1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] 4 5 use core::alloc::LayoutError; 6 use core::cmp; 7 use core::intrinsics; 8 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; 9 use core::ptr::{self, NonNull, Unique}; 10 use core::slice; 11 12 #[cfg(not(no_global_oom_handling))] 13 use crate::alloc::handle_alloc_error; 14 use crate::alloc::{Allocator, Global, Layout}; 15 use crate::boxed::Box; 16 use crate::collections::TryReserveError; 17 use crate::collections::TryReserveErrorKind::*; 18 19 #[cfg(test)] 20 mod tests; 21 22 enum AllocInit { 23 /// The contents of the new memory are uninitialized. 24 Uninitialized, 25 /// The new memory is guaranteed to be zeroed. 26 #[allow(dead_code)] 27 Zeroed, 28 } 29 30 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating 31 /// a buffer of memory on the heap without having to worry about all the corner cases 32 /// involved. This type is excellent for building your own data structures like Vec and VecDeque. 33 /// In particular: 34 /// 35 /// * Produces `Unique::dangling()` on zero-sized types. 36 /// * Produces `Unique::dangling()` on zero-length allocations. 37 /// * Avoids freeing `Unique::dangling()`. 38 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). 39 /// * Guards against 32-bit systems allocating more than isize::MAX bytes. 40 /// * Guards against overflowing your length. 41 /// * Calls `handle_alloc_error` for fallible allocations. 42 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. 43 /// * Uses the excess returned from the allocator to use the largest available capacity. 44 /// 45 /// This type does not in anyway inspect the memory that it manages. When dropped it *will* 46 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` 47 /// to handle the actual things *stored* inside of a `RawVec`. 48 /// 49 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns 50 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a 51 /// `Box<[T]>`, since `capacity()` won't yield the length. 52 #[allow(missing_debug_implementations)] 53 pub(crate) struct RawVec<T, A: Allocator = Global> { 54 ptr: Unique<T>, 55 cap: usize, 56 alloc: A, 57 } 58 59 impl<T> RawVec<T, Global> { 60 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so 61 /// they cannot call `Self::new()`. 62 /// 63 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything 64 /// that would truly const-call something unstable. 65 pub const NEW: Self = Self::new(); 66 67 /// Creates the biggest possible `RawVec` (on the system heap) 68 /// without allocating. If `T` has positive size, then this makes a 69 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a 70 /// `RawVec` with capacity `usize::MAX`. Useful for implementing 71 /// delayed allocation. 72 #[must_use] 73 pub const fn new() -> Self { 74 Self::new_in(Global) 75 } 76 77 /// Creates a `RawVec` (on the system heap) with exactly the 78 /// capacity and alignment requirements for a `[T; capacity]`. This is 79 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is 80 /// zero-sized. Note that if `T` is zero-sized this means you will 81 /// *not* get a `RawVec` with the requested capacity. 82 /// 83 /// # Panics 84 /// 85 /// Panics if the requested capacity exceeds `isize::MAX` bytes. 86 /// 87 /// # Aborts 88 /// 89 /// Aborts on OOM. 90 #[cfg(not(any(no_global_oom_handling, test)))] 91 #[must_use] 92 #[inline] 93 pub fn with_capacity(capacity: usize) -> Self { 94 Self::with_capacity_in(capacity, Global) 95 } 96 97 /// Like `with_capacity`, but guarantees the buffer is zeroed. 98 #[cfg(not(any(no_global_oom_handling, test)))] 99 #[must_use] 100 #[inline] 101 pub fn with_capacity_zeroed(capacity: usize) -> Self { 102 Self::with_capacity_zeroed_in(capacity, Global) 103 } 104 } 105 106 impl<T, A: Allocator> RawVec<T, A> { 107 // Tiny Vecs are dumb. Skip to: 108 // - 8 if the element size is 1, because any heap allocators is likely 109 // to round up a request of less than 8 bytes to at least 8 bytes. 110 // - 4 if elements are moderate-sized (<= 1 KiB). 111 // - 1 otherwise, to avoid wasting too much space for very short Vecs. 112 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { 113 8 114 } else if mem::size_of::<T>() <= 1024 { 115 4 116 } else { 117 1 118 }; 119 120 /// Like `new`, but parameterized over the choice of allocator for 121 /// the returned `RawVec`. 