1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! The `Box<T>` type for heap allocation. 4 //! 5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of 6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and 7 //! drop their contents when they go out of scope. Boxes also ensure that they 8 //! never allocate more than `isize::MAX` bytes. 9 //! 10 //! # Examples 11 //! 12 //! Move a value from the stack to the heap by creating a [`Box`]: 13 //! 14 //! ``` 15 //! let val: u8 = 5; 16 //! let boxed: Box<u8> = Box::new(val); 17 //! ``` 18 //! 19 //! Move a value from a [`Box`] back to the stack by [dereferencing]: 20 //! 21 //! ``` 22 //! let boxed: Box<u8> = Box::new(5); 23 //! let val: u8 = *boxed; 24 //! ``` 25 //! 26 //! Creating a recursive data structure: 27 //! 28 //! ``` 29 //! #[derive(Debug)] 30 //! enum List<T> { 31 //! Cons(T, Box<List<T>>), 32 //! Nil, 33 //! } 34 //! 35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); 36 //! println!("{list:?}"); 37 //! ``` 38 //! 39 //! This will print `Cons(1, Cons(2, Nil))`. 40 //! 41 //! Recursive structures must be boxed, because if the definition of `Cons` 42 //! looked like this: 43 //! 44 //! ```compile_fail,E0072 45 //! # enum List<T> { 46 //! Cons(T, List<T>), 47 //! # } 48 //! ``` 49 //! 50 //! It wouldn't work. This is because the size of a `List` depends on how many 51 //! elements are in the list, and so we don't know how much memory to allocate 52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how 53 //! big `Cons` needs to be. 54 //! 55 //! # Memory layout 56 //! 57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for 58 //! its allocation. It is valid to convert both ways between a [`Box`] and a 59 //! raw pointer allocated with the [`Global`] allocator, given that the 60 //! [`Layout`] used with the allocator is correct for the type. More precisely, 61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator 62 //! with `Layout::for_value(&*value)` may be converted into a box using 63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut 64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the 65 //! [`Global`] allocator with [`Layout::for_value(&*value)`]. 66 //! 67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads 68 //! and writes and sufficiently aligned. In particular, casting any aligned 69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a 70 //! pointer pointing into previously allocated memory that since got freed is 71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot 72 //! be used is to use [`ptr::NonNull::dangling`]. 73 //! 74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented 75 //! as a single pointer and is also ABI-compatible with C pointers 76 //! (i.e. the C type `T*`). This means that if you have extern "C" 77 //! Rust functions that will be called from C, you can define those 78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding 79 //! type on the C side. As an example, consider this C header which 80 //! declares functions that create and destroy some kind of `Foo` 81 //! value: 82 //! 83 //! ```c 84 //! /* C header */ 85 //! 86 //! /* Returns ownership to the caller */ 87 //! struct Foo* foo_new(void); 88 //! 89 //! /* Takes ownership from the caller; no-op when invoked with null */ 90 //! void foo_delete(struct Foo*); 91 //! ``` 92 //! 93 //! These two functions might be implemented in Rust as follows. Here, the 94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures 95 //! the ownership constraints. Note also that the nullable argument to 96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` 97 //! cannot be null. 98 //! 99 //! ``` 100 //! #[repr(C)] 101 //! pub struct Foo; 102 //! 103 //! #[no_mangle] 104 //! pub extern "C" fn foo_new() -> Box<Foo> { 105 //! Box::new(Foo) 106 //! } 107 //! 108 //! #[no_mangle] 109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} 110 //! ``` 111 //! 112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer, 113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` 114 //! and expect things to work. `Box<T>` values will always be fully aligned, 115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to 116 //! free the value with the global allocator. In general, the best practice 117 //! is to only use `Box<T>` for pointers that originated from the global 118 //! allocator. 119 //! 120 //! **Important.** At least at present, you should avoid using 121 //! `Box<T>` types for functions that are defined in C but invoked 122 //! from Rust. In those cases, you should directly mirror the C types 123 //! as closely as possible. Using types like `Box<T>` where the C 124 //! definition is just using `T*` can lead to undefined behavior, as 125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. 126 //! 127 //! # Considerations for unsafe code 128 //! 129 //! **Warning: This section is not normative and is subject to change, possibly 130 //! being relaxed in the future! It is a simplified summary of the rules 131 //! currently implemented in the compiler.** 132 //! 133 //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` 134 //! asserts uniqueness over its content. Using raw pointers derived from a box 135 //! after that box has been mutated through, moved or borrowed as `&mut T` 136 //! is not allowed. For more guidance on working with box from unsafe code, see 137 //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. 138 //! 139 //! 