1145 1146 // Push this run onto the stack. 1147 runs.push(Run { start, len: end - start }); 1148 end = start; 1149 1150 // Merge some pairs of adjacent runs to satisfy the invariants. 1151 while let Some(r) = collapse(&runs) { 1152 let left = runs[r + 1]; 1153 let right = runs[r]; 1154 unsafe { 1155 merge( 1156 &mut v[left.start..right.start + right.len], 1157 left.len, 1158 buf.as_mut_ptr(), 1159 &mut is_less, 1160 ); 1161 } 1162 runs[r] = Run { start: left.start, len: left.len + right.len }; 1163 runs.remove(r + 1); 1164 } 1165 } 1166 1167 // Finally, exactly one run must remain in the stack. 1168 debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); 1169 1170 // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, 1171 // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the 1172 // algorithm should continue building a new run instead, `None` is returned. 1173 // 1174 // TimSort is infamous for its buggy implementations, as described here: 1175 // http://envisage-project.eu/timsort-specification-and-verification/ 1176 // 1177 // The gist of the story is: we must enforce the invariants on the top four runs on the stack. 1178 // Enforcing them on just top three is not sufficient to ensure that the invariants will still 1179 // hold for *all* runs in the stack. 1180 // 1181 // This function correctly checks invariants for the top four runs. Additionally, if the top 1182 // run starts at index 0, it will always demand a merge operation until the stack is fully 1183 // collapsed, in order to complete the sort. 1184 #[inline] 1185 fn collapse(runs: &[Run]) -> Option<usize> { 1186 let n = runs.len(); 1187 if n >= 2 1188 && (runs[n - 1].start == 0 1189 || runs[n - 2].len <= runs[n - 1].len 1190 || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) 1191 || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) 1192 { 1193 if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) } 1194 } else { 1195 None 1196 } 1197 } 1198 1199 #[derive(Clone, Copy)] 1200 struct Run { 1201 start: usize, 1202 len: usize, 1203 } 1204 } 1205