1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! The `Box<T>` type for heap allocation. 4 //! 5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of 6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and 7 //! drop their contents when they go out of scope. Boxes also ensure that they 8 //! never allocate more than `isize::MAX` bytes. 9 //! 10 //! # Examples 11 //! 12 //! Move a value from the stack to the heap by creating a [`Box`]: 13 //! 14 //! ``` 15 //! let val: u8 = 5; 16 //! let boxed: Box<u8> = Box::new(val); 17 //! ``` 18 //! 19 //! Move a value from a [`Box`] back to the stack by [dereferencing]: 20 //! 21 //! ``` 22 //! let boxed: Box<u8> = Box::new(5); 23 //! let val: u8 = *boxed; 24 //! ``` 25 //! 26 //! Creating a recursive data structure: 27 //! 28 //! ``` 29 //! #[derive(Debug)] 30 //! enum List<T> { 31 //! Cons(T, Box<List<T>>), 32 //! Nil, 33 //! } 34 //! 35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); 36 //! println!("{list:?}"); 37 //! ``` 38 //! 39 //! This will print `Cons(1, Cons(2, Nil))`. 40 //! 41 //! Recursive structures must be boxed, because if the definition of `Cons` 42 //! looked like this: 43 //! 44 //! ```compile_fail,E0072 45 //! # enum List<T> { 46 //! Cons(T, List<T>), 47 //! # } 48 //! ``` 49 //! 50 //! It wouldn't work. This is because the size of a `List` depends on how many 51 //! elements are in the list, and so we don't know how much memory to allocate 52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how 53 //! big `Cons` needs to be. 54 //! 55 //! # Memory layout 56 //! 57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for 58 //! its allocation. It is valid to convert both ways between a [`Box`] and a 59 //! raw pointer allocated with the [`Global`] allocator, given that the 60 //! [`Layout`] used with the allocator is correct for the type. More precisely, 61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator 62 //! with `Layout::for_value(&*value)` may be converted into a box using 63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut 64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the 65 //! [`Global`] allocator with [`Layout::for_value(&*value)`]. 66 //! 67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads 68 //! and writes and sufficiently aligned. In particular, casting any aligned 69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a 70 //! pointer pointing into previously allocated memory that since got freed is 71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot 72 //! be used is to use [`ptr::NonNull::dangling`]. 73 //! 74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented 75 //! as a single pointer and is also ABI-compatible with C pointers 76 //! (i.e. the C type `T*`). This means that if you have extern "C" 77 //! Rust functions that will be called from C, you can define those 78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding 79 //! type on the C side. As an example, consider this C header which 80 //! declares functions that create and destroy some kind of `Foo` 81 //! value: 82 //! 83 //! ```c 84 //! /* C header */ 85 //! 86 //! /* Returns ownership to the caller */ 87 //! struct Foo* foo_new(void); 88 //! 89 //! /* Takes ownership from the caller; no-op when invoked with null */ 90 //! void foo_delete(struct Foo*); 91 //! ``` 92 //! 93 //! These two functions might be implemented in Rust as follows. Here, the 94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures 95 //! the ownership constraints. Note also that the nullable argument to 96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` 97 //! cannot be null. 98 //! 99 //! ``` 100 //! #[repr(C)] 101 //! pub struct Foo; 102 //! 103 //! #[no_mangle] 104 //! pub extern "C" fn foo_new() -> Box<Foo> { 105 //! Box::new(Foo) 106 //! } 107 //! 108 //! #[no_mangle] 109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} 110 //! ``` 111 //! 112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer, 113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` 114 //! and expect things to work. `Box<T>` values will always be fully aligned, 115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to 116 //! free the value with the global allocator. In general, the best practice 117 //! is to only use `Box<T>` for pointers that originated from the global 118 //! allocator. 119 //! 120 //! **Important.** At least at present, you should avoid using 121 //! `Box<T>` types for functions that are defined in C but invoked 122 //! from Rust. In those cases, you should directly mirror the C types 123 //! as closely as possible. Using types like `Box<T>` where the C 124 //! definition is just using `T*` can lead to undefined behavior, as 125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. 126 //! 127 //! # Considerations for unsafe code 128 //! 129 //! **Warning: This section is not normative and is subject to change, possibly 130 //! being relaxed in the future! It is a simplified summary of the rules 131 //! currently implemented in the compiler.** 132 //! 133 //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` 134 //! asserts uniqueness over its content. Using raw pointers derived from a box 135 //! after that box has been mutated through, moved or borrowed as `&mut T` 136 //! is not allowed. For more guidance on working with box from unsafe code, see 137 //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. 138 //! 139 //! 140 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 141 //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 142 //! [dereferencing]: core::ops::Deref 143 //! [`Box::<T>::from_raw(value)`]: Box::from_raw 144 //! [`Global`]: crate::alloc::Global 145 //! [`Layout`]: crate::alloc::Layout 146 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value 147 //! [valid]: ptr#safety 148 149 #![stable(feature = "rust1", since = "1.0.0")] 150 151 use core::any::Any; 152 use core::async_iter::AsyncIterator; 153 use core::borrow; 154 use core::cmp::Ordering; 155 use core::error::Error; 156 use core::fmt; 157 use core::future::Future; 158 use core::hash::{Hash, Hasher}; 159 use core::iter::FusedIterator; 160 use core::marker::Tuple; 161 use core::marker::Unsize; 162 use core::mem::{self, SizedTypeProperties}; 163 use core::ops::{ 164 CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, 165 }; 166 use core::pin::Pin; 167 use core::ptr::{self, NonNull, Unique}; 168 use core::task::{Context, Poll}; 169 170 #[cfg(not(no_global_oom_handling))] 171 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; 172 use crate::alloc::{AllocError, Allocator, Global, Layout}; 173 #[cfg(not(no_global_oom_handling))] 174 use crate::borrow::Cow; 175 use crate::raw_vec::RawVec; 176 #[cfg(not(no_global_oom_handling))] 177 use crate::str::from_boxed_utf8_unchecked; 178 #[cfg(not(no_global_oom_handling))] 179 use crate::string::String; 180 #[cfg(not(no_global_oom_handling))] 181 use crate::vec::Vec; 182 183 #[cfg(not(no_thin))] 184 #[unstable(feature = "thin_box", issue = "92791")] 185 pub use thin::ThinBox; 186 187 #[cfg(not(no_thin))] 188 mod thin; 189 190 /// A pointer type that uniquely owns a heap allocation of type `T`. 191 /// 192 /// See the [module-level documentation](../../std/boxed/index.html) for more. 193 #[lang = "owned_box"] 194 #[fundamental] 195 #[stable(feature = "rust1", since = "1.0.0")] 196 // The declaration of the `Box` struct must be kept in sync with the 197 // `alloc::alloc::box_free` function or ICEs will happen. See the comment 198 // on `box_free` for more details. 199 pub struct Box< 200 T: ?Sized, 201 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 202 >(Unique<T>, A); 203 204 impl<T> Box<T> { 205 /// Allocates memory on the heap and then places `x` into it. 206 /// 207 /// This doesn't actually allocate if `T` is zero-sized. 208 /// 209 /// # Examples 210 /// 211 /// ``` 212 /// let five = Box::new(5); 213 /// ``` 214 #[cfg(all(not(no_global_oom_handling)))] 215 #[inline(always)] 216 #[stable(feature = "rust1", since = "1.0.0")] 217 #[must_use] 218 #[rustc_diagnostic_item = "box_new"] 219 pub fn new(x: T) -> Self { 220 #[rustc_box] 221 Box::new(x) 222 } 223 224 /// Constructs a new box with uninitialized contents. 225 /// 226 /// # Examples 227 /// 228 /// ``` 229 /// #![feature(new_uninit)] 230 /// 231 /// let mut five = Box::<u32>::new_uninit(); 232 /// 233 /// let five = unsafe { 234 /// // Deferred initialization: 235 /// five.as_mut_ptr().write(5); 236 /// 237 /// five.assume_init() 238 /// }; 239 /// 240 /// assert_eq!(*five, 5) 241 /// ``` 242 #[cfg(not(no_global_oom_handling))] 243 #[unstable(feature = "new_uninit", issue = "63291")] 244 #[must_use] 245 #[inline] 246 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { 247 Self::new_uninit_in(Global) 248 } 249 250 /// Constructs a new `Box` with uninitialized contents, with the memory 251 /// being filled with `0` bytes. 252 /// 253 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 254 /// of this method. 255 /// 256 /// # Examples 257 /// 258 /// ``` 259 /// #![feature(new_uninit)] 260 /// 261 /// let zero = Box::<u32>::new_zeroed(); 262 /// let zero = unsafe { zero.assume_init() }; 263 /// 264 /// assert_eq!(*zero, 0) 265 /// ``` 266 /// 267 /// [zeroed]: mem::MaybeUninit::zeroed 268 #[cfg(not(no_global_oom_handling))] 269 #[inline] 270 #[unstable(feature = "new_uninit", issue = "63291")] 271 #[must_use] 272 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { 273 Self::new_zeroed_in(Global) 274 } 275 276 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 277 /// `x` will be pinned in memory and unable to be moved. 