122 pub const fn new_in(alloc: A) -> Self { 123 // `cap: 0` means "unallocated". zero-sized types are ignored. 124 Self { ptr: Unique::dangling(), cap: 0, alloc } 125 } 126 127 /// Like `with_capacity`, but parameterized over the choice of 128 /// allocator for the returned `RawVec`. 129 #[cfg(not(no_global_oom_handling))] 130 #[inline] 131 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { 132 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) 133 } 134 135 /// Like `try_with_capacity`, but parameterized over the choice of 136 /// allocator for the returned `RawVec`. 137 #[inline] 138 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { 139 Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc) 140 } 141 142 /// Like `with_capacity_zeroed`, but parameterized over the choice 143 /// of allocator for the returned `RawVec`. 144 #[cfg(not(no_global_oom_handling))] 145 #[inline] 146 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { 147 Self::allocate_in(capacity, AllocInit::Zeroed, alloc) 148 } 149 150 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. 151 /// 152 /// Note that this will correctly reconstitute any `cap` changes 153 /// that may have been performed. (See description of type for details.) 154 /// 155 /// # Safety 156 /// 157 /// * `len` must be greater than or equal to the most recently requested capacity, and 158 /// * `len` must be less than or equal to `self.capacity()`. 159 /// 160 /// Note, that the requested capacity and `self.capacity()` could differ, as 161 /// an allocator could overallocate and return a greater memory block than requested. 162 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { 163 // Sanity-check one half of the safety requirement (we cannot check the other half). 164 debug_assert!( 165 len <= self.capacity(), 166 "`len` must be smaller than or equal to `self.capacity()`" 167 ); 168 169 let me = ManuallyDrop::new(self); 170 unsafe { 171 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); 172 Box::from_raw_in(slice, ptr::read(&me.alloc)) 173 } 174 } 175 176 #[cfg(not(no_global_oom_handling))] 177 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { 178 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. 179 if T::IS_ZST || capacity == 0 { 180 Self::new_in(alloc) 181 } else { 182 // We avoid `unwrap_or_else` here because it bloats the amount of 183 // LLVM IR generated. 184 let layout = match Layout::array::<T>(capacity) { 185 Ok(layout) => layout, 186 Err(_) => capacity_overflow(), 187 }; 188 match alloc_guard(layout.size()) { 189 Ok(_) => {} 190 Err(_) => capacity_overflow(), 191 } 192 let result = match init { 193 AllocInit::Uninitialized => alloc.allocate(layout), 194 AllocInit::Zeroed => alloc.allocate_zeroed(layout), 195 }; 196 let ptr = match result { 197 Ok(ptr) => ptr, 198 Err(_) => handle_alloc_error(layout), 199 }; 200 201 // Allocators currently return a `NonNull<[u8]>` whose length 202 // matches the size requested. If that ever changes, the capacity 203 // here should change to `ptr.len() / mem::size_of::<T>()`. 204 Self { 205 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, 206 cap: capacity, 207 alloc, 208 } 209 } 210 } 211 212 fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> { 213 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. 214 if T::IS_ZST || capacity == 0 { 215 return Ok(Self::new_in(alloc)); 216 } 217 218 let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?; 219 alloc_guard(layout.size())?; 220 let result = match init { 221 AllocInit::Uninitialized => alloc.allocate(layout), 222 AllocInit::Zeroed => alloc.allocate_zeroed(layout), 223 }; 224 let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?; 225 226 // Allocators currently return a `NonNull<[u8]>` whose length 227 // matches the size requested. If that ever changes, the capacity 228 // here should change to `ptr.len() / mem::size_of::<T>()`. 229 Ok(Self { 230 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, 231 cap: capacity, 232 alloc, 233 }) 234 } 235 236 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. 