140 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 141 //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 142 //! [dereferencing]: core::ops::Deref 143 //! [`Box::<T>::from_raw(value)`]: Box::from_raw 144 //! [`Global`]: crate::alloc::Global 145 //! [`Layout`]: crate::alloc::Layout 146 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value 147 //! [valid]: ptr#safety 148 149 #![stable(feature = "rust1", since = "1.0.0")] 150 151 use core::any::Any; 152 use core::async_iter::AsyncIterator; 153 use core::borrow; 154 use core::cmp::Ordering; 155 use core::error::Error; 156 use core::fmt; 157 use core::future::Future; 158 use core::hash::{Hash, Hasher}; 159 use core::iter::FusedIterator; 160 use core::marker::Tuple; 161 use core::marker::Unsize; 162 use core::mem; 163 use core::ops::{ 164 CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, 165 }; 166 use core::pin::Pin; 167 use core::ptr::{self, Unique}; 168 use core::task::{Context, Poll}; 169 170 #[cfg(not(no_global_oom_handling))] 171 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; 172 use crate::alloc::{AllocError, Allocator, Global, Layout}; 173 #[cfg(not(no_global_oom_handling))] 174 use crate::borrow::Cow; 175 use crate::raw_vec::RawVec; 176 #[cfg(not(no_global_oom_handling))] 177 use crate::str::from_boxed_utf8_unchecked; 178 #[cfg(not(no_global_oom_handling))] 179 use crate::string::String; 180 #[cfg(not(no_global_oom_handling))] 181 use crate::vec::Vec; 182 183 #[cfg(not(no_thin))] 184 #[unstable(feature = "thin_box", issue = "92791")] 185 pub use thin::ThinBox; 186 187 #[cfg(not(no_thin))] 188 mod thin; 189 190 /// A pointer type that uniquely owns a heap allocation of type `T`. 191 /// 192 /// See the [module-level documentation](../../std/boxed/index.html) for more. 193 #[lang = "owned_box"] 194 #[fundamental] 195 #[stable(feature = "rust1", since = "1.0.0")] 196 // The declaration of the `Box` struct must be kept in sync with the 197 // `alloc::alloc::box_free` function or ICEs will happen. See the comment 198 // on `box_free` for more details. 199 pub struct Box< 200 T: ?Sized, 201 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 202 >(Unique<T>, A); 203 204 impl<T> Box<T> { 205 /// Allocates memory on the heap and then places `x` into it. 206 /// 207 /// This doesn't actually allocate if `T` is zero-sized. 208 /// 209 /// # Examples 210 /// 211 /// ``` 212 /// let five = Box::new(5); 213 /// ``` 214 #[cfg(all(not(no_global_oom_handling)))] 215 #[inline(always)] 216 #[stable(feature = "rust1", since = "1.0.0")] 217 #[must_use] 218 #[rustc_diagnostic_item = "box_new"] 219 pub fn new(x: T) -> Self { 220 #[rustc_box] 221 Box::new(x) 222 } 223 224 /// Constructs a new box with uninitialized contents. 225 /// 226 /// # Examples 227 /// 228 /// ``` 229 /// #![feature(new_uninit)] 230 /// 231 /// let mut five = Box::<u32>::new_uninit(); 232 /// 233 /// let five = unsafe { 234 /// // Deferred initialization: 235 /// five.as_mut_ptr().write(5); 236 /// 237 /// five.assume_init() 238 /// }; 239 /// 240 /// assert_eq!(*five, 5) 241 /// ``` 242 #[cfg(not(no_global_oom_handling))] 243 #[unstable(feature = "new_uninit", issue = "63291")] 244 #[must_use] 245 #[inline] 246 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { 247 Self::new_uninit_in(Global) 248 } 249 250 /// Constructs a new `Box` with uninitialized contents, with the memory 251 /// being filled with `0` bytes. 252 /// 253 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 254 /// of this method. 255 /// 256 /// # Examples 257 /// 258 /// ``` 259 /// #![feature(new_uninit)] 260 /// 261 /// let zero = Box::<u32>::new_zeroed(); 262 /// let zero = unsafe { zero.assume_init() }; 263 /// 264 /// assert_eq!(*zero, 0) 265 /// ``` 266 /// 267 /// [zeroed]: mem::MaybeUninit::zeroed 268 #[cfg(not(no_global_oom_handling))] 269 #[inline] 270 #[unstable(feature = "new_uninit", issue = "63291")] 271 #[must_use] 272 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { 273 Self::new_zeroed_in(Global) 274 } 275 276 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 277 /// `x` will be pinned in memory and unable to be moved. 278 /// 279 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` 280 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using 281 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to 282 /// construct a (pinned) `Box` in a different way than with [`Box::new`]. 283 #[cfg(not(no_global_oom_handling))] 284 #[stable(feature = "pin", since = "1.33.0")] 285 #[must_use] 286 #[inline(always)] 287 pub fn pin(x: T) -> Pin<Box<T>> { 288 Box::new(x).into() 289 } 290 291 /// Allocates memory on the heap then places `x` into it, 292 /// returning an error if the allocation fails 293 /// 294 /// This doesn't actually allocate if `T` is zero-sized. 295 /// 296 /// # Examples 297 /// 298 /// ``` 299 /// #![feature(allocator_api)] 300 /// 301 /// let five = Box::try_new(5)?; 302 /// # Ok::<(), std::alloc::AllocError>(()) 303 /// ``` 304 #[unstable(feature = "allocator_api", issue = "32838")] 305 #[inline] 306 pub fn try_new(x: T) -> Result<Self, AllocError> { 307 Self::try_new_in(x, Global) 308 } 309 310 /// Constructs a new box with uninitialized contents on the heap, 311 /// returning an error if the allocation fails 312 /// 313 /// # Examples 314 /// 315 /// ``` 316 /// #![feature(allocator_api, new_uninit)] 317 /// 318 /// let mut five = Box::<u32>::try_new_uninit()?; 319 /// 320 /// let five = unsafe { 321 /// // Deferred initialization: 322 /// five.as_mut_ptr().write(5); 323 /// 324 /// five.assume_init() 325 /// }; 326 /// 327 /// assert_eq!(*five, 5); 328 /// # Ok::<(), std::alloc::AllocError>(()) 329 /// ``` 330 #[unstable(feature = "allocator_api", issue = "32838")] 331 // #[unstable(feature = "new_uninit", issue = "63291")] 332 #[inline] 333 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 334 Box::try_new_uninit_in(Global) 335 } 336 337 /// Constructs a new `Box` with uninitialized contents, with the memory 338 /// being filled with `0` bytes on the heap 339 /// 340 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 341 /// of this method. 