xref: /openbmc/linux/rust/alloc/raw_vec.rs (revision 657c45b3)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
4 
5 use core::alloc::LayoutError;
6 use core::cmp;
7 use core::intrinsics;
8 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
9 use core::ops::Drop;
10 use core::ptr::{self, NonNull, Unique};
11 use core::slice;
12 
13 #[cfg(not(no_global_oom_handling))]
14 use crate::alloc::handle_alloc_error;
15 use crate::alloc::{Allocator, Global, Layout};
16 use crate::boxed::Box;
17 use crate::collections::TryReserveError;
18 use crate::collections::TryReserveErrorKind::*;
19 
20 #[cfg(test)]
21 mod tests;
22 
23 enum AllocInit {
24     /// The contents of the new memory are uninitialized.
25     Uninitialized,
26     /// The new memory is guaranteed to be zeroed.
27     #[allow(dead_code)]
28     Zeroed,
29 }
30 
31 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
32 /// a buffer of memory on the heap without having to worry about all the corner cases
33 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
34 /// In particular:
35 ///
36 /// * Produces `Unique::dangling()` on zero-sized types.
37 /// * Produces `Unique::dangling()` on zero-length allocations.
38 /// * Avoids freeing `Unique::dangling()`.
39 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
40 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
41 /// * Guards against overflowing your length.
42 /// * Calls `handle_alloc_error` for fallible allocations.
43 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
44 /// * Uses the excess returned from the allocator to use the largest available capacity.
45 ///
46 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
47 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
48 /// to handle the actual things *stored* inside of a `RawVec`.
49 ///
50 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
51 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
52 /// `Box<[T]>`, since `capacity()` won't yield the length.
53 #[allow(missing_debug_implementations)]
54 pub(crate) struct RawVec<T, A: Allocator = Global> {
55     ptr: Unique<T>,
56     cap: usize,
57     alloc: A,
58 }
59 
60 impl<T> RawVec<T, Global> {
61     /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
62     /// they cannot call `Self::new()`.
63     ///
64     /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
65     /// that would truly const-call something unstable.
66     pub const NEW: Self = Self::new();
67 
68     /// Creates the biggest possible `RawVec` (on the system heap)
69     /// without allocating. If `T` has positive size, then this makes a
70     /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
71     /// `RawVec` with capacity `usize::MAX`. Useful for implementing
72     /// delayed allocation.
73     #[must_use]
74     pub const fn new() -> Self {
75         Self::new_in(Global)
76     }
77 
78     /// Creates a `RawVec` (on the system heap) with exactly the
79     /// capacity and alignment requirements for a `[T; capacity]`. This is
80     /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
81     /// zero-sized. Note that if `T` is zero-sized this means you will
82     /// *not* get a `RawVec` with the requested capacity.
83     ///
84     /// # Panics
85     ///
86     /// Panics if the requested capacity exceeds `isize::MAX` bytes.
87     ///
88     /// # Aborts
89     ///
90     /// Aborts on OOM.
91     #[cfg(not(any(no_global_oom_handling, test)))]
92     #[must_use]
93     #[inline]
94     pub fn with_capacity(capacity: usize) -> Self {
95         Self::with_capacity_in(capacity, Global)
96     }
97 
98     /// Like `with_capacity`, but guarantees the buffer is zeroed.
99     #[cfg(not(any(no_global_oom_handling, test)))]
100     #[must_use]
101     #[inline]
102     pub fn with_capacity_zeroed(capacity: usize) -> Self {
103         Self::with_capacity_zeroed_in(capacity, Global)
104     }
105 }
106 
107 impl<T, A: Allocator> RawVec<T, A> {
108     // Tiny Vecs are dumb. Skip to:
109     // - 8 if the element size is 1, because any heap allocators is likely
110     //   to round up a request of less than 8 bytes to at least 8 bytes.
111     // - 4 if elements are moderate-sized (<= 1 KiB).
112     // - 1 otherwise, to avoid wasting too much space for very short Vecs.
113     pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
114         8
115     } else if mem::size_of::<T>() <= 1024 {
116         4
117     } else {
118         1
119     };
120 
121     /// Like `new`, but parameterized over the choice of allocator for
122     /// the returned `RawVec`.
123     pub const fn new_in(alloc: A) -> Self {
124         // `cap: 0` means "unallocated". zero-sized types are ignored.
125         Self { ptr: Unique::dangling(), cap: 0, alloc }
126     }
127 
128     /// Like `with_capacity`, but parameterized over the choice of
129     /// allocator for the returned `RawVec`.