278 /// 279 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` 280 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using 281 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to 282 /// construct a (pinned) `Box` in a different way than with [`Box::new`]. 283 #[cfg(not(no_global_oom_handling))] 284 #[stable(feature = "pin", since = "1.33.0")] 285 #[must_use] 286 #[inline(always)] 287 pub fn pin(x: T) -> Pin<Box<T>> { 288 Box::new(x).into() 289 } 290 291 /// Allocates memory on the heap then places `x` into it, 292 /// returning an error if the allocation fails 293 /// 294 /// This doesn't actually allocate if `T` is zero-sized. 295 /// 296 /// # Examples 297 /// 298 /// ``` 299 /// #![feature(allocator_api)] 300 /// 301 /// let five = Box::try_new(5)?; 302 /// # Ok::<(), std::alloc::AllocError>(()) 303 /// ``` 304 #[unstable(feature = "allocator_api", issue = "32838")] 305 #[inline] 306 pub fn try_new(x: T) -> Result<Self, AllocError> { 307 Self::try_new_in(x, Global) 308 } 309 310 /// Constructs a new box with uninitialized contents on the heap, 311 /// returning an error if the allocation fails 312 /// 313 /// # Examples 314 /// 315 /// ``` 316 /// #![feature(allocator_api, new_uninit)] 317 /// 318 /// let mut five = Box::<u32>::try_new_uninit()?; 319 /// 320 /// let five = unsafe { 321 /// // Deferred initialization: 322 /// five.as_mut_ptr().write(5); 323 /// 324 /// five.assume_init() 325 /// }; 326 /// 327 /// assert_eq!(*five, 5); 328 /// # Ok::<(), std::alloc::AllocError>(()) 329 /// ``` 330 #[unstable(feature = "allocator_api", issue = "32838")] 331 // #[unstable(feature = "new_uninit", issue = "63291")] 332 #[inline] 333 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 334 Box::try_new_uninit_in(Global) 335 } 336 337 /// Constructs a new `Box` with uninitialized contents, with the memory 338 /// being filled with `0` bytes on the heap 339 /// 340 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 341 /// of this method. 342 /// 343 /// # Examples 344 /// 345 /// ``` 346 /// #![feature(allocator_api, new_uninit)] 347 /// 348 /// let zero = Box::<u32>::try_new_zeroed()?; 349 /// let zero = unsafe { zero.assume_init() }; 350 /// 351 /// assert_eq!(*zero, 0); 352 /// # Ok::<(), std::alloc::AllocError>(()) 353 /// ``` 354 /// 355 /// [zeroed]: mem::MaybeUninit::zeroed 356 #[unstable(feature = "allocator_api", issue = "32838")] 357 // #[unstable(feature = "new_uninit", issue = "63291")] 358 #[inline] 359 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 360 Box::try_new_zeroed_in(Global) 361 } 362 } 363 364 impl<T, A: Allocator> Box<T, A> { 365 /// Allocates memory in the given allocator then places `x` into it. 366 /// 367 /// This doesn't actually allocate if `T` is zero-sized. 368 /// 369 /// # Examples 370 /// 371 /// ``` 372 /// #![feature(allocator_api)] 373 /// 374 /// use std::alloc::System; 375 /// 376 /// let five = Box::new_in(5, System); 377 /// ``` 378 #[cfg(not(no_global_oom_handling))] 379 #[unstable(feature = "allocator_api", issue = "32838")] 380 #[must_use] 381 #[inline] 382 pub fn new_in(x: T, alloc: A) -> Self 383 where 384 A: Allocator, 385 { 386 let mut boxed = Self::new_uninit_in(alloc); 387 unsafe { 388 boxed.as_mut_ptr().write(x); 389 boxed.assume_init() 390 } 391 } 392 393 /// Allocates memory in the given allocator then places `x` into it, 394 /// returning an error if the allocation fails 395 /// 396 /// This doesn't actually allocate if `T` is zero-sized. 397 /// 398 /// # Examples 399 /// 400 /// ``` 401 /// #![feature(allocator_api)] 402 /// 403 /// use std::alloc::System; 404 /// 405 /// let five = Box::try_new_in(5, System)?; 406 /// # Ok::<(), std::alloc::AllocError>(()) 407 /// ``` 408 #[unstable(feature = "allocator_api", issue = "32838")] 409 #[inline] 410 pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> 411 where 412 A: Allocator, 413 { 414 let mut boxed = Self::try_new_uninit_in(alloc)?; 415 unsafe { 416 boxed.as_mut_ptr().write(x); 417 Ok(boxed.assume_init()) 418 } 419 } 420 421 /// Constructs a new box with uninitialized contents in the provided allocator. 422 /// 423 /// # Examples 424 /// 425 /// ``` 426 /// #![feature(allocator_api, new_uninit)] 427 /// 428 /// use std::alloc::System; 429 /// 430 /// let mut five = Box::<u32, _>::new_uninit_in(System); 431 /// 432 /// let five = unsafe { 433 /// // Deferred initialization: 434 /// five.as_mut_ptr().write(5); 435 /// 436 /// five.assume_init() 437 /// }; 438 /// 439 /// assert_eq!(*five, 5) 440 /// ``` 441 #[unstable(feature = "allocator_api", issue = "32838")] 442 #[cfg(not(no_global_oom_handling))] 443 #[must_use] 444 // #[unstable(feature = "new_uninit", issue = "63291")] 445 pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 446 where 447 A: Allocator, 448 { 449 let layout = Layout::new::<mem::MaybeUninit<T>>(); 450 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 451 // That would make code size bigger. 452 match Box::try_new_uninit_in(alloc) { 453 Ok(m) => m, 454 Err(_) => handle_alloc_error(layout), 455 } 456 } 457 458 /// Constructs a new box with uninitialized contents in the provided allocator, 459 /// returning an error if the allocation fails 460 /// 461 /// # Examples 462 /// 463 /// ``` 464 /// #![feature(allocator_api, new_uninit)] 465 /// 466 /// use std::alloc::System; 467 /// 468 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; 469 /// 470 /// let five = unsafe { 471 /// // Deferred initialization: 472 /// five.as_mut_ptr().write(5); 473 /// 474 /// five.assume_init() 475 /// }; 476 /// 477 /// assert_eq!(*five, 5); 478 /// # Ok::<(), std::alloc::AllocError>(()) 479 /// ``` 480 #[unstable(feature = "allocator_api", issue = "32838")] 481 // #[unstable(feature = "new_uninit", issue = "63291")] 482 pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 483 where 484 A: Allocator, 485 { 486 let ptr = if T::IS_ZST { 487 NonNull::dangling() 488 } else { 489 let layout = Layout::new::<mem::MaybeUninit<T>>(); 490 alloc.allocate(layout)?.cast() 491 }; 492 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 493 } 494 495 /// Constructs a new `Box` with uninitialized contents, with the memory 496 /// being filled with `0` bytes in the provided allocator. 497 /// 498 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 499 /// of this method. 500 /// 501 /// # Examples 502 /// 503 /// ``` 504 /// #![feature(allocator_api, new_uninit)] 505 /// 506 /// use std::alloc::System; 507 /// 508 /// let zero = Box::<u32, _>::new_zeroed_in(System); 509 /// let zero = unsafe { zero.assume_init() }; 510 /// 511 /// assert_eq!(*zero, 0) 512 /// ``` 513 /// 514 /// [zeroed]: mem::MaybeUninit::zeroed 515 #[unstable(feature = "allocator_api", issue = "32838")] 516 #[cfg(not(no_global_oom_handling))] 517 // #[unstable(feature = "new_uninit", issue = "63291")] 518 #[must_use] 519 pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 520 where 521 A: Allocator, 522 { 523 let layout = Layout::new::<mem::MaybeUninit<T>>(); 524 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 525 // That would make code size bigger. 526 match Box::try_new_zeroed_in(alloc) { 527 Ok(m) => m, 528 Err(_) => handle_alloc_error(layout), 529 } 530 } 531 532 /// Constructs a new `Box` with uninitialized contents, with the memory 533 /// being filled with `0` bytes in the provided allocator, 534 /// returning an error if the allocation fails, 535 /// 536 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 537 /// of this method. 538 /// 539 /// # Examples 540 /// 541 /// ``` 542 /// #![feature(allocator_api, new_uninit)] 543 /// 544 /// use std::alloc::System; 545 /// 546 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; 547 /// let zero = unsafe { zero.assume_init() }; 548 /// 549 /// assert_eq!(*zero, 0); 550 /// # Ok::<(), std::alloc::AllocError>(()) 551 /// ``` 552 /// 553 /// [zeroed]: mem::MaybeUninit::zeroed 554 #[unstable(feature = "allocator_api", issue = "32838")] 555 // #[unstable(feature = "new_uninit", issue = "63291")] 556 pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 557 where 558 A: Allocator, 559 { 560 let ptr = if T::IS_ZST { 561 NonNull::dangling() 562 } else { 563 let layout = Layout::new::<mem::MaybeUninit<T>>(); 564 alloc.allocate_zeroed(layout)?.cast() 565 }; 566 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 567 } 568 569 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 570 /// `x` will be pinned in memory and unable to be moved. 571 /// 572 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` 573 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using 574 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to 575 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. 576 #[cfg(not(no_global_oom_handling))] 577 #[unstable(feature = "allocator_api", issue = "32838")] 578 #[must_use] 579 #[inline(always)] 580 pub fn pin_in(x: T, alloc: A) -> Pin<Self> 581 where 582 A: 'static + Allocator, 583 { 584 Self::into_pin(Self::new_in(x, alloc)) 585 } 586 587 /// Converts a `Box<T>` into a `Box<[T]>` 588 /// 589 /// This conversion does not allocate on the heap and happens in place. 590 #[unstable(feature = "box_into_boxed_slice", issue = "71582")] 591 pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { 592 let (raw, alloc) = Box::into_raw_with_allocator(boxed); 593 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } 594 } 595 596 /// Consumes the `Box`, returning the wrapped value. 597 /// 598 /// # Examples 599 /// 600 /// ``` 601 /// #![feature(box_into_inner)] 602 /// 603 /// let c = Box::new(5); 604 /// 605 /// assert_eq!