342 /// 343 /// # Examples 344 /// 345 /// ``` 346 /// #![feature(allocator_api, new_uninit)] 347 /// 348 /// let zero = Box::<u32>::try_new_zeroed()?; 349 /// let zero = unsafe { zero.assume_init() }; 350 /// 351 /// assert_eq!(*zero, 0); 352 /// # Ok::<(), std::alloc::AllocError>(()) 353 /// ``` 354 /// 355 /// [zeroed]: mem::MaybeUninit::zeroed 356 #[unstable(feature = "allocator_api", issue = "32838")] 357 // #[unstable(feature = "new_uninit", issue = "63291")] 358 #[inline] 359 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 360 Box::try_new_zeroed_in(Global) 361 } 362 } 363 364 impl<T, A: Allocator> Box<T, A> { 365 /// Allocates memory in the given allocator then places `x` into it. 366 /// 367 /// This doesn't actually allocate if `T` is zero-sized. 368 /// 369 /// # Examples 370 /// 371 /// ``` 372 /// #![feature(allocator_api)] 373 /// 374 /// use std::alloc::System; 375 /// 376 /// let five = Box::new_in(5, System); 377 /// ``` 378 #[cfg(not(no_global_oom_handling))] 379 #[unstable(feature = "allocator_api", issue = "32838")] 380 #[must_use] 381 #[inline] 382 pub fn new_in(x: T, alloc: A) -> Self 383 where 384 A: Allocator, 385 { 386 let mut boxed = Self::new_uninit_in(alloc); 387 unsafe { 388 boxed.as_mut_ptr().write(x); 389 boxed.assume_init() 390 } 391 } 392 393 /// Allocates memory in the given allocator then places `x` into it, 394 /// returning an error if the allocation fails 395 /// 396 /// This doesn't actually allocate if `T` is zero-sized. 397 /// 398 /// # Examples 399 /// 400 /// ``` 401 /// #![feature(allocator_api)] 402 /// 403 /// use std::alloc::System; 404 /// 405 /// let five = Box::try_new_in(5, System)?; 406 /// # Ok::<(), std::alloc::AllocError>(()) 407 /// ``` 408 #[unstable(feature = "allocator_api", issue = "32838")] 409 #[inline] 410 pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> 411 where 412 A: Allocator, 413 { 414 let mut boxed = Self::try_new_uninit_in(alloc)?; 415 unsafe { 416 boxed.as_mut_ptr().write(x); 417 Ok(boxed.assume_init()) 418 } 419 } 420 421 /// Constructs a new box with uninitialized contents in the provided allocator. 422 /// 423 /// # Examples 424 /// 425 /// ``` 426 /// #![feature(allocator_api, new_uninit)] 427 /// 428 /// use std::alloc::System; 429 /// 430 /// let mut five = Box::<u32, _>::new_uninit_in(System); 431 /// 432 /// let five = unsafe { 433 /// // Deferred initialization: 434 /// five.as_mut_ptr().write(5); 435 /// 436 /// five.assume_init() 437 /// }; 438 /// 439 /// assert_eq!(*five, 5) 440 /// ``` 441 #[unstable(feature = "allocator_api", issue = "32838")] 442 #[cfg(not(no_global_oom_handling))] 443 #[must_use] 444 // #[unstable(feature = "new_uninit", issue = "63291")] 445 pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 446 where 447 A: Allocator, 448 { 449 let layout = Layout::new::<mem::MaybeUninit<T>>(); 450 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 451 // That would make code size bigger. 452 match Box::try_new_uninit_in(alloc) { 453 Ok(m) => m, 454 Err(_) => handle_alloc_error(layout), 455 } 456 } 457 458 /// Constructs a new box with uninitialized contents in the provided allocator, 459 /// returning an error if the allocation fails 460 /// 461 /// # Examples 462 /// 463 /// ``` 464 /// #![feature(allocator_api, new_uninit)] 465 /// 466 /// use std::alloc::System; 467 /// 468 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; 469 /// 470 /// let five = unsafe { 471 /// // Deferred initialization: 472 /// five.as_mut_ptr().write(5); 473 /// 474 /// five.assume_init() 475 /// }; 476 /// 477 /// assert_eq!(*five, 5); 478 /// # Ok::<(), std::alloc::AllocError>(()) 479 /// ``` 480 #[unstable(feature = "allocator_api", issue = "32838")] 481 // #[unstable(feature = "new_uninit", issue = "63291")] 482 pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 483 where 484 A: Allocator, 485 { 486 let layout = Layout::new::<mem::MaybeUninit<T>>(); 487 let ptr = alloc.allocate(layout)?.cast(); 488 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 489 } 490 491 /// Constructs a new `Box` with uninitialized contents, with the memory 492 /// being filled with `0` bytes in the provided allocator. 493 /// 494 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 495 /// of this method. 496 /// 497 /// # Examples 498 /// 499 /// ``` 500 /// #![feature(allocator_api, new_uninit)] 501 /// 502 /// use std::alloc::System; 503 /// 504 /// let zero = Box::<u32, _>::new_zeroed_in(System); 505 /// let zero = unsafe { zero.assume_init() }; 506 /// 507 /// assert_eq!(*zero, 0) 508 /// ``` 509 /// 510 /// [zeroed]: mem::MaybeUninit::zeroed 511 #[unstable(feature = "allocator_api", issue = "32838")] 512 #[cfg(not(no_global_oom_handling))] 513 // #[unstable(feature = "new_uninit", issue = "63291")] 514 #[must_use] 515 pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 516 where 517 A: Allocator, 518 { 519 let layout = Layout::new::<mem::MaybeUninit<T>>(); 520 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 521 // That would make code size bigger. 522 match Box::try_new_zeroed_in(alloc) { 523 Ok(m) => m, 524 Err(_) => handle_alloc_error(layout), 525 } 526 } 527 528 /// Constructs a new `Box` with uninitialized contents, with the memory 529 /// being filled with `0` bytes in the provided allocator, 530 /// returning an error if the allocation fails, 531 /// 532 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 533 /// of this method. 534 /// 535 /// # Examples 536 /// 537 /// ``` 538 /// #![feature(allocator_api, new_uninit)] 539 /// 540 /// use std::alloc::System; 541 /// 542 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; 543 /// let zero = unsafe { zero.assume_init() }; 544 /// 545 /// assert_eq!