130     #[cfg(not(no_global_oom_handling))]
131     #[inline]
132     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
133         Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
134     }
135 
136     /// Like `try_with_capacity`, but parameterized over the choice of
137     /// allocator for the returned `RawVec`.
138     #[inline]
139     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
140         Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
141     }
142 
143     /// Like `with_capacity_zeroed`, but parameterized over the choice
144     /// of allocator for the returned `RawVec`.
145     #[cfg(not(no_global_oom_handling))]
146     #[inline]
147     pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
148         Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
149     }
150 
151     /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
152     ///
153     /// Note that this will correctly reconstitute any `cap` changes
154     /// that may have been performed. (See description of type for details.)
155     ///
156     /// # Safety
157     ///
158     /// * `len` must be greater than or equal to the most recently requested capacity, and
159     /// * `len` must be less than or equal to `self.capacity()`.
160     ///
161     /// Note, that the requested capacity and `self.capacity()` could differ, as
162     /// an allocator could overallocate and return a greater memory block than requested.
163     pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
164         // Sanity-check one half of the safety requirement (we cannot check the other half).
165         debug_assert!(
166             len <= self.capacity(),
167             "`len` must be smaller than or equal to `self.capacity()`"
168         );
169 
170         let me = ManuallyDrop::new(self);
171         unsafe {
172             let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
173             Box::from_raw_in(slice, ptr::read(&me.alloc))
174         }
175     }
176 
177     #[cfg(not(no_global_oom_handling))]
178     fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
179         // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
180         if T::IS_ZST || capacity == 0 {
181             Self::new_in(alloc)
182         } else {
183             // We avoid `unwrap_or_else` here because it bloats the amount of
184             // LLVM IR generated.
185             let layout = match Layout::array::<T>(capacity) {
186                 Ok(layout) => layout,
187                 Err(_) => capacity_overflow(),
188             };
189             match alloc_guard(layout.size()) {
190                 Ok(_) => {}
191                 Err(_) => capacity_overflow(),
192             }
193             let result = match init {
194                 AllocInit::Uninitialized => alloc.allocate(layout),
195                 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
196             };
197             let ptr = match result {
198                 Ok(ptr) => ptr,
199                 Err(_) => handle_alloc_error(layout),
200             };
201 
202             // Allocators currently return a `NonNull<[u8]>` whose length
203             // matches the size requested. If that ever changes, the capacity
204             // here should change to `ptr.len() / mem::size_of::<T>()`.
205             Self {
206                 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
207                 cap: capacity,
208                 alloc,
209             }
210         }
211     }
212 
213     fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> {
214         // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
215         if T::IS_ZST || capacity == 0 {
216             return Ok(Self::new_in(alloc));
217         }
218 
219         let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?;
220         alloc_guard(layout.size())?;
221         let result = match init {
222             AllocInit::Uninitialized => alloc.allocate(layout),
223             AllocInit::Zeroed => alloc.allocate_zeroed(layout),
224         };
225         let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?;
226 
227         // Allocators currently return a `NonNull<[u8]>` whose length
228         // matches the size requested. If that ever changes, the capacity
229         // here should change to `ptr.len() / mem::size_of::<T>()`.
230         Ok(Self {
231             ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
232             cap: capacity,
233             alloc,
234         })
235     }
236 
237     /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
238     ///
239     /// # Safety
240     ///
241     /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
242     /// `capacity`.
243     /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
244     /// systems). ZST vectors may have a capacity up to `usize::MAX`.
245     /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
246     /// guaranteed.
247     #[inline]
248     pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
249         Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
250     }
251 
252     /// Gets a raw pointer to the start of the allocation. Note that this is
253     /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
254     /// be careful.
255     #[inline]
256     pub fn ptr(&self) -> *mut T {
257         self.ptr.as_ptr()
258     }
259 
260     /// Gets the capacity of the allocation.
261     ///
262     /// This will always be `usize::MAX` if `T` is zero-sized.
263     #[inline(always)]
264     pub fn capacity(&self) -> usize {
265         if T::IS_ZST { usize::MAX } else { self.cap }
266     }
267 
268     /// Returns a shared reference to the allocator backing this `RawVec`.
269     pub fn allocator(&self) -> &A {
270         &self.alloc
271     }
272 
273     fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
274         if T::IS_ZST || self.cap == 0 {
275             None
276         } else {
277             // We have an allocated chunk of memory, so we can bypass runtime
278             // checks to get our current layout.
279             unsafe {
280                 let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
281                 Some((self.ptr.cast().into(), layout))
282             }
283         }
284     }
285 
286     /// Ensures that the buffer contains at least enough space to hold `len +
287     /// additional` elements. If it doesn't already have enough capacity, will
288     /// reallocate enough space plus comfortable slack space to get amortized
289     /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
290     /// itself to panic.