(Box::into_inner(c), 5); 606 /// ``` 607 #[unstable(feature = "box_into_inner", issue = "80437")] 608 #[inline] 609 pub fn into_inner(boxed: Self) -> T { 610 *boxed 611 } 612 } 613 614 impl<T> Box<[T]> { 615 /// Constructs a new boxed slice with uninitialized contents. 616 /// 617 /// # Examples 618 /// 619 /// ``` 620 /// #![feature(new_uninit)] 621 /// 622 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 623 /// 624 /// let values = unsafe { 625 /// // Deferred initialization: 626 /// values[0].as_mut_ptr().write(1); 627 /// values[1].as_mut_ptr().write(2); 628 /// values[2].as_mut_ptr().write(3); 629 /// 630 /// values.assume_init() 631 /// }; 632 /// 633 /// assert_eq!(*values, [1, 2, 3]) 634 /// ``` 635 #[cfg(not(no_global_oom_handling))] 636 #[unstable(feature = "new_uninit", issue = "63291")] 637 #[must_use] 638 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 639 unsafe { RawVec::with_capacity(len).into_box(len) } 640 } 641 642 /// Constructs a new boxed slice with uninitialized contents, with the memory 643 /// being filled with `0` bytes. 644 /// 645 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 646 /// of this method. 647 /// 648 /// # Examples 649 /// 650 /// ``` 651 /// #![feature(new_uninit)] 652 /// 653 /// let values = Box::<[u32]>::new_zeroed_slice(3); 654 /// let values = unsafe { values.assume_init() }; 655 /// 656 /// assert_eq!(*values, [0, 0, 0]) 657 /// ``` 658 /// 659 /// [zeroed]: mem::MaybeUninit::zeroed 660 #[cfg(not(no_global_oom_handling))] 661 #[unstable(feature = "new_uninit", issue = "63291")] 662 #[must_use] 663 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 664 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } 665 } 666 667 /// Constructs a new boxed slice with uninitialized contents. Returns an error if 668 /// the allocation fails 669 /// 670 /// # Examples 671 /// 672 /// ``` 673 /// #![feature(allocator_api, new_uninit)] 674 /// 675 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; 676 /// let values = unsafe { 677 /// // Deferred initialization: 678 /// values[0].as_mut_ptr().write(1); 679 /// values[1].as_mut_ptr().write(2); 680 /// values[2].as_mut_ptr().write(3); 681 /// values.assume_init() 682 /// }; 683 /// 684 /// assert_eq!(*values, [1, 2, 3]); 685 /// # Ok::<(), std::alloc::AllocError>(()) 686 /// ``` 687 #[unstable(feature = "allocator_api", issue = "32838")] 688 #[inline] 689 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 690 let ptr = if T::IS_ZST || len == 0 { 691 NonNull::dangling() 692 } else { 693 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 694 Ok(l) => l, 695 Err(_) => return Err(AllocError), 696 }; 697 Global.allocate(layout)?.cast() 698 }; 699 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } 700 } 701 702 /// Constructs a new boxed slice with uninitialized contents, with the memory 703 /// being filled with `0` bytes. Returns an error if the allocation fails 704 /// 705 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 706 /// of this method. 707 /// 708 /// # Examples 709 /// 710 /// ``` 711 /// #![feature(allocator_api, new_uninit)] 712 /// 713 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; 714 /// let values = unsafe { values.assume_init() }; 715 /// 716 /// assert_eq!(*values, [0, 0, 0]); 717 /// # Ok::<(), std::alloc::AllocError>(()) 718 /// ``` 719 /// 720 /// [zeroed]: mem::MaybeUninit::zeroed 721 #[unstable(feature = "allocator_api", issue = "32838")] 722 #[inline] 723 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 724 let ptr = if T::IS_ZST || len == 0 { 725 NonNull::dangling() 726 } else { 727 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 728 Ok(l) => l, 729 Err(_) => return Err(AllocError), 730 }; 731 Global.allocate_zeroed(layout)?.cast() 732 }; 733 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } 734 } 735 } 736 737 impl<T, A: Allocator> Box<[T], A> { 738 /// Constructs a new boxed slice with uninitialized contents in the provided allocator. 739 /// 740 /// # Examples 741 /// 742 /// ``` 743 /// #![feature(allocator_api, new_uninit)] 744 /// 745 /// use std::alloc::System; 746 /// 747 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); 748 /// 749 /// let values = unsafe { 750 /// // Deferred initialization: 751 /// values[0].as_mut_ptr().write(1); 752 /// values[1].as_mut_ptr().write(2); 753 /// values[2].as_mut_ptr().write(3); 754 /// 755 /// values.assume_init() 756 /// }; 757 /// 758 /// assert_eq!(*values, [1, 2, 3]) 759 /// ``` 760 #[cfg(not(no_global_oom_handling))] 761 #[unstable(feature = "allocator_api", issue = "32838")] 762 // #[unstable(feature = "new_uninit", issue = "63291")] 763 #[must_use] 764 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 765 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } 766 } 767 768 /// Constructs a new boxed slice with uninitialized contents in the provided allocator, 769 /// with the memory being filled with `0` bytes. 770 /// 771 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 772 /// of this method. 773 /// 774 /// # Examples 775 /// 776 /// ``` 777 /// #![feature(allocator_api, new_uninit)] 778 /// 779 /// use std::alloc::System; 780 /// 781 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); 782 /// let values = unsafe { values.assume_init() }; 783 /// 784 /// assert_eq!(*values, [0, 0, 0]) 785 /// ``` 786 /// 787 /// [zeroed]: mem::MaybeUninit::zeroed 788 #[cfg(not(no_global_oom_handling))] 789 #[unstable(feature = "allocator_api", issue = "32838")] 790 // #[unstable(feature = "new_uninit", issue = "63291")] 791 #[must_use] 792 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 793 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } 794 } 795 } 796 797 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { 798 /// Converts to `Box<T, A>`. 799 /// 800 /// # Safety 801 /// 802 /// As with [`MaybeUninit::assume_init`], 803 /// it is up to the caller to guarantee that the value 804 /// really is in an initialized state. 805 /// Calling this when the content is not yet fully initialized 806 /// causes immediate undefined behavior. 807 /// 808 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 809 /// 810 /// # Examples 811 /// 812 /// ``` 813 /// #![feature(new_uninit)] 814 /// 815 /// let mut five = Box::<u32>::new_uninit(); 816 /// 817 /// let five: Box<u32> = unsafe { 818 /// // Deferred initialization: 819 /// five.as_mut_ptr().write(5); 820 /// 821 /// five.assume_init() 822 /// }; 823 /// 824 /// assert_eq!(*five, 5) 825 /// ``` 826 #[unstable(feature = "new_uninit", issue = "63291")] 827 #[inline] 828 pub unsafe fn assume_init(self) -> Box<T, A> { 829 let (raw, alloc) = Box::into_raw_with_allocator(self); 830 unsafe { Box::from_raw_in(raw as *mut T, alloc) } 831 } 832 833 /// Writes the value and converts to `Box<T, A>`. 834 /// 835 /// This method converts the box similarly to [`Box::assume_init`] but 836 /// writes `value` into it before conversion thus guaranteeing safety. 837 /// In some scenarios use of this method may improve performance because 838 /// the compiler may be able to optimize copying from stack. 839 /// 840 /// # Examples 841 /// 842 /// ``` 843 /// #![feature(new_uninit)] 844 /// 845 /// let big_box = Box::<[usize; 1024]>::new_uninit(); 846 /// 847 /// let mut array = [0; 1024]; 848 /// for (i, place) in array.iter_mut().enumerate() { 849 /// *place = i; 850 /// } 851 /// 852 /// // The optimizer may be able to elide this copy, so previous code writes 853 /// // to heap directly. 854 /// let big_box = Box::write(big_box, array); 855 /// 856 /// for (i, x) in big_box.iter().enumerate() { 857 /// assert_eq!(*x, i); 858 /// } 859 /// ``` 860 #[unstable(feature = "new_uninit", issue = "63291")] 861 #[inline] 862 pub fn write(mut boxed: Self, value: T) -> Box<T, A> { 863 unsafe { 864 (*boxed).write(value); 865 boxed.assume_init() 866 } 867 } 868 } 869 870 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { 871 /// Converts to `Box<[T], A>`. 872 /// 873 /// # Safety 874 /// 875 /// As with [`MaybeUninit::assume_init`], 876 /// it is up to the caller to guarantee that the values 877 /// really are in an initialized state. 878 /// Calling this when the content is not yet fully initialized 879 /// causes immediate undefined behavior. 880 /// 881 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 882 /// 883 /// # Examples 884 /// 885 /// ``` 886 /// #![feature(new_uninit)] 887 /// 888 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 889 /// 890 /// let values = unsafe { 891 /// // Deferred initialization: 892 /// values[0].as_mut_ptr().write(1); 893 /// values[1].as_mut_ptr().write(2); 894 /// values[2].as_mut_ptr().write(3); 895 /// 896 /// values.assume_init() 897 /// }; 898 /// 899 /// assert_eq!(*values, [1, 2, 3]) 900 /// ``` 901 #[unstable(feature = "new_uninit", issue = "63291")] 902 #[inline] 903 pub unsafe fn assume_init(self) -> Box<[T], A> { 904 let (raw, alloc) = Box::into_raw_with_allocator(self); 905 unsafe { Box::from_raw_in(raw as *mut [T], alloc) } 906 } 907 } 908 909 impl<T: ?Sized> Box<T> { 910 /// Constructs a box from a raw pointer. 911 /// 912 /// After calling this function, the raw pointer is owned by the 913 /// resulting `Box`. Specifically, the `Box` destructor will call 914 /// the destructor of `T` and free the allocated memory. For this 915 /// to be safe, the memory must have been allocated in accordance 916 /// with the [memory layout] used by `Box` . 917 /// 918 /// # Safety 919 /// 920 /// This function is unsafe because improper use may lead to 921 /// memory problems. For example, a double-free may occur if the 922 /// function is called twice on the same raw pointer. 