(*zero, 0); 546 /// # Ok::<(), std::alloc::AllocError>(()) 547 /// ``` 548 /// 549 /// [zeroed]: mem::MaybeUninit::zeroed 550 #[unstable(feature = "allocator_api", issue = "32838")] 551 // #[unstable(feature = "new_uninit", issue = "63291")] 552 pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 553 where 554 A: Allocator, 555 { 556 let layout = Layout::new::<mem::MaybeUninit<T>>(); 557 let ptr = alloc.allocate_zeroed(layout)?.cast(); 558 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 559 } 560 561 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 562 /// `x` will be pinned in memory and unable to be moved. 563 /// 564 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` 565 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using 566 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to 567 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. 568 #[cfg(not(no_global_oom_handling))] 569 #[unstable(feature = "allocator_api", issue = "32838")] 570 #[must_use] 571 #[inline(always)] 572 pub fn pin_in(x: T, alloc: A) -> Pin<Self> 573 where 574 A: 'static + Allocator, 575 { 576 Self::into_pin(Self::new_in(x, alloc)) 577 } 578 579 /// Converts a `Box<T>` into a `Box<[T]>` 580 /// 581 /// This conversion does not allocate on the heap and happens in place. 582 #[unstable(feature = "box_into_boxed_slice", issue = "71582")] 583 pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { 584 let (raw, alloc) = Box::into_raw_with_allocator(boxed); 585 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } 586 } 587 588 /// Consumes the `Box`, returning the wrapped value. 589 /// 590 /// # Examples 591 /// 592 /// ``` 593 /// #![feature(box_into_inner)] 594 /// 595 /// let c = Box::new(5); 596 /// 597 /// assert_eq!(Box::into_inner(c), 5); 598 /// ``` 599 #[unstable(feature = "box_into_inner", issue = "80437")] 600 #[inline] 601 pub fn into_inner(boxed: Self) -> T { 602 *boxed 603 } 604 } 605 606 impl<T> Box<[T]> { 607 /// Constructs a new boxed slice with uninitialized contents. 608 /// 609 /// # Examples 610 /// 611 /// ``` 612 /// #![feature(new_uninit)] 613 /// 614 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 615 /// 616 /// let values = unsafe { 617 /// // Deferred initialization: 618 /// values[0].as_mut_ptr().write(1); 619 /// values[1].as_mut_ptr().write(2); 620 /// values[2].as_mut_ptr().write(3); 621 /// 622 /// values.assume_init() 623 /// }; 624 /// 625 /// assert_eq!(*values, [1, 2, 3]) 626 /// ``` 627 #[cfg(not(no_global_oom_handling))] 628 #[unstable(feature = "new_uninit", issue = "63291")] 629 #[must_use] 630 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 631 unsafe { RawVec::with_capacity(len).into_box(len) } 632 } 633 634 /// Constructs a new boxed slice with uninitialized contents, with the memory 635 /// being filled with `0` bytes. 636 /// 637 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 638 /// of this method. 639 /// 640 /// # Examples 641 /// 642 /// ``` 643 /// #![feature(new_uninit)] 644 /// 645 /// let values = Box::<[u32]>::new_zeroed_slice(3); 646 /// let values = unsafe { values.assume_init() }; 647 /// 648 /// assert_eq!(*values, [0, 0, 0]) 649 /// ``` 650 /// 651 /// [zeroed]: mem::MaybeUninit::zeroed 652 #[cfg(not(no_global_oom_handling))] 653 #[unstable(feature = "new_uninit", issue = "63291")] 654 #[must_use] 655 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 656 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } 657 } 658 659 /// Constructs a new boxed slice with uninitialized contents. Returns an error if 660 /// the allocation fails 661 /// 662 /// # Examples 663 /// 664 /// ``` 665 /// #![feature(allocator_api, new_uninit)] 666 /// 667 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; 668 /// let values = unsafe { 669 /// // Deferred initialization: 670 /// values[0].as_mut_ptr().write(1); 671 /// values[1].as_mut_ptr().write(2); 672 /// values[2].as_mut_ptr().write(3); 673 /// values.assume_init() 674 /// }; 675 /// 676 /// assert_eq!(*values, [1, 2, 3]); 677 /// # Ok::<(), std::alloc::AllocError>(()) 678 /// ``` 679 #[unstable(feature = "allocator_api", issue = "32838")] 680 #[inline] 681 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 682 unsafe { 683 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 684 Ok(l) => l, 685 Err(_) => return Err(AllocError), 686 }; 687 let ptr = Global.allocate(layout)?; 688 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 689 } 690 } 691 692 /// Constructs a new boxed slice with uninitialized contents, with the memory 693 /// being filled with `0` bytes. Returns an error if the allocation fails 694 /// 695 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 696 /// of this method. 697 /// 698 /// # Examples 699 /// 700 /// ``` 701 /// #![feature(allocator_api, new_uninit)] 702 /// 703 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; 704 /// let values = unsafe { values.assume_init() }; 705 /// 706 /// assert_eq!(*values, [0, 0, 0]); 707 /// # Ok::<(), std::alloc::AllocError>(()) 708 /// ``` 709 /// 710 /// [zeroed]: mem::MaybeUninit::zeroed 711 #[unstable(feature = "allocator_api", issue = "32838")] 712 #[inline] 713 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 714 unsafe { 715 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 716 Ok(l) => l, 717 Err(_) => return Err(AllocError), 718 }; 719 let ptr = Global.allocate_zeroed(layout)?; 720 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 721 } 722 } 723 } 724 725 impl<T, A: Allocator> Box<[T], A> { 726 /// Constructs a new boxed slice with uninitialized contents in the provided allocator. 727 /// 728 /// # Examples 729 /// 730 /// ``` 731 /// #![feature(allocator_api, new_uninit)] 732 /// 733 /// use std::alloc::System; 734 /// 735 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); 736 /// 737 /// let values = unsafe { 738 /// // Deferred initialization: 739 /// values[0].as_mut_ptr().write(1); 740 /// values[1].as_mut_ptr().write(2); 741 /// values[2].as_mut_ptr().write(3); 742 /// 743 /// values.assume_init() 744 /// }; 745 /// 746 /// assert_eq!