291     ///
292     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
293     /// the requested space. This is not really unsafe, but the unsafe
294     /// code *you* write that relies on the behavior of this function may break.
295     ///
296     /// This is ideal for implementing a bulk-push operation like `extend`.
297     ///
298     /// # Panics
299     ///
300     /// Panics if the new capacity exceeds `isize::MAX` bytes.
301     ///
302     /// # Aborts
303     ///
304     /// Aborts on OOM.
305     #[cfg(not(no_global_oom_handling))]
306     #[inline]
307     pub fn reserve(&mut self, len: usize, additional: usize) {
308         // Callers expect this function to be very cheap when there is already sufficient capacity.
309         // Therefore, we move all the resizing and error-handling logic from grow_amortized and
310         // handle_reserve behind a call, while making sure that this function is likely to be
311         // inlined as just a comparison and a call if the comparison fails.
312         #[cold]
313         fn do_reserve_and_handle<T, A: Allocator>(
314             slf: &mut RawVec<T, A>,
315             len: usize,
316             additional: usize,
317         ) {
318             handle_reserve(slf.grow_amortized(len, additional));
319         }
320 
321         if self.needs_to_grow(len, additional) {
322             do_reserve_and_handle(self, len, additional);
323         }
324     }
325 
326     /// A specialized version of `reserve()` used only by the hot and
327     /// oft-instantiated `Vec::push()`, which does its own capacity check.
328     #[cfg(not(no_global_oom_handling))]
329     #[inline(never)]
330     pub fn reserve_for_push(&mut self, len: usize) {
331         handle_reserve(self.grow_amortized(len, 1));
332     }
333 
334     /// The same as `reserve`, but returns on errors instead of panicking or aborting.
335     pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
336         if self.needs_to_grow(len, additional) {
337             self.grow_amortized(len, additional)
338         } else {
339             Ok(())
340         }
341     }
342 
343     /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
344     #[inline(never)]
345     pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
346         self.grow_amortized(len, 1)
347     }
348 
349     /// Ensures that the buffer contains at least enough space to hold `len +
350     /// additional` elements. If it doesn't already, will reallocate the
351     /// minimum possible amount of memory necessary. Generally this will be
352     /// exactly the amount of memory necessary, but in principle the allocator
353     /// is free to give back more than we asked for.
354     ///
355     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
356     /// the requested space. This is not really unsafe, but the unsafe code
357     /// *you* write that relies on the behavior of this function may break.
358     ///
359     /// # Panics
360     ///
361     /// Panics if the new capacity exceeds `isize::MAX` bytes.
362     ///
363     /// # Aborts
364     ///
365     /// Aborts on OOM.
366     #[cfg(not(no_global_oom_handling))]
367     pub fn reserve_exact(&mut self, len: usize, additional: usize) {
368         handle_reserve(self.try_reserve_exact(len, additional));
369     }
370 
371     /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
372     pub fn try_reserve_exact(
373         &mut self,
374         len: usize,
375         additional: usize,
376     ) -> Result<(), TryReserveError> {
377         if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
378     }
379 
380     /// Shrinks the buffer down to the specified capacity. If the given amount
381     /// is 0, actually completely deallocates.
382     ///
383     /// # Panics
384     ///
385     /// Panics if the given amount is *larger* than the current capacity.
386     ///
387     /// # Aborts
388     ///
389     /// Aborts on OOM.
390     #[cfg(not(no_global_oom_handling))]
391     pub fn shrink_to_fit(&mut self, cap: usize) {
392         handle_reserve(self.shrink(cap));
393     }
394 }
395 
396 impl<T, A: Allocator> RawVec<T, A> {
397     /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
398     /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
399     fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
400         additional > self.capacity().wrapping_sub(len)
401     }
402 
403     fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
404         // Allocators currently return a `NonNull<[u8]>` whose length matches
405         // the size requested. If that ever changes, the capacity here should
406         // change to `ptr.len() / mem::size_of::<T>()`.
407         self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
408         self.cap = cap;
409     }
410 
411     // This method is usually instantiated many times. So we want it to be as
412     // small as possible, to improve compile times. But we also want as much of
413     // its contents to be statically computable as possible, to make the
414     // generated code run faster. Therefore, this method is carefully written
415     // so that all of the code that depends on `T` is within it, while as much
416     // of the code that doesn't depend on `T` as possible is in functions that
417     // are non-generic over `T`.
418     fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
419         // This is ensured by the calling contexts.
