1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] 4 5 use core::alloc::LayoutError; 6 use core::cmp; 7 use core::intrinsics; 8 use core::mem::{self, ManuallyDrop, MaybeUninit}; 9 use core::ops::Drop; 10 use core::ptr::{self, NonNull, Unique}; 11 use core::slice; 12 13 #[cfg(not(no_global_oom_handling))] 14 use crate::alloc::handle_alloc_error; 15 use crate::alloc::{Allocator, Global, Layout}; 16 use crate::boxed::Box; 17 use crate::collections::TryReserveError; 18 use crate::collections::TryReserveErrorKind::*; 19 20 #[cfg(test)] 21 mod tests; 22 23 #[cfg(not(no_global_oom_handling))] 24 enum AllocInit { 25 /// The contents of the new memory are uninitialized. 26 Uninitialized, 27 /// The new memory is guaranteed to be zeroed. 28 Zeroed, 29 } 30 31 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating 32 /// a buffer of memory on the heap without having to worry about all the corner cases 33 /// involved. This type is excellent for building your own data structures like Vec and VecDeque. 34 /// In particular: 35 /// 36 /// * Produces `Unique::dangling()` on zero-sized types. 37 /// * Produces `Unique::dangling()` on zero-length allocations. 38 /// * Avoids freeing `Unique::dangling()`. 39 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). 40 /// * Guards against 32-bit systems allocating more than isize::MAX bytes. 41 /// * Guards against overflowing your length. 42 /// * Calls `handle_alloc_error` for fallible allocations. 43 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. 44 /// * Uses the excess returned from the allocator to use the largest available capacity. 45 /// 46 /// This type does not in anyway inspect the memory that it manages. When dropped it *will* 47 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` 48 /// to handle the actual things *stored* inside of a `RawVec`. 49 /// 50 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns 51 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a 52 /// `Box<[T]>`, since `capacity()` won't yield the length. 53 #[allow(missing_debug_implementations)] 54 pub(crate) struct RawVec<T, A: Allocator = Global> { 55 ptr: Unique<T>, 56 cap: usize, 57 alloc: A, 58 } 59 60 impl<T> RawVec<T, Global> { 61 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so 62 /// they cannot call `Self::new()`. 63 /// 64 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything 65 /// that would truly const-call something unstable. 66 pub const NEW: Self = Self::new(); 67 68 /// Creates the biggest possible `RawVec` (on the system heap) 69 /// without allocating. If `T` has positive size, then this makes a 70 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a 71 /// `RawVec` with capacity `usize::MAX`. Useful for implementing 72 /// delayed allocation. 73 #[must_use] 74 pub const fn new() -> Self { 75 Self::new_in(Global) 76 } 77 78 /// Creates a `RawVec` (on the system heap) with exactly the 79 /// capacity and alignment requirements for a `[T; capacity]`. This is 80 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is 81 /// zero-sized. Note that if `T` is zero-sized this means you will 82 /// *not* get a `RawVec` with the requested capacity. 83 /// 84 /// # Panics 85 /// 86 /// Panics if the requested capacity exceeds `isize::MAX` bytes. 87 /// 88 /// # Aborts 89 /// 90 /// Aborts on OOM. 91 #[cfg(not(any(no_global_oom_handling, test)))] 92 #[must_use] 93 #[inline] 94 pub fn with_capacity(capacity: usize) -> Self { 95 Self::with_capacity_in(capacity, Global) 96 } 97 98 /// Like `with_capacity`, but guarantees the buffer is zeroed. 99 #[cfg(not(any(no_global_oom_handling, test)))] 100 #[must_use] 101 #[inline] 102 pub fn with_capacity_zeroed(capacity: usize) -> Self { 103 Self::with_capacity_zeroed_in(capacity, Global) 104 } 105 } 106 107 impl<T, A: Allocator> RawVec<T, A> { 108 // Tiny Vecs are dumb. Skip to: 109 // - 8 if the element size is 1, because any heap allocators is likely 110 // to round up a request of less than 8 bytes to at least 8 bytes. 111 // - 4 if elements are moderate-sized (<= 1 KiB). 112 // - 1 otherwise, to avoid wasting too much space for very short Vecs. 113 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { 114 8 115 } else if mem::size_of::<T>() <= 1024 { 116 4 117 } else { 118 1 119 }; 120 121 /// Like `new`, but parameterized over the choice of allocator for 122 /// the returned `RawVec`. 123 pub const fn new_in(alloc: A) -> Self { 124 // `cap: 0` means "unallocated". zero-sized types are ignored. 125 Self { ptr: Unique::dangling(), cap: 0, alloc } 126 } 127 128 /// Like `with_capacity`, but parameterized over the choice of 129 /// allocator for the returned `RawVec`. 