237 /// 238 /// # Safety 239 /// 240 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given 241 /// `capacity`. 242 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit 243 /// systems). ZST vectors may have a capacity up to `usize::MAX`. 244 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is 245 /// guaranteed. 246 #[inline] 247 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { 248 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc } 249 } 250 251 /// Gets a raw pointer to the start of the allocation. Note that this is 252 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must 253 /// be careful. 254 #[inline] 255 pub fn ptr(&self) -> *mut T { 256 self.ptr.as_ptr() 257 } 258 259 /// Gets the capacity of the allocation. 260 /// 261 /// This will always be `usize::MAX` if `T` is zero-sized. 262 #[inline(always)] 263 pub fn capacity(&self) -> usize { 264 if T::IS_ZST { usize::MAX } else { self.cap } 265 } 266 267 /// Returns a shared reference to the allocator backing this `RawVec`. 268 pub fn allocator(&self) -> &A { 269 &self.alloc 270 } 271 272 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { 273 if T::IS_ZST || self.cap == 0 { 274 None 275 } else { 276 // We could use Layout::array here which ensures the absence of isize and usize overflows 277 // and could hypothetically handle differences between stride and size, but this memory 278 // has already been allocated so we know it can't overflow and currently rust does not 279 // support such types. So we can do better by skipping some checks and avoid an unwrap. 280 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; 281 unsafe { 282 let align = mem::align_of::<T>(); 283 let size = mem::size_of::<T>().unchecked_mul(self.cap); 284 let layout = Layout::from_size_align_unchecked(size, align); 285 Some((self.ptr.cast().into(), layout)) 286 } 287 } 288 } 289 290 /// Ensures that the buffer contains at least enough space to hold `len + 291 /// additional` elements. If it doesn't already have enough capacity, will 292 /// reallocate enough space plus comfortable slack space to get amortized 293 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause 294 /// itself to panic. 295 /// 296 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 297 /// the requested space. This is not really unsafe, but the unsafe 298 /// code *you* write that relies on the behavior of this function may break. 299 /// 300 /// This is ideal for implementing a bulk-push operation like `extend`. 301 /// 302 /// # Panics 303 /// 304 /// Panics if the new capacity exceeds `isize::MAX` bytes. 305 /// 306 /// # Aborts 307 /// 308 /// Aborts on OOM. 309 #[cfg(not(no_global_oom_handling))] 310 #[inline] 311 pub fn reserve(&mut self, len: usize, additional: usize) { 312 // Callers expect this function to be very cheap when there is already sufficient capacity. 313 // Therefore, we move all the resizing and error-handling logic from grow_amortized and 314 // handle_reserve behind a call, while making sure that this function is likely to be 315 // inlined as just a comparison and a call if the comparison fails. 316 #[cold] 317 fn do_reserve_and_handle<T, A: Allocator>( 318 slf: &mut RawVec<T, A>, 319 len: usize, 320 additional: usize, 321 ) { 322 handle_reserve(slf.grow_amortized(len, additional)); 323 } 324 325 if self.needs_to_grow(len, additional) { 326 do_reserve_and_handle(self, len, additional); 327 } 328 } 329 330 /// A specialized version of `reserve()` used only by the hot and 331 /// oft-instantiated `Vec::push()`, which does its own capacity check. 332 #[cfg(not(no_global_oom_handling))] 333 #[inline(never)] 334 pub fn reserve_for_push(&mut self, len: usize) { 335 handle_reserve(self.grow_amortized(len, 1)); 336 } 337 338 /// The same as `reserve`, but returns on errors instead of panicking or aborting. 