(*values, [1, 2, 3]) 747 /// ``` 748 #[cfg(not(no_global_oom_handling))] 749 #[unstable(feature = "allocator_api", issue = "32838")] 750 // #[unstable(feature = "new_uninit", issue = "63291")] 751 #[must_use] 752 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 753 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } 754 } 755 756 /// Constructs a new boxed slice with uninitialized contents in the provided allocator, 757 /// with the memory being filled with `0` bytes. 758 /// 759 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 760 /// of this method. 761 /// 762 /// # Examples 763 /// 764 /// ``` 765 /// #![feature(allocator_api, new_uninit)] 766 /// 767 /// use std::alloc::System; 768 /// 769 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); 770 /// let values = unsafe { values.assume_init() }; 771 /// 772 /// assert_eq!(*values, [0, 0, 0]) 773 /// ``` 774 /// 775 /// [zeroed]: mem::MaybeUninit::zeroed 776 #[cfg(not(no_global_oom_handling))] 777 #[unstable(feature = "allocator_api", issue = "32838")] 778 // #[unstable(feature = "new_uninit", issue = "63291")] 779 #[must_use] 780 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 781 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } 782 } 783 } 784 785 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { 786 /// Converts to `Box<T, A>`. 787 /// 788 /// # Safety 789 /// 790 /// As with [`MaybeUninit::assume_init`], 791 /// it is up to the caller to guarantee that the value 792 /// really is in an initialized state. 793 /// Calling this when the content is not yet fully initialized 794 /// causes immediate undefined behavior. 795 /// 796 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 797 /// 798 /// # Examples 799 /// 800 /// ``` 801 /// #![feature(new_uninit)] 802 /// 803 /// let mut five = Box::<u32>::new_uninit(); 804 /// 805 /// let five: Box<u32> = unsafe { 806 /// // Deferred initialization: 807 /// five.as_mut_ptr().write(5); 808 /// 809 /// five.assume_init() 810 /// }; 811 /// 812 /// assert_eq!(*five, 5) 813 /// ``` 814 #[unstable(feature = "new_uninit", issue = "63291")] 815 #[inline] 816 pub unsafe fn assume_init(self) -> Box<T, A> { 817 let (raw, alloc) = Box::into_raw_with_allocator(self); 818 unsafe { Box::from_raw_in(raw as *mut T, alloc) } 819 } 820 821 /// Writes the value and converts to `Box<T, A>`. 822 /// 823 /// This method converts the box similarly to [`Box::assume_init`] but 824 /// writes `value` into it before conversion thus guaranteeing safety. 825 /// In some scenarios use of this method may improve performance because 826 /// the compiler may be able to optimize copying from stack. 827 /// 828 /// # Examples 829 /// 830 /// ``` 831 /// #![feature(new_uninit)] 832 /// 833 /// let big_box = Box::<[usize; 1024]>::new_uninit(); 834 /// 835 /// let mut array = [0; 1024]; 836 /// for (i, place) in array.iter_mut().enumerate() { 837 /// *place = i; 838 /// } 839 /// 840 /// // The optimizer may be able to elide this copy, so previous code writes 841 /// // to heap directly. 842 /// let big_box = Box::write(big_box, array); 843 /// 844 /// for (i, x) in big_box.iter().enumerate() { 845 /// assert_eq!(*x, i); 846 /// } 847 /// ``` 848 #[unstable(feature = "new_uninit", issue = "63291")] 849 #[inline] 850 pub fn write(mut boxed: Self, value: T) -> Box<T, A> { 851 unsafe { 852 (*boxed).write(value); 853 boxed.assume_init() 854 } 855 } 856 } 857 858 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { 859 /// Converts to `Box<[T], A>`. 860 /// 861 /// # Safety 862 /// 863 /// As with [`MaybeUninit::assume_init`], 864 /// it is up to the caller to guarantee that the values 865 /// really are in an initialized state. 866 /// Calling this when the content is not yet fully initialized 867 /// causes immediate undefined behavior. 868 /// 869 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 870 /// 871 /// # Examples 872 /// 873 /// ``` 874 /// #![feature(new_uninit)] 875 /// 876 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 877 /// 878 /// let values = unsafe { 879 /// // Deferred initialization: 880 /// values[0].as_mut_ptr().write(1); 881 /// values[1].as_mut_ptr().write(2); 882 /// values[2].as_mut_ptr().write(3); 883 /// 884 /// values.assume_init() 885 /// }; 886 /// 887 /// assert_eq!(*values, [1, 2, 3]) 888 /// ``` 889 #[unstable(feature = "new_uninit", issue = "63291")] 890 #[inline] 891 pub unsafe fn assume_init(self) -> Box<[T], A> { 892 let (raw, alloc) = Box::into_raw_with_allocator(self); 893 unsafe { Box::from_raw_in(raw as *mut [T], alloc) } 894 } 895 } 896 897 impl<T: ?Sized> Box<T> { 898 /// Constructs a box from a raw pointer. 899 /// 900 /// After calling this function, the raw pointer is owned by the 901 /// resulting `Box`. Specifically, the `Box` destructor will call 902 /// the destructor of `T` and free the allocated memory. For this 903 /// to be safe, the memory must have been allocated in accordance 904 /// with the [memory layout] used by `Box` . 905 /// 906 /// # Safety 907 /// 908 /// This function is unsafe because improper use may lead to 909 /// memory problems. For example, a double-free may occur if the 910 /// function is called twice on the same raw pointer. 911 /// 912 /// The safety conditions are described in the [memory layout] section. 