130 #[cfg(not(no_global_oom_handling))] 131 #[inline] 132 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { 133 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) 134 } 135 136 /// Like `with_capacity_zeroed`, but parameterized over the choice 137 /// of allocator for the returned `RawVec`. 138 #[cfg(not(no_global_oom_handling))] 139 #[inline] 140 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { 141 Self::allocate_in(capacity, AllocInit::Zeroed, alloc) 142 } 143 144 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. 145 /// 146 /// Note that this will correctly reconstitute any `cap` changes 147 /// that may have been performed. (See description of type for details.) 148 /// 149 /// # Safety 150 /// 151 /// * `len` must be greater than or equal to the most recently requested capacity, and 152 /// * `len` must be less than or equal to `self.capacity()`. 153 /// 154 /// Note, that the requested capacity and `self.capacity()` could differ, as 155 /// an allocator could overallocate and return a greater memory block than requested. 156 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { 157 // Sanity-check one half of the safety requirement (we cannot check the other half). 158 debug_assert!( 159 len <= self.capacity(), 160 "`len` must be smaller than or equal to `self.capacity()`" 161 ); 162 163 let me = ManuallyDrop::new(self); 164 unsafe { 165 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); 166 Box::from_raw_in(slice, ptr::read(&me.alloc)) 167 } 168 } 169 170 #[cfg(not(no_global_oom_handling))] 171 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { 172 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. 173 if mem::size_of::<T>() == 0 || capacity == 0 { 174 Self::new_in(alloc) 175 } else { 176 // We avoid `unwrap_or_else` here because it bloats the amount of 177 // LLVM IR generated. 178 let layout = match Layout::array::<T>(capacity) { 179 Ok(layout) => layout, 180 Err(_) => capacity_overflow(), 181 }; 182 match alloc_guard(layout.size()) { 183 Ok(_) => {} 184 Err(_) => capacity_overflow(), 185 } 186 let result = match init { 187 AllocInit::Uninitialized => alloc.allocate(layout), 188 AllocInit::Zeroed => alloc.allocate_zeroed(layout), 189 }; 190 let ptr = match result { 191 Ok(ptr) => ptr, 192 Err(_) => handle_alloc_error(layout), 193 }; 194 195 // Allocators currently return a `NonNull<[u8]>` whose length 196 // matches the size requested. If that ever changes, the capacity 197 // here should change to `ptr.len() / mem::size_of::<T>()`. 198 Self { 199 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, 200 cap: capacity, 201 alloc, 202 } 203 } 204 } 205 206 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. 207 /// 208 /// # Safety 209 /// 210 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given 211 /// `capacity`. 212 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit 213 /// systems). ZST vectors may have a capacity up to `usize::MAX`. 214 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is 215 /// guaranteed. 216 #[inline] 217 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { 218 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc } 219 } 220 221 /// Gets a raw pointer to the start of the allocation. Note that this is 222 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must 223 /// be careful. 224 #[inline] 225 pub fn ptr(&self) -> *mut T { 226 self.ptr.as_ptr() 227 } 228 229 /// Gets the capacity of the allocation. 230 /// 231 /// This will always be `usize::MAX` if `T` is zero-sized. 232 #[inline(always)] 233 pub fn capacity(&self) -> usize { 234 if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap } 235 } 236 237 /// Returns a shared reference to the allocator backing this `RawVec`. 238 pub fn allocator(&self) -> &A { 239 &self.alloc 240 } 241 242 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { 243 if mem::size_of::<T>() == 0 || self.cap == 0 { 244 None 245 } else { 246 // We have an allocated chunk of memory, so we can bypass runtime 247 // checks to get our current layout. 248 unsafe { 249 let layout = Layout::array::<T>(self.cap).unwrap_unchecked(); 250 Some((self.ptr.cast().into(), layout)) 251 } 252 } 253 } 254 255 /// Ensures that the buffer contains at least enough space to hold `len + 256 /// additional` elements. If it doesn't already have enough capacity, will 257 /// reallocate enough space plus comfortable slack space to get amortized 258 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause 259 /// itself to panic. 260 /// 261 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 262 /// the requested space. This is not really unsafe, but the unsafe 263 /// code *you* write that relies on the behavior of this function may break. 264 /// 265 /// This is ideal for implementing a bulk-push operation like `extend`. 266 /// 267 /// # Panics 268 /// 269 /// Panics if the new capacity exceeds `isize::MAX` bytes. 