339 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 340 if self.needs_to_grow(len, additional) { 341 self.grow_amortized(len, additional) 342 } else { 343 Ok(()) 344 } 345 } 346 347 /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting. 348 #[inline(never)] 349 pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> { 350 self.grow_amortized(len, 1) 351 } 352 353 /// Ensures that the buffer contains at least enough space to hold `len + 354 /// additional` elements. If it doesn't already, will reallocate the 355 /// minimum possible amount of memory necessary. Generally this will be 356 /// exactly the amount of memory necessary, but in principle the allocator 357 /// is free to give back more than we asked for. 358 /// 359 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 360 /// the requested space. This is not really unsafe, but the unsafe code 361 /// *you* write that relies on the behavior of this function may break. 362 /// 363 /// # Panics 364 /// 365 /// Panics if the new capacity exceeds `isize::MAX` bytes. 366 /// 367 /// # Aborts 368 /// 369 /// Aborts on OOM. 370 #[cfg(not(no_global_oom_handling))] 371 pub fn reserve_exact(&mut self, len: usize, additional: usize) { 372 handle_reserve(self.try_reserve_exact(len, additional)); 373 } 374 375 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. 376 pub fn try_reserve_exact( 377 &mut self, 378 len: usize, 379 additional: usize, 380 ) -> Result<(), TryReserveError> { 381 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) } 382 } 383 384 /// Shrinks the buffer down to the specified capacity. If the given amount 385 /// is 0, actually completely deallocates. 386 /// 387 /// # Panics 388 /// 389 /// Panics if the given amount is *larger* than the current capacity. 390 /// 391 /// # Aborts 392 /// 393 /// Aborts on OOM. 394 #[cfg(not(no_global_oom_handling))] 395 pub fn shrink_to_fit(&mut self, cap: usize) { 396 handle_reserve(self.shrink(cap)); 397 } 398 } 399 400 impl<T, A: Allocator> RawVec<T, A> { 401 /// Returns if the buffer needs to grow to fulfill the needed extra capacity. 402 /// Mainly used to make inlining reserve-calls possible without inlining `grow`. 403 fn needs_to_grow(&self, len: usize, additional: usize) -> bool { 404 additional > self.capacity().wrapping_sub(len) 405 } 406 407 fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { 408 // Allocators currently return a `NonNull<[u8]>` whose length matches 409 // the size requested. If that ever changes, the capacity here should 410 // change to `ptr.len() / mem::size_of::<T>()`. 411 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }; 412 self.cap = cap; 413 } 414 415 // This method is usually instantiated many times. So we want it to be as 416 // small as possible, to improve compile times. But we also want as much of 417 // its contents to be statically computable as possible, to make the 418 // generated code run faster. Therefore, this method is carefully written 419 // so that all of the code that depends on `T` is within it, while as much 420 // of the code that doesn't depend on `T` as possible is in functions that 421 // are non-generic over `T`. 422 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 423 // This is ensured by the calling contexts. 424 debug_assert!(additional > 0); 425 426 if T::IS_ZST { 427 // Since we return a capacity of `usize::MAX` when `elem_size` is 428 // 0, getting to here necessarily means the `RawVec` is overfull. 429 return Err(CapacityOverflow.into()); 430 } 431 432 // Nothing we can really do about these checks, sadly. 433 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 434 435 // This guarantees exponential growth. The doubling cannot overflow 436 // because `cap <= isize::MAX` and the type of `cap` is `usize`. 437 let cap = cmp::max(self.cap * 2, required_cap); 438 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); 439 440 let new_layout = Layout::array::<T>(cap); 441 442 // `finish_grow` is non-generic over `T`. 443 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 444 self.set_ptr_and_cap(ptr, cap); 445 Ok(()) 446 } 447 448 // The constraints on this method are much the same as those on 449 // `grow_amortized`, but this method is usually instantiated less often so 450 // it's less critical. 451 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 452 if T::IS_ZST { 453 // Since we return a capacity of `usize::MAX` when the type size is 454 // 0, getting to here necessarily means the `RawVec` is overfull. 