420         debug_assert!(additional > 0);
421 
422         if T::IS_ZST {
423             // Since we return a capacity of `usize::MAX` when `elem_size` is
424             // 0, getting to here necessarily means the `RawVec` is overfull.
425             return Err(CapacityOverflow.into());
426         }
427 
428         // Nothing we can really do about these checks, sadly.
429         let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
430 
431         // This guarantees exponential growth. The doubling cannot overflow
432         // because `cap <= isize::MAX` and the type of `cap` is `usize`.
433         let cap = cmp::max(self.cap * 2, required_cap);
434         let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
435 
436         let new_layout = Layout::array::<T>(cap);
437 
438         // `finish_grow` is non-generic over `T`.
439         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
440         self.set_ptr_and_cap(ptr, cap);
441         Ok(())
442     }
443 
444     // The constraints on this method are much the same as those on
445     // `grow_amortized`, but this method is usually instantiated less often so
446     // it's less critical.
447     fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
448         if T::IS_ZST {
449             // Since we return a capacity of `usize::MAX` when the type size is
450             // 0, getting to here necessarily means the `RawVec` is overfull.
451             return Err(CapacityOverflow.into());
452         }
453 
454         let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
455         let new_layout = Layout::array::<T>(cap);
456 
457         // `finish_grow` is non-generic over `T`.
458         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
459         self.set_ptr_and_cap(ptr, cap);
460         Ok(())
461     }
462 
463     #[cfg(not(no_global_oom_handling))]
464     fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
465         assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
466 
467         let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
468 
469         let ptr = unsafe {
470             // `Layout::array` cannot overflow here because it would have
471             // overflowed earlier when capacity was larger.
472             let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
473             self.alloc
474                 .shrink(ptr, layout, new_layout)
475                 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
476         };
477         self.set_ptr_and_cap(ptr, cap);
478         Ok(())
479     }
480 }
481 
482 // This function is outside `RawVec` to minimize compile times. See the comment
483 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
484 // significant, because the number of different `A` types seen in practice is
485 // much smaller than the number of `T` types.)
486 #[inline(never)]
487 fn finish_grow<A>(
488     new_layout: Result<Layout, LayoutError>,
489     current_memory: Option<(NonNull<u8>, Layout)>,
490     alloc: &mut A,
491 ) -> Result<NonNull<[u8]>, TryReserveError>
492 where
493     A: Allocator,
494 {
495     // Check for the error here to minimize the size of `RawVec::grow_*`.
496     let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
497 
498     alloc_guard(new_layout.size())?;
499 
500     let memory = if let Some((ptr, old_layout)) = current_memory {
501         debug_assert_eq!(old_layout.align(), new_layout.align());
502         unsafe {
503             // The allocator checks for alignment equality
504             intrinsics::assume(old_layout.align() == new_layout.align());
505             alloc.grow(ptr, old_layout, new_layout)
506         }
507     } else {
508         alloc.allocate(new_layout)
509     };
510 
511     memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
512 }
513 
514 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
515     /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
516     fn drop(&mut self) {
517         if let Some((ptr, layout)) = self.current_memory() {
518             unsafe { self.alloc.deallocate(ptr, layout) }
519         }
520     }
521 }
522 
523 // Central function for reserve error handling.
524 #[cfg(not(no_global_oom_handling))]
525 #[inline]
526 fn handle_reserve(result: Result<(), TryReserveError>) {
527     match result.map_err(|e| e.kind()) {
528         Err(CapacityOverflow) => capacity_overflow(),
529         Err(AllocError { layout, .. }) => handle_alloc_error(layout),
530         Ok(()) => { /* yay */ }
531     }
532 }
533 
534 // We need to guarantee the following:
535 // * We don't ever allocate `> isize::MAX` byte-size objects.
536 // * We don't overflow `usize::MAX` and actually allocate too little.
537 //
538 // On 64-bit we just need to check for overflow since trying to allocate
539 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
540 // an extra guard for this in case we're running on a platform which can use
541 // all 4GB in user-space, e.g., PAE or x32.
542 
543 #[inline]
544 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
545     if usize::BITS < 64 && alloc_size > isize::MAX as usize {
546         Err(CapacityOverflow.into())
547     } else {
548         Ok(())
549     }
550 }
551 
552 // One central function responsible for reporting capacity overflows. This'll
553 // ensure that the code generation related to these panics is minimal as there's
554 // only one location which panics rather than a bunch throughout the module.
555 #[cfg(not(no_global_oom_handling))]
556 fn capacity_overflow() -> ! {
557     panic!("capacity overflow");
558 }
559