913 /// 914 /// # Examples 915 /// 916 /// Recreate a `Box` which was previously converted to a raw pointer 917 /// using [`Box::into_raw`]: 918 /// ``` 919 /// let x = Box::new(5); 920 /// let ptr = Box::into_raw(x); 921 /// let x = unsafe { Box::from_raw(ptr) }; 922 /// ``` 923 /// Manually create a `Box` from scratch by using the global allocator: 924 /// ``` 925 /// use std::alloc::{alloc, Layout}; 926 /// 927 /// unsafe { 928 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; 929 /// // In general .write is required to avoid attempting to destruct 930 /// // the (uninitialized) previous contents of `ptr`, though for this 931 /// // simple example `*ptr = 5` would have worked as well. 932 /// ptr.write(5); 933 /// let x = Box::from_raw(ptr); 934 /// } 935 /// ``` 936 /// 937 /// [memory layout]: self#memory-layout 938 /// [`Layout`]: crate::Layout 939 #[stable(feature = "box_raw", since = "1.4.0")] 940 #[inline] 941 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] 942 pub unsafe fn from_raw(raw: *mut T) -> Self { 943 unsafe { Self::from_raw_in(raw, Global) } 944 } 945 } 946 947 impl<T: ?Sized, A: Allocator> Box<T, A> { 948 /// Constructs a box from a raw pointer in the given allocator. 949 /// 950 /// After calling this function, the raw pointer is owned by the 951 /// resulting `Box`. Specifically, the `Box` destructor will call 952 /// the destructor of `T` and free the allocated memory. For this 953 /// to be safe, the memory must have been allocated in accordance 954 /// with the [memory layout] used by `Box` . 955 /// 956 /// # Safety 957 /// 958 /// This function is unsafe because improper use may lead to 959 /// memory problems. For example, a double-free may occur if the 960 /// function is called twice on the same raw pointer. 961 /// 962 /// 963 /// # Examples 964 /// 965 /// Recreate a `Box` which was previously converted to a raw pointer 966 /// using [`Box::into_raw_with_allocator`]: 967 /// ``` 968 /// #![feature(allocator_api)] 969 /// 970 /// use std::alloc::System; 971 /// 972 /// let x = Box::new_in(5, System); 973 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 974 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 975 /// ``` 976 /// Manually create a `Box` from scratch by using the system allocator: 977 /// ``` 978 /// #![feature(allocator_api, slice_ptr_get)] 979 /// 980 /// use std::alloc::{Allocator, Layout, System}; 981 /// 982 /// unsafe { 983 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; 984 /// // In general .write is required to avoid attempting to destruct 985 /// // the (uninitialized) previous contents of `ptr`, though for this 986 /// // simple example `*ptr = 5` would have worked as well. 987 /// ptr.write(5); 988 /// let x = Box::from_raw_in(ptr, System); 989 /// } 990 /// # Ok::<(), std::alloc::AllocError>(()) 991 /// ``` 992 /// 993 /// [memory layout]: self#memory-layout 994 /// [`Layout`]: crate::Layout 995 #[unstable(feature = "allocator_api", issue = "32838")] 996 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 997 #[inline] 998 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { 999 Box(unsafe { Unique::new_unchecked(raw) }, alloc) 1000 } 1001 1002 /// Consumes the `Box`, returning a wrapped raw pointer. 1003 /// 1004 /// The pointer will be properly aligned and non-null. 1005 /// 1006 /// After calling this function, the caller is responsible for the 1007 /// memory previously managed by the `Box`. In particular, the 1008 /// caller should properly destroy `T` and release the memory, taking 1009 /// into account the [memory layout] used by `Box`. The easiest way to 1010 /// do this is to convert the raw pointer back into a `Box` with the 1011 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform 1012 /// the cleanup. 1013 /// 1014 /// Note: this is an associated function, which means that you have 1015 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This 1016 /// is so that there is no conflict with a method on the inner type. 1017 /// 1018 /// # Examples 1019 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] 1020 /// for automatic cleanup: 1021 /// ``` 1022 /// let x = Box::new(String::from("Hello")); 1023 /// let ptr = Box::into_raw(x); 1024 /// let x = unsafe { Box::from_raw(ptr) }; 1025 /// ``` 1026 /// Manual cleanup by explicitly running the destructor and deallocating 1027 /// the memory: 1028 /// ``` 1029 /// use std::alloc::{dealloc, Layout}; 1030 /// use std::ptr; 1031 /// 1032 /// let x = Box::new(String::from("Hello")); 1033 /// let p = Box::into_raw(x); 1034 /// unsafe { 1035 /// ptr::drop_in_place(p); 1036 /// dealloc(p as *mut u8, Layout::new::<String>()); 1037 /// } 1038 /// ``` 1039 /// 1040 /// [memory layout]: self#memory-layout 1041 #[stable(feature = "box_raw", since = "1.4.0")] 1042 #[inline] 1043 pub fn into_raw(b: Self) -> *mut T { 1044 Self::into_raw_with_allocator(b).0 1045 } 1046 1047 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. 1048 /// 1049 /// The pointer will be properly aligned and non-null. 1050 /// 1051 /// After calling this function, the caller is responsible for the 1052 /// memory previously managed by the `Box`. In particular, the 1053 /// caller should properly destroy `T` and release the memory, taking 1054 /// into account the [memory layout] used by `Box`. The easiest way to 1055 /// do this is to convert the raw pointer back into a `Box` with the 1056 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform 1057 /// the cleanup. 