270 /// 271 /// # Aborts 272 /// 273 /// Aborts on OOM. 274 #[cfg(not(no_global_oom_handling))] 275 #[inline] 276 pub fn reserve(&mut self, len: usize, additional: usize) { 277 // Callers expect this function to be very cheap when there is already sufficient capacity. 278 // Therefore, we move all the resizing and error-handling logic from grow_amortized and 279 // handle_reserve behind a call, while making sure that this function is likely to be 280 // inlined as just a comparison and a call if the comparison fails. 281 #[cold] 282 fn do_reserve_and_handle<T, A: Allocator>( 283 slf: &mut RawVec<T, A>, 284 len: usize, 285 additional: usize, 286 ) { 287 handle_reserve(slf.grow_amortized(len, additional)); 288 } 289 290 if self.needs_to_grow(len, additional) { 291 do_reserve_and_handle(self, len, additional); 292 } 293 } 294 295 /// A specialized version of `reserve()` used only by the hot and 296 /// oft-instantiated `Vec::push()`, which does its own capacity check. 297 #[cfg(not(no_global_oom_handling))] 298 #[inline(never)] 299 pub fn reserve_for_push(&mut self, len: usize) { 300 handle_reserve(self.grow_amortized(len, 1)); 301 } 302 303 /// The same as `reserve`, but returns on errors instead of panicking or aborting. 304 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 305 if self.needs_to_grow(len, additional) { 306 self.grow_amortized(len, additional) 307 } else { 308 Ok(()) 309 } 310 } 311 312 /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting. 313 #[inline(never)] 314 pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> { 315 self.grow_amortized(len, 1) 316 } 317 318 /// Ensures that the buffer contains at least enough space to hold `len + 319 /// additional` elements. If it doesn't already, will reallocate the 320 /// minimum possible amount of memory necessary. Generally this will be 321 /// exactly the amount of memory necessary, but in principle the allocator 322 /// is free to give back more than we asked for. 323 /// 324 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 325 /// the requested space. This is not really unsafe, but the unsafe code 326 /// *you* write that relies on the behavior of this function may break. 327 /// 328 /// # Panics 329 /// 330 /// Panics if the new capacity exceeds `isize::MAX` bytes. 331 /// 332 /// # Aborts 333 /// 334 /// Aborts on OOM. 335 #[cfg(not(no_global_oom_handling))] 336 pub fn reserve_exact(&mut self, len: usize, additional: usize) { 337 handle_reserve(self.try_reserve_exact(len, additional)); 338 } 339 340 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. 341 pub fn try_reserve_exact( 342 &mut self, 343 len: usize, 344 additional: usize, 345 ) -> Result<(), TryReserveError> { 346 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) } 347 } 348 349 /// Shrinks the buffer down to the specified capacity. If the given amount 350 /// is 0, actually completely deallocates. 351 /// 352 /// # Panics 353 /// 354 /// Panics if the given amount is *larger* than the current capacity. 355 /// 356 /// # Aborts 357 /// 358 /// Aborts on OOM. 359 #[cfg(not(no_global_oom_handling))] 360 pub fn shrink_to_fit(&mut self, cap: usize) { 361 handle_reserve(self.shrink(cap)); 362 } 363 } 364 365 impl<T, A: Allocator> RawVec<T, A> { 366 /// Returns if the buffer needs to grow to fulfill the needed extra capacity. 367 /// Mainly used to make inlining reserve-calls possible without inlining `grow`. 368 fn needs_to_grow(&self, len: usize, additional: usize) -> bool { 369 additional > self.capacity().wrapping_sub(len) 370 } 371 372 fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { 373 // Allocators currently return a `NonNull<[u8]>` whose length matches 374 // the size requested. If that ever changes, the capacity here should 375 // change to `ptr.len() / mem::size_of::<T>()`. 376 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }; 377 self.cap = cap; 378 } 379 380 // This method is usually instantiated many times. So we want it to be as 381 // small as possible, to improve compile times. But we also want as much of 382 // its contents to be statically computable as possible, to make the 383 // generated code run faster. Therefore, this method is carefully written 384 // so that all of the code that depends on `T` is within it, while as much 385 // of the code that doesn't depend on `T` as possible is in functions that 386 // are non-generic over `T`. 387 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 388 // This is ensured by the calling contexts. 389 debug_assert!(additional > 0); 390 391 if mem::size_of::<T>() == 0 { 392 // Since we return a capacity of `usize::MAX` when `elem_size` is 393 // 0, getting to here necessarily means the `RawVec` is overfull. 