923 /// 924 /// The safety conditions are described in the [memory layout] section. 925 /// 926 /// # Examples 927 /// 928 /// Recreate a `Box` which was previously converted to a raw pointer 929 /// using [`Box::into_raw`]: 930 /// ``` 931 /// let x = Box::new(5); 932 /// let ptr = Box::into_raw(x); 933 /// let x = unsafe { Box::from_raw(ptr) }; 934 /// ``` 935 /// Manually create a `Box` from scratch by using the global allocator: 936 /// ``` 937 /// use std::alloc::{alloc, Layout}; 938 /// 939 /// unsafe { 940 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; 941 /// // In general .write is required to avoid attempting to destruct 942 /// // the (uninitialized) previous contents of `ptr`, though for this 943 /// // simple example `*ptr = 5` would have worked as well. 944 /// ptr.write(5); 945 /// let x = Box::from_raw(ptr); 946 /// } 947 /// ``` 948 /// 949 /// [memory layout]: self#memory-layout 950 /// [`Layout`]: crate::Layout 951 #[stable(feature = "box_raw", since = "1.4.0")] 952 #[inline] 953 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] 954 pub unsafe fn from_raw(raw: *mut T) -> Self { 955 unsafe { Self::from_raw_in(raw, Global) } 956 } 957 } 958 959 impl<T: ?Sized, A: Allocator> Box<T, A> { 960 /// Constructs a box from a raw pointer in the given allocator. 961 /// 962 /// After calling this function, the raw pointer is owned by the 963 /// resulting `Box`. Specifically, the `Box` destructor will call 964 /// the destructor of `T` and free the allocated memory. For this 965 /// to be safe, the memory must have been allocated in accordance 966 /// with the [memory layout] used by `Box` . 967 /// 968 /// # Safety 969 /// 970 /// This function is unsafe because improper use may lead to 971 /// memory problems. For example, a double-free may occur if the 972 /// function is called twice on the same raw pointer. 973 /// 974 /// 975 /// # Examples 976 /// 977 /// Recreate a `Box` which was previously converted to a raw pointer 978 /// using [`Box::into_raw_with_allocator`]: 979 /// ``` 980 /// #![feature(allocator_api)] 981 /// 982 /// use std::alloc::System; 983 /// 984 /// let x = Box::new_in(5, System); 985 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 986 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 987 /// ``` 988 /// Manually create a `Box` from scratch by using the system allocator: 989 /// ``` 990 /// #![feature(allocator_api, slice_ptr_get)] 991 /// 992 /// use std::alloc::{Allocator, Layout, System}; 993 /// 994 /// unsafe { 995 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; 996 /// // In general .write is required to avoid attempting to destruct 997 /// // the (uninitialized) previous contents of `ptr`, though for this 998 /// // simple example `*ptr = 5` would have worked as well. 999 /// ptr.write(5); 1000 /// let x = Box::from_raw_in(ptr, System); 1001 /// } 1002 /// # Ok::<(), std::alloc::AllocError>(()) 1003 /// ``` 1004 /// 1005 /// [memory layout]: self#memory-layout 1006 /// [`Layout`]: crate::Layout 1007 #[unstable(feature = "allocator_api", issue = "32838")] 1008 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1009 #[inline] 1010 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { 1011 Box(unsafe { Unique::new_unchecked(raw) }, alloc) 1012 } 1013 1014 /// Consumes the `Box`, returning a wrapped raw pointer. 1015 /// 1016 /// The pointer will be properly aligned and non-null. 1017 /// 1018 /// After calling this function, the caller is responsible for the 1019 /// memory previously managed by the `Box`. In particular, the 1020 /// caller should properly destroy `T` and release the memory, taking 1021 /// into account the [memory layout] used by `Box`. The easiest way to 1022 /// do this is to convert the raw pointer back into a `Box` with the 1023 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform 1024 /// the cleanup. 1025 /// 1026 /// Note: this is an associated function, which means that you have 1027 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This 1028 /// is so that there is no conflict with a method on the inner type. 1029 /// 1030 /// # Examples 1031 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] 1032 /// for automatic cleanup: 1033 /// ``` 1034 /// let x = Box::new(String::from("Hello")); 1035 /// let ptr = Box::into_raw(x); 1036 /// let x = unsafe { Box::from_raw(ptr) }; 1037 /// ``` 1038 /// Manual cleanup by explicitly running the destructor and deallocating 1039 /// the memory: 1040 /// ``` 1041 /// use std::alloc::{dealloc, Layout}; 1042 /// use std::ptr; 1043 /// 1044 /// let x = Box::new(String::from("Hello")); 1045 /// let p = Box::into_raw(x); 1046 /// unsafe { 1047 /// ptr::drop_in_place(p); 1048 /// dealloc(p as *mut u8, Layout::new::<String>()); 1049 /// } 1050 /// ``` 1051 /// 1052 /// [memory layout]: self#memory-layout 1053 #[stable(feature = "box_raw", since = "1.4.0")] 1054 #[inline] 1055 pub fn into_raw(b: Self) -> *mut T { 1056 Self::into_raw_with_allocator(b).0 1057 } 1058 1059 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. 1060 /// 1061 /// The pointer will be properly aligned and non-null. 1062 /// 1063 /// After calling this function, the caller is responsible for the 1064 /// memory previously managed by the `Box`. In particular, the 1065 /// caller should properly destroy `T` and release the memory, taking 1066 /// into account the [memory layout] used by `Box`. The easiest way to 1067 /// do this is to convert the raw pointer back into a `Box` with the 1068 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform 1069 /// the cleanup. 1070 /// 1071 /// Note: this is an associated function, which means that you have 1072 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This 1073 /// is so that there is no conflict with a method on the inner type. 1074 /// 1075 /// # Examples 1076 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] 1077 /// for automatic cleanup: 1078 /// ``` 1079 /// #![feature(allocator_api)] 1080 /// 1081 /// use std::alloc::System; 1082 /// 1083 /// let x = Box::new_in(String::from("Hello"), System); 1084 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1085 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 1086 /// ``` 1087 /// Manual cleanup by explicitly running the destructor and deallocating 1088 /// the memory: 1089 /// ``` 1090 /// #![feature(allocator_api)] 1091 /// 1092 /// use std::alloc::{Allocator, Layout, System}; 1093 /// use std::ptr::{self, NonNull}; 1094 /// 1095 /// let x = Box::new_in(String::from("Hello"), System); 1096 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1097 /// unsafe { 1098 /// ptr::drop_in_place(ptr); 1099 /// let non_null = NonNull::new_unchecked(ptr); 1100 /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); 1101 /// } 1102 /// ``` 1103 /// 1104 /// [memory layout]: self#memory-layout 1105 #[unstable(feature = "allocator_api", issue = "32838")] 1106 #[inline] 1107 pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { 1108 let (leaked, alloc) = Box::into_unique(b); 1109 (leaked.as_ptr(), alloc) 1110 } 1111 1112 #[unstable( 1113 feature = "ptr_internals", 1114 issue = "none", 1115 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" 1116 )] 1117 #[inline] 1118 #[doc(hidden)] 1119 pub fn into_unique(b: Self) -> (Unique<T>, A) { 1120 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a 1121 // raw pointer for the type system. Turning it directly into a raw pointer would not be 1122 // recognized as "releasing" the unique pointer to permit aliased raw accesses, 1123 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer 1124 // behaves correctly. 1125 let alloc = unsafe { ptr::read(&b.1) }; 1126 (Unique::from(Box::leak(b)), alloc) 1127 } 1128 1129 /// Returns a reference to the underlying allocator. 1130 /// 1131 /// Note: this is an associated function, which means that you have 1132 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This 1133 /// is so that there is no conflict with a method on the inner type. 1134 #[unstable(feature = "allocator_api", issue = "32838")] 1135 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1136 #[inline] 1137 pub const fn allocator(b: &Self) -> &A { 1138 &b.1 1139 } 1140 1141 /// Consumes and leaks the `Box`, returning a mutable reference, 1142 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime 1143 /// `'a`. If the type has only static references, or none at all, then this 1144 /// may be chosen to be `'static`. 1145 /// 1146 /// This function is mainly useful for data that lives for the remainder of 1147 /// the program's life. Dropping the returned reference will cause a memory 1148 /// leak. If this is not acceptable, the reference should first be wrapped 1149 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can 1150 /// then be dropped which will properly destroy `T` and release the 1151 /// allocated memory. 1152 /// 1153 /// Note: this is an associated function, which means that you have 1154 /// to call it as `Box::leak(b)` instead of `b.leak()`. This 1155 /// is so that there is no conflict with a method on the inner type. 1156 /// 1157 /// # Examples 1158 /// 1159 /// Simple usage: 1160 /// 1161 /// ``` 1162 /// let x = Box::new(41); 1163 /// let static_ref: &'static mut usize = Box::leak(x); 1164 /// *static_ref += 1; 1165 /// assert_eq!(*static_ref, 42); 1166 /// ``` 1167 /// 1168 /// Unsized data: 1169 /// 1170 /// ``` 1171 /// let x = vec![1, 2, 3].into_boxed_slice(); 1172 /// let static_ref = Box::leak(x); 1173 /// static_ref[0] = 4; 1174 /// assert_eq!