1058 /// 1059 /// Note: this is an associated function, which means that you have 1060 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This 1061 /// is so that there is no conflict with a method on the inner type. 1062 /// 1063 /// # Examples 1064 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] 1065 /// for automatic cleanup: 1066 /// ``` 1067 /// #![feature(allocator_api)] 1068 /// 1069 /// use std::alloc::System; 1070 /// 1071 /// let x = Box::new_in(String::from("Hello"), System); 1072 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1073 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 1074 /// ``` 1075 /// Manual cleanup by explicitly running the destructor and deallocating 1076 /// the memory: 1077 /// ``` 1078 /// #![feature(allocator_api)] 1079 /// 1080 /// use std::alloc::{Allocator, Layout, System}; 1081 /// use std::ptr::{self, NonNull}; 1082 /// 1083 /// let x = Box::new_in(String::from("Hello"), System); 1084 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1085 /// unsafe { 1086 /// ptr::drop_in_place(ptr); 1087 /// let non_null = NonNull::new_unchecked(ptr); 1088 /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); 1089 /// } 1090 /// ``` 1091 /// 1092 /// [memory layout]: self#memory-layout 1093 #[unstable(feature = "allocator_api", issue = "32838")] 1094 #[inline] 1095 pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { 1096 let (leaked, alloc) = Box::into_unique(b); 1097 (leaked.as_ptr(), alloc) 1098 } 1099 1100 #[unstable( 1101 feature = "ptr_internals", 1102 issue = "none", 1103 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" 1104 )] 1105 #[inline] 1106 #[doc(hidden)] 1107 pub fn into_unique(b: Self) -> (Unique<T>, A) { 1108 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a 1109 // raw pointer for the type system. Turning it directly into a raw pointer would not be 1110 // recognized as "releasing" the unique pointer to permit aliased raw accesses, 1111 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer 1112 // behaves correctly. 1113 let alloc = unsafe { ptr::read(&b.1) }; 1114 (Unique::from(Box::leak(b)), alloc) 1115 } 1116 1117 /// Returns a reference to the underlying allocator. 1118 /// 1119 /// Note: this is an associated function, which means that you have 1120 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This 1121 /// is so that there is no conflict with a method on the inner type. 1122 #[unstable(feature = "allocator_api", issue = "32838")] 1123 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1124 #[inline] 1125 pub const fn allocator(b: &Self) -> &A { 1126 &b.1 1127 } 1128 1129 /// Consumes and leaks the `Box`, returning a mutable reference, 1130 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime 1131 /// `'a`. If the type has only static references, or none at all, then this 1132 /// may be chosen to be `'static`. 1133 /// 1134 /// This function is mainly useful for data that lives for the remainder of 1135 /// the program's life. Dropping the returned reference will cause a memory 1136 /// leak. If this is not acceptable, the reference should first be wrapped 1137 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can 1138 /// then be dropped which will properly destroy `T` and release the 1139 /// allocated memory. 1140 /// 1141 /// Note: this is an associated function, which means that you have 1142 /// to call it as `Box::leak(b)` instead of `b.leak()`. This 1143 /// is so that there is no conflict with a method on the inner type. 1144 /// 1145 /// # Examples 1146 /// 1147 /// Simple usage: 1148 /// 1149 /// ``` 1150 /// let x = Box::new(41); 1151 /// let static_ref: &'static mut usize = Box::leak(x); 1152 /// *static_ref += 1; 1153 /// assert_eq!(*static_ref, 42); 1154 /// ``` 1155 /// 1156 /// Unsized data: 1157 /// 1158 /// ``` 1159 /// let x = vec![1, 2, 3].into_boxed_slice(); 1160 /// let static_ref = Box::leak(x); 1161 /// static_ref[0] = 4; 1162 /// assert_eq!(*static_ref, [4, 2, 3]); 1163 /// ``` 1164 #[stable(feature = "box_leak", since = "1.26.0")] 1165 #[inline] 1166 pub fn leak<'a>(b: Self) -> &'a mut T 1167 where 1168 A: 'a, 1169 { 1170 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } 1171 } 1172 1173 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1174 /// `*boxed` will be pinned in memory and unable to be moved. 1175 /// 1176 /// This conversion does not allocate on the heap and happens in place. 1177 /// 1178 /// This is also available via [`From`]. 1179 /// 1180 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> 1181 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1182 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are 1183 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1184 /// 1185 /// # Notes 1186 /// 1187 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, 1188 /// as it'll introduce an ambiguity when calling `Pin::from`. 1189 /// A demonstration of such a poor impl is shown below. 1190 /// 1191 /// ```compile_fail 1192 /// # use std::pin::Pin; 1193 /// struct Foo; // A type defined in this crate. 1194 /// impl From<Box<()>> for Pin<Foo> { 1195 /// fn from(_: Box<()>) -> Pin<Foo> { 1196 /// Pin::new(Foo) 1197 /// } 1198 /// } 1199 /// 1200 /// let foo = Box::new(()); 1201 /// let bar = Pin::from(foo); 1202 /// ``` 1203 #[stable(feature = "box_into_pin", since = "1.63.0")] 1204 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1205 pub const fn into_pin(boxed: Self) -> Pin<Self> 1206 where 1207 A: 'static, 1208 { 1209 // It's not possible to move or replace the insides of a `Pin<Box<T>>` 1210 // when `T: !Unpin`, so it's safe to pin it directly without any 1211 // additional requirements. 1212 unsafe { Pin::new_unchecked(boxed) } 1213 } 1214 } 1215 1216 #[stable(feature = "rust1", since = "1.0.0")] 1217 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { 1218 fn drop(&mut self) { 1219 // FIXME: Do nothing, drop is currently performed by compiler. 1220 } 1221 } 1222 1223 #[cfg(not(no_global_oom_handling))] 1224 #[stable(feature = "rust1", since = "1.0.0")] 1225 impl<T: Default> Default for Box<T> { 1226 /// Creates a `Box<T>`, with the `Default` value for T. 1227 #[inline] 1228 fn default() -> Self { 1229 Box::new(T::default()) 1230 } 1231 } 1232 1233 #[cfg(not(no_global_oom_handling))] 1234 #[stable(feature = "rust1", since = "1.0.0")] 1235 impl<T> Default for Box<[T]> { 1236 #[inline] 1237 fn default() -> Self { 1238 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); 1239 Box(ptr, Global) 1240 } 1241 } 1242 1243 #[cfg(not(no_global_oom_handling))] 1244 #[stable(feature = "default_box_extra", since = "1.17.0")] 1245 impl Default for Box<str> { 1246 #[inline] 1247 fn default() -> Self { 1248 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. 