455 return Err(CapacityOverflow.into()); 456 } 457 458 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 459 let new_layout = Layout::array::<T>(cap); 460 461 // `finish_grow` is non-generic over `T`. 462 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 463 self.set_ptr_and_cap(ptr, cap); 464 Ok(()) 465 } 466 467 #[cfg(not(no_global_oom_handling))] 468 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { 469 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity"); 470 471 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) }; 472 // See current_memory() why this assert is here 473 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; 474 475 // If shrinking to 0, deallocate the buffer. We don't reach this point 476 // for the T::IS_ZST case since current_memory() will have returned 477 // None. 478 if cap == 0 { 479 unsafe { self.alloc.deallocate(ptr, layout) }; 480 self.ptr = Unique::dangling(); 481 self.cap = 0; 482 } else { 483 let ptr = unsafe { 484 // `Layout::array` cannot overflow here because it would have 485 // overflowed earlier when capacity was larger. 486 let new_size = mem::size_of::<T>().unchecked_mul(cap); 487 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); 488 self.alloc 489 .shrink(ptr, layout, new_layout) 490 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? 491 }; 492 self.set_ptr_and_cap(ptr, cap); 493 } 494 Ok(()) 495 } 496 } 497 498 // This function is outside `RawVec` to minimize compile times. See the comment 499 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't 500 // significant, because the number of different `A` types seen in practice is 501 // much smaller than the number of `T` types.) 502 #[inline(never)] 503 fn finish_grow<A>( 504 new_layout: Result<Layout, LayoutError>, 505 current_memory: Option<(NonNull<u8>, Layout)>, 506 alloc: &mut A, 507 ) -> Result<NonNull<[u8]>, TryReserveError> 508 where 509 A: Allocator, 510 { 511 // Check for the error here to minimize the size of `RawVec::grow_*`. 512 let new_layout = new_layout.map_err(|_| CapacityOverflow)?; 513 514 alloc_guard(new_layout.size())?; 515 516 let memory = if let Some((ptr, old_layout)) = current_memory { 517 debug_assert_eq!(old_layout.align(), new_layout.align()); 518 unsafe { 519 // The allocator checks for alignment equality 520 intrinsics::assume(old_layout.align() == new_layout.align()); 521 alloc.grow(ptr, old_layout, new_layout) 522 } 523 } else { 524 alloc.allocate(new_layout) 525 }; 526 527 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) 528 } 529 530 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> { 531 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. 532 fn drop(&mut self) { 533 if let Some((ptr, layout)) = self.current_memory() { 534 unsafe { self.alloc.deallocate(ptr, layout) } 535 } 536 } 537 } 538 539 // Central function for reserve error handling. 540 #[cfg(not(no_global_oom_handling))] 541 #[inline] 542 fn handle_reserve(result: Result<(), TryReserveError>) { 543 match result.map_err(|e| e.kind()) { 544 Err(CapacityOverflow) => capacity_overflow(), 545 Err(AllocError { layout, .. }) => handle_alloc_error(layout), 546 Ok(()) => { /* yay */ } 547 } 548 } 549 550 // We need to guarantee the following: 551 // * We don't ever allocate `> isize::MAX` byte-size objects. 552 // * We don't overflow `usize::MAX` and actually allocate too little. 553 // 554 // On 64-bit we just need to check for overflow since trying to allocate 555 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add 556 // an extra guard for this in case we're running on a platform which can use 557 // all 4GB in user-space, e.g., PAE or x32. 558 559 #[inline] 560 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { 561 if usize::BITS < 64 && alloc_size > isize::MAX as usize { 562 Err(CapacityOverflow.into()) 563 } else { 564 Ok(()) 565 } 566 } 567 568 // One central function responsible for reporting capacity overflows. This'll 569 // ensure that the code generation related to these panics is minimal as there's 570 // only one location which panics rather than a bunch throughout the module. 571 #[cfg(not(no_global_oom_handling))] 572 fn capacity_overflow() -> ! { 573 panic!("capacity overflow"); 574 } 575