(*static_ref, [4, 2, 3]); 1175 /// ``` 1176 #[stable(feature = "box_leak", since = "1.26.0")] 1177 #[inline] 1178 pub fn leak<'a>(b: Self) -> &'a mut T 1179 where 1180 A: 'a, 1181 { 1182 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } 1183 } 1184 1185 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1186 /// `*boxed` will be pinned in memory and unable to be moved. 1187 /// 1188 /// This conversion does not allocate on the heap and happens in place. 1189 /// 1190 /// This is also available via [`From`]. 1191 /// 1192 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> 1193 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1194 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are 1195 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1196 /// 1197 /// # Notes 1198 /// 1199 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, 1200 /// as it'll introduce an ambiguity when calling `Pin::from`. 1201 /// A demonstration of such a poor impl is shown below. 1202 /// 1203 /// ```compile_fail 1204 /// # use std::pin::Pin; 1205 /// struct Foo; // A type defined in this crate. 1206 /// impl From<Box<()>> for Pin<Foo> { 1207 /// fn from(_: Box<()>) -> Pin<Foo> { 1208 /// Pin::new(Foo) 1209 /// } 1210 /// } 1211 /// 1212 /// let foo = Box::new(()); 1213 /// let bar = Pin::from(foo); 1214 /// ``` 1215 #[stable(feature = "box_into_pin", since = "1.63.0")] 1216 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1217 pub const fn into_pin(boxed: Self) -> Pin<Self> 1218 where 1219 A: 'static, 1220 { 1221 // It's not possible to move or replace the insides of a `Pin<Box<T>>` 1222 // when `T: !Unpin`, so it's safe to pin it directly without any 1223 // additional requirements. 1224 unsafe { Pin::new_unchecked(boxed) } 1225 } 1226 } 1227 1228 #[stable(feature = "rust1", since = "1.0.0")] 1229 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { 1230 #[inline] 1231 fn drop(&mut self) { 1232 // the T in the Box is dropped by the compiler before the destructor is run 1233 1234 let ptr = self.0; 1235 1236 unsafe { 1237 let layout = Layout::for_value_raw(ptr.as_ptr()); 1238 if layout.size() != 0 { 1239 self.1.deallocate(From::from(ptr.cast()), layout); 1240 } 1241 } 1242 } 1243 } 1244 1245 #[cfg(not(no_global_oom_handling))] 1246 #[stable(feature = "rust1", since = "1.0.0")] 1247 impl<T: Default> Default for Box<T> { 1248 /// Creates a `Box<T>`, with the `Default` value for T. 1249 #[inline] 1250 fn default() -> Self { 1251 Box::new(T::default()) 1252 } 1253 } 1254 1255 #[cfg(not(no_global_oom_handling))] 1256 #[stable(feature = "rust1", since = "1.0.0")] 1257 impl<T> Default for Box<[T]> { 1258 #[inline] 1259 fn default() -> Self { 1260 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); 1261 Box(ptr, Global) 1262 } 1263 } 1264 1265 #[cfg(not(no_global_oom_handling))] 1266 #[stable(feature = "default_box_extra", since = "1.17.0")] 1267 impl Default for Box<str> { 1268 #[inline] 1269 fn default() -> Self { 1270 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. 1271 let ptr: Unique<str> = unsafe { 1272 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); 1273 Unique::new_unchecked(bytes.as_ptr() as *mut str) 1274 }; 1275 Box(ptr, Global) 1276 } 1277 } 1278 1279 #[cfg(not(no_global_oom_handling))] 1280 #[stable(feature = "rust1", since = "1.0.0")] 1281 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { 1282 /// Returns a new box with a `clone()` of this box's contents. 1283 /// 1284 /// # Examples 1285 /// 1286 /// ``` 1287 /// let x = Box::new(5); 1288 /// let y = x.clone(); 1289 /// 1290 /// // The value is the same 1291 /// assert_eq!(x, y); 1292 /// 1293 /// // But they are unique objects 1294 /// assert_ne!(&*x as *const i32, &*y as *const i32); 1295 /// ``` 1296 #[inline] 1297 fn clone(&self) -> Self { 1298 // Pre-allocate memory to allow writing the cloned value directly. 1299 let mut boxed = Self::new_uninit_in(self.1.clone()); 1300 unsafe { 1301 (**self).write_clone_into_raw(boxed.as_mut_ptr()); 1302 boxed.assume_init() 1303 } 1304 } 1305 1306 /// Copies `source`'s contents into `self` without creating a new allocation. 1307 /// 1308 /// # Examples 1309 /// 1310 /// ``` 1311 /// let x = Box::new(5); 1312 /// let mut y = Box::new(10); 1313 /// let yp: *const i32 = &*y; 1314 /// 1315 /// y.clone_from(&x); 1316 /// 1317 /// // The value is the same 1318 /// assert_eq!(x, y); 1319 /// 1320 /// // And no allocation occurred 1321 /// assert_eq!(yp, &*y); 1322 /// ``` 1323 #[inline] 1324 fn clone_from(&mut self, source: &Self) { 1325 (**self).clone_from(&(**source)); 1326 } 1327 } 1328 1329 #[cfg(not(no_global_oom_handling))] 1330 #[stable(feature = "box_slice_clone", since = "1.3.0")] 1331 impl Clone for Box<str> { 1332 fn clone(&self) -> Self { 1333 // this makes a copy of the data 1334 let buf: Box<[u8]> = self.as_bytes().into(); 1335 unsafe { from_boxed_utf8_unchecked(buf) } 1336 } 1337 } 1338 1339 #[stable(feature = "rust1", since = "1.0.0")] 1340 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { 1341 #[inline] 1342 fn eq(&self, other: &Self) -> bool { 1343 PartialEq::eq(&**self, &**other) 1344 } 1345 #[inline] 1346 fn ne(&self, other: &Self) -> bool { 1347 PartialEq::ne(&**self, &**other) 1348 } 1349 } 1350 #[stable(feature = "rust1", since = "1.0.0")] 1351 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { 1352 #[inline] 1353 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 1354 PartialOrd::partial_cmp(&**self, &**other) 1355 } 1356 #[inline] 1357 fn lt(&self, other: &Self) -> bool { 1358 PartialOrd::lt(&**self, &**other) 1359 } 1360 #[inline] 1361 fn le(&self, other: &Self) -> bool { 1362 PartialOrd::le(&**self, &**other) 1363 } 1364 #[inline] 1365 fn ge(&self, other: &Self) -> bool { 1366 PartialOrd::ge(&**self, &**other) 1367 } 1368 #[inline] 1369 fn gt(&self, other: &Self) -> bool { 1370 PartialOrd::gt(&**self, &**other) 1371 } 1372 } 1373 #[stable(feature = "rust1", since = "1.0.0")] 1374 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { 1375 #[inline] 1376 fn cmp(&self, other: &Self) -> Ordering { 1377 Ord::cmp(&**self, &**other) 1378 } 1379 } 1380 #[stable(feature = "rust1", since = "1.0.0")] 1381 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} 1382 1383 #[stable(feature = "rust1", since = "1.0.0")] 1384 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { 1385 fn hash<H: Hasher>(&self, state: &mut H) { 1386 (**self).hash(state); 1387 } 1388 } 1389 1390 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] 1391 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { 1392 fn finish(&self) -> u64 { 1393 (**self).finish() 1394 } 1395 fn write(&mut self, bytes: &[u8]) { 1396 (**self).write(bytes) 1397 } 1398 fn write_u8(&mut self, i: u8) { 1399 (**self).write_u8(i) 1400 } 1401 fn write_u16(&mut self, i: u16) { 1402 (**self).write_u16(i) 1403 } 1404 fn write_u32(&mut self, i: u32) { 1405 (**self).write_u32(i) 1406 } 1407 fn write_u64(&mut self, i: u64) { 1408 (**self).write_u64(i) 1409 } 1410 fn write_u128(&mut self, i: u128) { 1411 (**self).write_u128(i) 1412 } 1413 fn write_usize(&mut self, i: usize) { 1414 (**self).write_usize(i) 1415 } 1416 fn write_i8(&mut self, i: i8) { 1417 (**self).write_i8(i) 1418 } 1419 fn write_i16(&mut self, i: i16) { 1420 (**self).write_i16(i) 1421 } 1422 fn write_i32(&mut self, i: i32) { 1423 (**self).write_i32(i) 1424 } 1425 fn write_i64(&mut self, i: i64) { 1426 (**self).write_i64(i) 1427 } 1428 fn write_i128(&mut self, i: i128) { 1429 (**self).write_i128(i) 1430 } 1431 fn write_isize(&mut self, i: isize) { 1432 (**self).write_isize(i) 1433 } 1434 fn write_length_prefix(&mut self, len: usize) { 1435 (**self).write_length_prefix(len) 1436 } 1437 fn write_str(&mut self, s: &str) { 1438 (**self).write_str(s) 1439 } 1440 } 1441 1442 #[cfg(not(no_global_oom_handling))] 1443 #[stable(feature = "from_for_ptrs", since = "1.6.0")] 1444 impl<T> From<T> for Box<T> { 1445 /// Converts a `T` into a `Box<T>` 1446 /// 1447 /// The conversion allocates on the heap and moves `t` 1448 /// from the stack into it. 1449 /// 1450 /// # Examples 1451 /// 1452 /// ```rust 1453 /// let x = 5; 1454 /// let boxed = Box::new(5); 1455 /// 1456 /// assert_eq!(Box::from(x), boxed); 1457 /// ``` 1458 fn from(t: T) -> Self { 1459 Box::new(t) 1460 } 1461 } 1462 1463 #[stable(feature = "pin", since = "1.33.0")] 1464 impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> 1465 where 1466 A: 'static, 1467 { 1468 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1469 /// `*boxed` will be pinned in memory and unable to be moved. 1470 /// 1471 /// This conversion does not allocate on the heap and happens in place. 1472 /// 1473 /// This is also available via [`Box::into_pin`]. 1474 /// 1475 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> 1476 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1477 /// This `From` implementation is useful if you already have a `Box<T>`, or you are 1478 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1479 fn from(boxed: Box<T, A>) -> Self { 1480 Box::into_pin(boxed) 1481 } 1482 } 1483 1484 /// Specialization trait used for `From<&[T]>`. 