394 return Err(CapacityOverflow.into()); 395 } 396 397 // Nothing we can really do about these checks, sadly. 398 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 399 400 // This guarantees exponential growth. The doubling cannot overflow 401 // because `cap <= isize::MAX` and the type of `cap` is `usize`. 402 let cap = cmp::max(self.cap * 2, required_cap); 403 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); 404 405 let new_layout = Layout::array::<T>(cap); 406 407 // `finish_grow` is non-generic over `T`. 408 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 409 self.set_ptr_and_cap(ptr, cap); 410 Ok(()) 411 } 412 413 // The constraints on this method are much the same as those on 414 // `grow_amortized`, but this method is usually instantiated less often so 415 // it's less critical. 416 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 417 if mem::size_of::<T>() == 0 { 418 // Since we return a capacity of `usize::MAX` when the type size is 419 // 0, getting to here necessarily means the `RawVec` is overfull. 420 return Err(CapacityOverflow.into()); 421 } 422 423 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 424 let new_layout = Layout::array::<T>(cap); 425 426 // `finish_grow` is non-generic over `T`. 427 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 428 self.set_ptr_and_cap(ptr, cap); 429 Ok(()) 430 } 431 432 #[allow(dead_code)] 433 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { 434 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity"); 435 436 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) }; 437 438 let ptr = unsafe { 439 // `Layout::array` cannot overflow here because it would have 440 // overflowed earlier when capacity was larger. 441 let new_layout = Layout::array::<T>(cap).unwrap_unchecked(); 442 self.alloc 443 .shrink(ptr, layout, new_layout) 444 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? 445 }; 446 self.set_ptr_and_cap(ptr, cap); 447 Ok(()) 448 } 449 } 450 451 // This function is outside `RawVec` to minimize compile times. See the comment 452 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't 453 // significant, because the number of different `A` types seen in practice is 454 // much smaller than the number of `T` types.) 455 #[inline(never)] 456 fn finish_grow<A>( 457 new_layout: Result<Layout, LayoutError>, 458 current_memory: Option<(NonNull<u8>, Layout)>, 459 alloc: &mut A, 460 ) -> Result<NonNull<[u8]>, TryReserveError> 461 where 462 A: Allocator, 463 { 464 // Check for the error here to minimize the size of `RawVec::grow_*`. 465 let new_layout = new_layout.map_err(|_| CapacityOverflow)?; 466 467 alloc_guard(new_layout.size())?; 468 469 let memory = if let Some((ptr, old_layout)) = current_memory { 470 debug_assert_eq!(old_layout.align(), new_layout.align()); 471 unsafe { 472 // The allocator checks for alignment equality 473 intrinsics::assume(old_layout.align() == new_layout.align()); 474 alloc.grow(ptr, old_layout, new_layout) 475 } 476 } else { 477 alloc.allocate(new_layout) 478 }; 479 480 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) 481 } 482 483 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> { 484 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. 485 fn drop(&mut self) { 486 if let Some((ptr, layout)) = self.current_memory() { 487 unsafe { self.alloc.deallocate(ptr, layout) } 488 } 489 } 490 } 491 492 // Central function for reserve error handling. 493 #[cfg(not(no_global_oom_handling))] 494 #[inline] 495 fn handle_reserve(result: Result<(), TryReserveError>) { 496 match result.map_err(|e| e.kind()) { 497 Err(CapacityOverflow) => capacity_overflow(), 498 Err(AllocError { layout, .. }) => handle_alloc_error(layout), 499 Ok(()) => { /* yay */ } 500 } 501 } 502 503 // We need to guarantee the following: 504 // * We don't ever allocate `> isize::MAX` byte-size objects. 505 // * We don't overflow `usize::MAX` and actually allocate too little. 506 // 507 // On 64-bit we just need to check for overflow since trying to allocate 508 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add 509 // an extra guard for this in case we're running on a platform which can use 510 // all 4GB in user-space, e.g., PAE or x32. 511 512 #[inline] 513 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { 514 if usize::BITS < 64 && alloc_size > isize::MAX as usize { 515 Err(CapacityOverflow.into()) 516 } else { 517 Ok(()) 518 } 519 } 520 521 // One central function responsible for reporting capacity overflows. This'll 522 // ensure that the code generation related to these panics is minimal as there's 523 // only one location which panics rather than a bunch throughout the module. 524 #[cfg(not(no_global_oom_handling))] 525 fn capacity_overflow() -> ! { 526 panic!("capacity overflow"); 527 } 528