1485 #[cfg(not(no_global_oom_handling))] 1486 trait BoxFromSlice<T> { 1487 fn from_slice(slice: &[T]) -> Self; 1488 } 1489 1490 #[cfg(not(no_global_oom_handling))] 1491 impl<T: Clone> BoxFromSlice<T> for Box<[T]> { 1492 #[inline] 1493 default fn from_slice(slice: &[T]) -> Self { 1494 slice.to_vec().into_boxed_slice() 1495 } 1496 } 1497 1498 #[cfg(not(no_global_oom_handling))] 1499 impl<T: Copy> BoxFromSlice<T> for Box<[T]> { 1500 #[inline] 1501 fn from_slice(slice: &[T]) -> Self { 1502 let len = slice.len(); 1503 let buf = RawVec::with_capacity(len); 1504 unsafe { 1505 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); 1506 buf.into_box(slice.len()).assume_init() 1507 } 1508 } 1509 } 1510 1511 #[cfg(not(no_global_oom_handling))] 1512 #[stable(feature = "box_from_slice", since = "1.17.0")] 1513 impl<T: Clone> From<&[T]> for Box<[T]> { 1514 /// Converts a `&[T]` into a `Box<[T]>` 1515 /// 1516 /// This conversion allocates on the heap 1517 /// and performs a copy of `slice` and its contents. 1518 /// 1519 /// # Examples 1520 /// ```rust 1521 /// // create a &[u8] which will be used to create a Box<[u8]> 1522 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1523 /// let boxed_slice: Box<[u8]> = Box::from(slice); 1524 /// 1525 /// println!("{boxed_slice:?}"); 1526 /// ``` 1527 #[inline] 1528 fn from(slice: &[T]) -> Box<[T]> { 1529 <Self as BoxFromSlice<T>>::from_slice(slice) 1530 } 1531 } 1532 1533 #[cfg(not(no_global_oom_handling))] 1534 #[stable(feature = "box_from_cow", since = "1.45.0")] 1535 impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> { 1536 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` 1537 /// 1538 /// When `cow` is the `Cow::Borrowed` variant, this 1539 /// conversion allocates on the heap and copies the 1540 /// underlying slice. Otherwise, it will try to reuse the owned 1541 /// `Vec`'s allocation. 1542 #[inline] 1543 fn from(cow: Cow<'_, [T]>) -> Box<[T]> { 1544 match cow { 1545 Cow::Borrowed(slice) => Box::from(slice), 1546 Cow::Owned(slice) => Box::from(slice), 1547 } 1548 } 1549 } 1550 1551 #[cfg(not(no_global_oom_handling))] 1552 #[stable(feature = "box_from_slice", since = "1.17.0")] 1553 impl From<&str> for Box<str> { 1554 /// Converts a `&str` into a `Box<str>` 1555 /// 1556 /// This conversion allocates on the heap 1557 /// and performs a copy of `s`. 1558 /// 1559 /// # Examples 1560 /// 1561 /// ```rust 1562 /// let boxed: Box<str> = Box::from("hello"); 1563 /// println!("{boxed}"); 1564 /// ``` 1565 #[inline] 1566 fn from(s: &str) -> Box<str> { 1567 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } 1568 } 1569 } 1570 1571 #[cfg(not(no_global_oom_handling))] 1572 #[stable(feature = "box_from_cow", since = "1.45.0")] 1573 impl From<Cow<'_, str>> for Box<str> { 1574 /// Converts a `Cow<'_, str>` into a `Box<str>` 1575 /// 1576 /// When `cow` is the `Cow::Borrowed` variant, this 1577 /// conversion allocates on the heap and copies the 1578 /// underlying `str`. Otherwise, it will try to reuse the owned 1579 /// `String`'s allocation. 1580 /// 1581 /// # Examples 1582 /// 1583 /// ```rust 1584 /// use std::borrow::Cow; 1585 /// 1586 /// let unboxed = Cow::Borrowed("hello"); 1587 /// let boxed: Box<str> = Box::from(unboxed); 1588 /// println!("{boxed}"); 1589 /// ``` 1590 /// 1591 /// ```rust 1592 /// # use std::borrow::Cow; 1593 /// let unboxed = Cow::Owned("hello".to_string()); 1594 /// let boxed: Box<str> = Box::from(unboxed); 1595 /// println!("{boxed}"); 1596 /// ``` 1597 #[inline] 1598 fn from(cow: Cow<'_, str>) -> Box<str> { 1599 match cow { 1600 Cow::Borrowed(s) => Box::from(s), 1601 Cow::Owned(s) => Box::from(s), 1602 } 1603 } 1604 } 1605 1606 #[stable(feature = "boxed_str_conv", since = "1.19.0")] 1607 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { 1608 /// Converts a `Box<str>` into a `Box<[u8]>` 1609 /// 1610 /// This conversion does not allocate on the heap and happens in place. 1611 /// 1612 /// # Examples 1613 /// ```rust 1614 /// // create a Box<str> which will be used to create a Box<[u8]> 1615 /// let boxed: Box<str> = Box::from("hello"); 1616 /// let boxed_str: Box<[u8]> = Box::from(boxed); 1617 /// 1618 /// // create a &[u8] which will be used to create a Box<[u8]> 1619 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1620 /// let boxed_slice = Box::from(slice); 1621 /// 1622 /// assert_eq!(boxed_slice, boxed_str); 1623 /// ``` 1624 #[inline] 1625 fn from(s: Box<str, A>) -> Self { 1626 let (raw, alloc) = Box::into_raw_with_allocator(s); 1627 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } 1628 } 1629 } 1630 1631 #[cfg(not(no_global_oom_handling))] 1632 #[stable(feature = "box_from_array", since = "1.45.0")] 1633 impl<T, const N: usize> From<[T; N]> for Box<[T]> { 1634 /// Converts a `[T; N]` into a `Box<[T]>` 1635 /// 1636 /// This conversion moves the array to newly heap-allocated memory. 1637 /// 1638 /// # Examples 1639 /// 1640 /// ```rust 1641 /// let boxed: Box<[u8]> = Box::from([4, 2]); 1642 /// println!("{boxed:?}"); 1643 /// ``` 1644 fn from(array: [T; N]) -> Box<[T]> { 1645 Box::new(array) 1646 } 1647 } 1648 1649 /// Casts a boxed slice to a boxed array. 1650 /// 1651 /// # Safety 1652 /// 1653 /// `boxed_slice.len()` must be exactly `N`. 1654 unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( 1655 boxed_slice: Box<[T], A>, 1656 ) -> Box<[T; N], A> { 1657 debug_assert_eq!(boxed_slice.len(), N); 1658 1659 let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); 1660 // SAFETY: Pointer and allocator came from an existing box, 1661 // and our safety condition requires that the length is exactly `N` 1662 unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } 1663 } 1664 1665 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] 1666 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { 1667 type Error = Box<[T]>; 1668 1669 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. 1670 /// 1671 /// The conversion occurs in-place and does not require a 1672 /// new memory allocation. 1673 /// 1674 /// # Errors 1675 /// 1676 /// Returns the old `Box<[T]>` in the `Err` variant if 1677 /// `boxed_slice.len()` does not equal `N`. 1678 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { 1679 if boxed_slice.len() == N { 1680 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1681 } else { 1682 Err(boxed_slice) 1683 } 1684 } 1685 } 1686 1687 #[cfg(not(no_global_oom_handling))] 1688 #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] 1689 impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { 1690 type Error = Vec<T>; 1691 1692 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. 1693 /// 1694 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, 1695 /// but will require a reallocation otherwise. 1696 /// 1697 /// # Errors 1698 /// 1699 /// Returns the original `Vec<T>` in the `Err` variant if 1700 /// `boxed_slice.len()` does not equal `N`. 1701 /// 1702 /// # Examples 1703 /// 1704 /// This can be used with [`vec!`] to create an array on the heap: 1705 /// 1706 /// ``` 1707 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); 1708 /// assert_eq!(state.len(), 100); 1709 /// ``` 1710 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { 1711 if vec.len() == N { 1712 let boxed_slice = vec.into_boxed_slice(); 1713 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1714 } else { 1715 Err(vec) 1716 } 1717 } 1718 } 1719 1720 impl<A: Allocator> Box<dyn Any, A> { 1721 /// Attempt to downcast the box to a concrete type. 1722 /// 1723 /// # Examples 1724 /// 1725 /// ``` 1726 /// use std::any::Any; 1727 /// 1728 /// fn print_if_string(value: Box<dyn Any>) { 1729 /// if let Ok(string) = value.downcast::<String>() { 1730 /// println!("String ({}): {}", string.len(), string); 1731 /// } 1732 /// } 1733 /// 1734 /// let my_string = "Hello World".to_string(); 1735 /// print_if_string(Box::new(my_string)); 1736 /// print_if_string(Box::new(0i8)); 1737 /// ``` 1738 #[inline] 1739 #[stable(feature = "rust1", since = "1.0.0")] 1740 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1741 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1742 } 1743 1744 /// Downcasts the box to a concrete type. 1745 /// 1746 /// For a safe alternative see [`downcast`]. 1747 /// 1748 /// # Examples 1749 /// 1750 /// ``` 1751 /// #![feature(downcast_unchecked)] 1752 /// 1753 /// use std::any::Any; 1754 /// 1755 /// let x: Box<dyn Any> = Box::new(1_usize); 1756 /// 1757 /// unsafe { 1758 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1759 /// } 1760 /// ``` 1761 /// 1762 /// # Safety 1763 /// 1764 /// The contained value must be of type `T`. Calling this method 1765 /// with the incorrect type is *undefined behavior*. 1766 /// 1767 /// [`downcast`]: Self::downcast 1768 #[inline] 1769 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1770 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1771 debug_assert!(self.is::<T>()); 1772 unsafe { 1773 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); 1774 Box::from_raw_in(raw as *mut T, alloc) 1775 } 1776 } 1777 } 1778 1779 impl<A: Allocator> Box<dyn Any + Send, A> { 1780 /// Attempt to downcast the box to a concrete type. 1781 /// 1782 /// # Examples 1783 /// 1784 /// ``` 1785 /// use std::any::Any; 1786 /// 1787 /// fn print_if_string(value: Box<dyn Any + Send>) { 1788 /// if let Ok(string) = value.downcast::<String>() { 1789 /// println!("String ({}): {}", string.len(), string); 1790 /// } 1791 /// } 1792 /// 1793 /// let my_string = "Hello World".to_string(); 1794 /// print_if_string(Box::new(my_string)); 1795 /// print_if_string(Box::new(0i8)); 1796 /// ``` 1797 #[inline] 1798 #[stable(feature = "rust1", since = "1.0.0")] 1799 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1800 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1801 } 1802 1803 /// Downcasts the box to a concrete type. 1804 /// 1805 /// For a safe alternative see [`downcast`]. 1806 /// 1807 /// # Examples 1808 /// 1809 /// ``` 1810 /// #![feature(downcast_unchecked)] 1811 /// 1812 /// use std::any::Any; 1813 /// 1814 /// let x: Box<dyn Any + Send> = Box::new(1_usize); 1815 /// 1816 /// unsafe { 1817 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1818 /// } 1819 /// ``` 1820 /// 1821 /// # Safety 1822 /// 1823 /// The contained value must be of type `T`. Calling this method 1824 /// with the incorrect type is *undefined behavior*. 1825 /// 1826 /// [`downcast`]: Self::downcast 1827 #[inline] 1828 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1829 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1830 debug_assert!(self.is::<T>()); 1831 unsafe { 1832 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); 1833 Box::from_raw_in(raw as *mut T, alloc) 1834 } 1835 } 1836 } 1837 1838 impl<A: Allocator> Box<dyn Any + Send + Sync, A> { 1839 /// Attempt to downcast the box to a concrete type. 1840 /// 1841 /// # Examples 1842 /// 1843 /// ``` 1844 /// use std::any::Any; 1845 /// 1846 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { 1847 /// if let Ok(string) = value.downcast::<String>() { 1848 /// println!("String ({}): {}", string.len(), string); 1849 /// } 1850 /// } 1851 /// 1852 /// let my_string = "Hello World".to_string(); 1853 /// print_if_string(Box::new(my_string)); 1854 /// print_if_string(Box::new(0i8)); 1855 /// ``` 1856 #[inline] 1857 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] 1858 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1859 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1860 } 1861 1862 /// Downcasts the box to a concrete type. 1863 /// 1864 /// For a safe alternative see [`downcast`]. 1865 /// 1866 /// # Examples 1867 /// 1868 /// ``` 1869 /// #![feature(downcast_unchecked)] 1870 /// 1871 /// use std::any::Any; 1872 /// 1873 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); 1874 /// 1875 /// unsafe { 1876 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1877 /// } 1878 /// ``` 1879 /// 1880 /// # Safety 1881 /// 1882 /// The contained value must be of type `T`. Calling this method 1883 /// with the incorrect type is *undefined behavior*. 1884 /// 1885 /// [`downcast`]: Self::downcast 1886 #[inline] 1887 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1888 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1889 debug_assert!(self.is::<T>()); 1890 unsafe { 1891 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = 1892 Box::into_raw_with_allocator(self); 1893 Box::from_raw_in(raw as *mut T, alloc) 1894 } 1895 } 1896 } 1897 1898 #[stable(feature = "rust1", since = "1.0.0")] 1899 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { 1900 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1901 fmt::Display::fmt(&**self, f) 1902 } 1903 } 1904 1905 #[stable(feature = "rust1", since = "1.0.0")] 1906 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { 1907 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1908 fmt::Debug::fmt(&**self, f) 1909 } 1910 } 1911 1912 #[stable(feature = "rust1", since = "1.0.0")] 1913 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { 1914 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1915 // It's not possible to extract the inner Uniq directly from the Box, 1916 // instead we cast it to a *const which aliases the Unique 1917 let ptr: *const T = &**self; 1918 fmt::Pointer::fmt(&ptr, f) 1919 } 1920 } 1921 1922 #[stable(feature = "rust1", since = "1.0.0")] 1923 impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { 1924 type Target = T; 1925 1926 fn deref(&self) -> &T { 1927 &**self 1928 } 1929 } 1930 1931 #[stable(feature = "rust1", since = "1.0.0")] 1932 impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { 1933 fn deref_mut(&mut self) -> &mut T { 1934 &mut **self 1935 } 1936 } 1937 1938 #[unstable(feature = "receiver_trait", issue = "none")] 1939 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} 1940 1941 #[stable(feature = "rust1", since = "1.0.0")] 1942 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { 1943 type Item = I::Item; 1944 fn next(&mut self) -> Option<I::Item> { 1945 (**self).next() 1946 } 1947 fn size_hint(&self) -> (usize, Option<usize>) { 1948 (**self).size_hint() 1949 } 1950 fn nth(&mut self, n: usize) -> Option<I::Item> { 1951 (**self).nth(n) 1952 } 1953 fn last(self) -> Option<I::Item> { 1954 BoxIter::last(self) 1955 } 1956 } 1957 1958 trait BoxIter { 1959 type Item; 1960 fn last(self) -> Option<Self::Item>; 1961 } 1962 1963 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { 1964 type Item = I::Item; 1965 default fn last(self) -> Option<I::Item> { 1966 #[inline] 1967 fn some<T>(_: Option<T>, x: T) -> Option<T> { 1968 Some(x) 1969 } 1970 1971 self.fold(None, some) 1972 } 1973 } 1974 1975 /// Specialization for sized `I`s that uses `I`s implementation of `last()` 1976 /// instead of the default. 1977 #[stable(feature = "rust1", since = "1.0.0")] 1978 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { 1979 fn last(self) -> Option<I::Item> { 1980 (*self).last() 1981 } 1982 } 1983 1984 #[stable(feature = "rust1", since = "1.0.0")] 1985 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { 1986 fn next_back(&mut self) -> Option<I::Item> { 1987 (**self).next_back() 1988 } 1989 fn nth_back(&mut self, n: usize) -> Option<I::Item> { 1990 (**self).nth_back(n) 1991 } 1992 } 1993 #[stable(feature = "rust1", since = "1.0.0")] 1994 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { 1995 fn len(&self) -> usize { 1996 (**self).len() 1997 } 1998 fn is_empty(&self) -> bool { 1999 (**self).is_empty() 2000 } 2001 } 2002 2003 #[stable(feature = "fused", since = "1.26.0")] 2004 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} 2005 2006 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2007 impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { 2008 type Output = <F as FnOnce<Args>>::Output; 2009 2010 extern "rust-call" fn call_once(self, args: Args) -> Self::Output { 2011 <F as FnOnce<Args>>::call_once(*self, args) 2012 } 2013 } 2014 2015 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2016 impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { 2017 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { 2018 <F as FnMut<Args>>::call_mut(self, args) 2019 } 2020 } 2021 2022 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2023 impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { 2024 extern "rust-call" fn call(&self, args: Args) -> Self::Output { 2025 <F as Fn<Args>>::call(self, args) 2026 } 2027 } 2028 2029 #[unstable(feature = "coerce_unsized", issue = "18598")] 2030 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} 2031 2032 #[unstable(feature = "dispatch_from_dyn", issue = "none")] 2033 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} 2034 2035 #[cfg(not(no_global_oom_handling))] 2036 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] 2037 impl<I> FromIterator<I> for Box<[I]> { 2038 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { 2039 iter.into_iter().collect::<Vec<_>>().into_boxed_slice() 2040 } 2041 } 2042 2043 #[cfg(not(no_global_oom_handling))] 2044 #[stable(feature = "box_slice_clone", since = "1.3.0")] 2045 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { 2046 fn clone(&self) -> Self { 2047 let alloc = Box::allocator(self).clone(); 2048 self.to_vec_in(alloc).into_boxed_slice() 2049 } 2050 2051 fn clone_from(&mut self, other: &Self) { 2052 if self.len() == other.len() { 2053 self.clone_from_slice(&other); 2054 } else { 2055 *self = other.clone(); 2056 } 2057 } 2058 } 2059 2060 #[stable(feature = "box_borrow", since = "1.1.0")] 2061 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { 2062 fn borrow(&self) -> &T { 2063 &**self 2064 } 2065 } 2066 2067 #[stable(feature = "box_borrow", since = "1.1.0")] 2068 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { 2069 fn borrow_mut(&mut self) -> &mut T { 2070 &mut **self 2071 } 2072 } 2073 2074 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2075 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { 2076 fn as_ref(&self) -> &T { 2077 &**self 2078 } 2079 } 2080 2081 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2082 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { 2083 fn as_mut(&mut self) -> &mut T { 2084 &mut **self 2085 } 2086 } 2087 2088 /* Nota bene 2089 * 2090 * We could have chosen not to add this impl, and instead have written a 2091 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, 2092 * because Box<T> implements Unpin even when T does not, as a result of 2093 * this impl. 2094 * 2095 * We chose this API instead of the alternative for a few reasons: 2096 * - Logically, it is helpful to understand pinning in regard to the 2097 * memory region being pointed to. For this reason none of the 2098 * standard library pointer types support projecting through a pin 2099 * (Box<T> is the only pointer type in std for which this would be 2100 * safe.) 2101 * - It is in practice very useful to have Box<T> be unconditionally 2102 * Unpin because of trait objects, for which the structural auto 2103 * trait functionality does not apply (e.g., Box<dyn Foo> would 2104 * otherwise not be Unpin). 2105 * 2106 * Another type with the same semantics as Box but only a conditional 2107 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and 2108 * could have a method to project a Pin<T> from it. 2109 */ 2110 #[stable(feature = "pin", since = "1.33.0")] 2111 impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} 2112 2113 #[unstable(feature = "generator_trait", issue = "43122")] 2114 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> 2115 where 2116 A: 'static, 2117 { 2118 type Yield = G::Yield; 2119 type Return = G::Return; 2120 2121 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2122 G::resume(Pin::new(&mut *self), arg) 2123 } 2124 } 2125 2126 #[unstable(feature = "generator_trait", issue = "43122")] 2127 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> 2128 where 2129 A: 'static, 2130 { 2131 type Yield = G::Yield; 2132 type Return = G::Return; 2133 2134 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2135 G::resume((*self).as_mut(), arg) 2136 } 2137 } 2138 2139 #[stable(feature = "futures_api", since = "1.36.0")] 2140 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> 2141 where 2142 A: 'static, 2143 { 2144 type Output = F::Output; 2145 2146 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { 2147 F::poll(Pin::new(&mut *self), cx) 2148 } 2149 } 2150 2151 #[unstable(feature = "async_iterator", issue = "79024")] 2152 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { 2153 type Item = S::Item; 2154 2155 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 2156 Pin::new(&mut **self).poll_next(cx) 2157 } 2158 2159 fn size_hint(&self) -> (usize, Option<usize>) { 2160 (**self).size_hint() 2161 } 2162 } 2163 2164 impl dyn Error { 2165 #[inline] 2166 #[stable(feature = "error_downcast", since = "1.3.0")] 2167 #[rustc_allow_incoherent_impl] 2168 /// Attempts to downcast the box to a concrete type. 2169 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { 2170 if self.is::<T>() { 2171 unsafe { 2172 let raw: *mut dyn Error = Box::into_raw(self); 2173 Ok(Box::from_raw(raw as *mut T)) 2174 } 2175 } else { 2176 Err(self) 2177 } 2178 } 2179 } 2180 2181 impl dyn Error + Send { 2182 #[inline] 2183 #[stable(feature = "error_downcast", since = "1.3.0")] 2184 #[rustc_allow_incoherent_impl] 2185 /// Attempts to downcast the box to a concrete type. 2186 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { 2187 let err: Box<dyn Error> = self; 2188 <dyn Error>::downcast(err).map_err(|s| unsafe { 2189 // Reapply the `Send` marker. 2190 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send)) 2191 }) 2192 } 2193 } 2194 2195 impl dyn Error + Send + Sync { 2196 #[inline] 2197 #[stable(feature = "error_downcast", since = "1.3.0")] 2198 #[rustc_allow_incoherent_impl] 2199 /// Attempts to downcast the box to a concrete type. 2200 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { 2201 let err: Box<dyn Error> = self; 2202 <dyn Error>::downcast(err).map_err(|s| unsafe { 2203 // Reapply the `Send + Sync` marker. 2204 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync)) 2205 }) 2206 } 2207 } 2208 2209 #[cfg(not(no_global_oom_handling))] 2210 #[stable(feature = "rust1", since = "1.0.0")] 2211 impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { 2212 /// Converts a type of [`Error`] into a box of dyn [`Error`]. 2213 /// 2214 /// # Examples 2215 /// 2216 /// ``` 2217 /// use std::error::Error; 2218 /// use std::fmt; 2219 /// use std::mem; 2220 /// 2221 /// #[derive(Debug)] 2222 /// struct AnError; 2223 /// 2224 /// impl fmt::Display for AnError { 2225 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2226 /// write!(f, "An error") 2227 /// } 2228 /// } 2229 /// 2230 /// impl Error for AnError {} 2231 /// 2232 /// let an_error = AnError; 2233 /// assert!(0 == mem::size_of_val(&an_error)); 2234 /// let a_boxed_error = Box::<dyn Error>::from(an_error); 2235 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2236 /// ``` 2237 fn from(err: E) -> Box<dyn Error + 'a> { 2238 Box::new(err) 2239 } 2240 } 2241 2242 #[cfg(not(no_global_oom_handling))] 2243 #[stable(feature = "rust1", since = "1.0.0")] 2244 impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { 2245 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of 2246 /// dyn [`Error`] + [`Send`] + [`Sync`]. 2247 /// 2248 /// # Examples 2249 /// 2250 /// ``` 2251 /// use std::error::Error; 2252 /// use std::fmt; 2253 /// use std::mem; 2254 /// 2255 /// #[derive(Debug)] 2256 /// struct AnError; 2257 /// 2258 /// impl fmt::Display for AnError { 2259 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2260 /// write!(f, "An error") 2261 /// } 2262 /// } 2263 /// 2264 /// impl Error for AnError {} 2265 /// 2266 /// unsafe impl Send for AnError {} 2267 /// 2268 /// unsafe impl Sync for AnError {} 2269 /// 2270 /// let an_error = AnError; 2271 /// assert!(0 == mem::size_of_val(&an_error)); 2272 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); 2273 /// assert!( 2274 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2275 /// ``` 2276 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { 2277 Box::new(err) 2278 } 2279 } 2280 2281 #[cfg(not(no_global_oom_handling))] 2282 #[stable(feature = "rust1", since = "1.0.0")] 2283 impl From<String> for Box<dyn Error + Send + Sync> { 2284 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2285 /// 2286 /// # Examples 2287 /// 2288 /// ``` 2289 /// use std::error::Error; 2290 /// use std::mem; 2291 /// 2292 /// let a_string_error = "a string error".to_string(); 2293 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); 2294 /// assert!( 2295 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2296 /// ``` 2297 #[inline] 2298 fn from(err: String) -> Box<dyn Error + Send + Sync> { 2299 struct StringError(String); 2300 2301 impl Error for StringError { 2302 #[allow(deprecated)] 2303 fn description(&self) -> &str { 2304 &self.0 2305 } 2306 } 2307 2308 impl fmt::Display for StringError { 2309 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2310 fmt::Display::fmt(&self.0, f) 2311 } 2312 } 2313 2314 // Purposefully skip printing "StringError(..)" 2315 impl fmt::Debug for StringError { 2316 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2317 fmt::Debug::fmt(&self.0, f) 2318 } 2319 } 2320 2321 Box::new(StringError(err)) 2322 } 2323 } 2324 2325 #[cfg(not(no_global_oom_handling))] 2326 #[stable(feature = "string_box_error", since = "1.6.0")] 2327 impl From<String> for Box<dyn Error> { 2328 /// Converts a [`String`] into a box of dyn [`Error`]. 2329 /// 2330 /// # Examples 2331 /// 2332 /// ``` 2333 /// use std::error::Error; 2334 /// use std::mem; 2335 /// 2336 /// let a_string_error = "a string error".to_string(); 2337 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); 2338 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2339 /// ``` 2340 fn from(str_err: String) -> Box<dyn Error> { 2341 let err1: Box<dyn Error + Send + Sync> = From::from(str_err); 2342 let err2: Box<dyn Error> = err1; 2343 err2 2344 } 2345 } 2346 2347 #[cfg(not(no_global_oom_handling))] 2348 #[stable(feature = "rust1", since = "1.0.0")] 2349 impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { 2350 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2351 /// 2352 /// [`str`]: prim@str 2353 /// 2354 /// # Examples 2355 /// 2356 /// ``` 2357 /// use std::error::Error; 2358 /// use std::mem; 2359 /// 2360 /// let a_str_error = "a str error"; 2361 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); 2362 /// assert!( 2363 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2364 /// ``` 2365 #[inline] 2366 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { 2367 From::from(String::from(err)) 2368 } 2369 } 2370 2371 #[cfg(not(no_global_oom_handling))] 2372 #[stable(feature = "string_box_error", since = "1.6.0")] 2373 impl From<&str> for Box<dyn Error> { 2374 /// Converts a [`str`] into a box of dyn [`Error`]. 2375 /// 2376 /// [`str`]: prim@str 2377 /// 2378 /// # Examples 2379 /// 2380 /// ``` 2381 /// use std::error::Error; 2382 /// use std::mem; 2383 /// 2384 /// let a_str_error = "a str error"; 2385 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); 2386 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2387 /// ``` 2388 fn from(err: &str) -> Box<dyn Error> { 2389 From::from(String::from(err)) 2390 } 2391 } 2392 2393 #[cfg(not(no_global_oom_handling))] 2394 #[stable(feature = "cow_box_error", since = "1.22.0")] 2395 impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { 2396 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2397 /// 2398 /// # Examples 2399 /// 2400 /// ``` 2401 /// use std::error::Error; 2402 /// use std::mem; 2403 /// use std::borrow::Cow; 2404 /// 2405 /// let a_cow_str_error = Cow::from("a str error"); 2406 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); 2407 /// assert!( 2408 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2409 /// ``` 2410 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { 2411 From::from(String::from(err)) 2412 } 2413 } 2414 2415 #[cfg(not(no_global_oom_handling))] 2416 #[stable(feature = "cow_box_error", since = "1.22.0")] 2417 impl<'a> From<Cow<'a, str>> for Box<dyn Error> { 2418 /// Converts a [`Cow`] into a box of dyn [`Error`]. 2419 /// 2420 /// # Examples 2421 /// 2422 /// ``` 2423 /// use std::error::Error; 2424 /// use std::mem; 2425 /// use std::borrow::Cow; 2426 /// 2427 /// let a_cow_str_error = Cow::from("a str error"); 2428 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); 2429 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2430 /// ``` 2431 fn from(err: Cow<'a, str>) -> Box<dyn Error> { 2432 From::from(String::from(err)) 2433 } 2434 } 2435 2436 #[stable(feature = "box_error", since = "1.8.0")] 2437 impl<T: core::error::Error> core::error::Error for Box<T> { 2438 #[allow(deprecated, deprecated_in_future)] 2439 fn description(&self) -> &str { 2440 core::error::Error::description(&**self) 2441 } 2442 2443 #[allow(deprecated)] 2444 fn cause(&self) -> Option<&dyn core::error::Error> { 2445 core::error::Error::cause(&**self) 2446 } 2447 2448 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { 2449 core::error::Error::source(&**self) 2450 } 2451 } 2452