1249 let ptr: Unique<str> = unsafe { 1250 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); 1251 Unique::new_unchecked(bytes.as_ptr() as *mut str) 1252 }; 1253 Box(ptr, Global) 1254 } 1255 } 1256 1257 #[cfg(not(no_global_oom_handling))] 1258 #[stable(feature = "rust1", since = "1.0.0")] 1259 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { 1260 /// Returns a new box with a `clone()` of this box's contents. 1261 /// 1262 /// # Examples 1263 /// 1264 /// ``` 1265 /// let x = Box::new(5); 1266 /// let y = x.clone(); 1267 /// 1268 /// // The value is the same 1269 /// assert_eq!(x, y); 1270 /// 1271 /// // But they are unique objects 1272 /// assert_ne!(&*x as *const i32, &*y as *const i32); 1273 /// ``` 1274 #[inline] 1275 fn clone(&self) -> Self { 1276 // Pre-allocate memory to allow writing the cloned value directly. 1277 let mut boxed = Self::new_uninit_in(self.1.clone()); 1278 unsafe { 1279 (**self).write_clone_into_raw(boxed.as_mut_ptr()); 1280 boxed.assume_init() 1281 } 1282 } 1283 1284 /// Copies `source`'s contents into `self` without creating a new allocation. 1285 /// 1286 /// # Examples 1287 /// 1288 /// ``` 1289 /// let x = Box::new(5); 1290 /// let mut y = Box::new(10); 1291 /// let yp: *const i32 = &*y; 1292 /// 1293 /// y.clone_from(&x); 1294 /// 1295 /// // The value is the same 1296 /// assert_eq!(x, y); 1297 /// 1298 /// // And no allocation occurred 1299 /// assert_eq!(yp, &*y); 1300 /// ``` 1301 #[inline] 1302 fn clone_from(&mut self, source: &Self) { 1303 (**self).clone_from(&(**source)); 1304 } 1305 } 1306 1307 #[cfg(not(no_global_oom_handling))] 1308 #[stable(feature = "box_slice_clone", since = "1.3.0")] 1309 impl Clone for Box<str> { 1310 fn clone(&self) -> Self { 1311 // this makes a copy of the data 1312 let buf: Box<[u8]> = self.as_bytes().into(); 1313 unsafe { from_boxed_utf8_unchecked(buf) } 1314 } 1315 } 1316 1317 #[stable(feature = "rust1", since = "1.0.0")] 1318 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { 1319 #[inline] 1320 fn eq(&self, other: &Self) -> bool { 1321 PartialEq::eq(&**self, &**other) 1322 } 1323 #[inline] 1324 fn ne(&self, other: &Self) -> bool { 1325 PartialEq::ne(&**self, &**other) 1326 } 1327 } 1328 #[stable(feature = "rust1", since = "1.0.0")] 1329 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { 1330 #[inline] 1331 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 1332 PartialOrd::partial_cmp(&**self, &**other) 1333 } 1334 #[inline] 1335 fn lt(&self, other: &Self) -> bool { 1336 PartialOrd::lt(&**self, &**other) 1337 } 1338 #[inline] 1339 fn le(&self, other: &Self) -> bool { 1340 PartialOrd::le(&**self, &**other) 1341 } 1342 #[inline] 1343 fn ge(&self, other: &Self) -> bool { 1344 PartialOrd::ge(&**self, &**other) 1345 } 1346 #[inline] 1347 fn gt(&self, other: &Self) -> bool { 1348 PartialOrd::gt(&**self, &**other) 1349 } 1350 } 1351 #[stable(feature = "rust1", since = "1.0.0")] 1352 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { 1353 #[inline] 1354 fn cmp(&self, other: &Self) -> Ordering { 1355 Ord::cmp(&**self, &**other) 1356 } 1357 } 1358 #[stable(feature = "rust1", since = "1.0.0")] 1359 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} 1360 1361 #[stable(feature = "rust1", since = "1.0.0")] 1362 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { 1363 fn hash<H: Hasher>(&self, state: &mut H) { 1364 (**self).hash(state); 1365 } 1366 } 1367 1368 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] 1369 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { 1370 fn finish(&self) -> u64 { 1371 (**self).finish() 1372 } 1373 fn write(&mut self, bytes: &[u8]) { 1374 (**self).write(bytes) 1375 } 1376 fn write_u8(&mut self, i: u8) { 1377 (**self).write_u8(i) 1378 } 1379 fn write_u16(&mut self, i: u16) { 1380 (**self).write_u16(i) 1381 } 1382 fn write_u32(&mut self, i: u32) { 1383 (**self).write_u32(i) 1384 } 1385 fn write_u64(&mut self, i: u64) { 1386 (**self).write_u64(i) 1387 } 1388 fn write_u128(&mut self, i: u128) { 1389 (**self).write_u128(i) 1390 } 1391 fn write_usize(&mut self, i: usize) { 1392 (**self).write_usize(i) 1393 } 1394 fn write_i8(&mut self, i: i8) { 1395 (**self).write_i8(i) 1396 } 1397 fn write_i16(&mut self, i: i16) { 1398 (**self).write_i16(i) 1399 } 1400 fn write_i32(&mut self, i: i32) { 1401 (**self).write_i32(i) 1402 } 1403 fn write_i64(&mut self, i: i64) { 1404 (**self).write_i64(i) 1405 } 1406 fn write_i128(&mut self, i: i128) { 1407 (**self).write_i128(i) 1408 } 1409 fn write_isize(&mut self, i: isize) { 1410 (**self).write_isize(i) 1411 } 1412 fn write_length_prefix(&mut self, len: usize) { 1413 (**self).write_length_prefix(len) 1414 } 1415 fn write_str(&mut self, s: &str) { 1416 (**self).write_str(s) 1417 } 1418 } 1419 1420 #[cfg(not(no_global_oom_handling))] 1421 #[stable(feature = "from_for_ptrs", since = "1.6.0")] 1422 impl<T> From<T> for Box<T> { 1423 /// Converts a `T` into a `Box<T>` 1424 /// 1425 /// The conversion allocates on the heap and moves `t` 1426 /// from the stack into it. 1427 /// 1428 /// # Examples 1429 /// 1430 /// ```rust 1431 /// let x = 5; 1432 /// let boxed = Box::new(5); 1433 /// 1434 /// assert_eq!(Box::from(x), boxed); 1435 /// ``` 1436 fn from(t: T) -> Self { 1437 Box::new(t) 1438 } 1439 } 1440 1441 #[stable(feature = "pin", since = "1.33.0")] 1442 impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> 1443 where 1444 A: 'static, 1445 { 1446 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1447 /// `*boxed` will be pinned in memory and unable to be moved. 1448 /// 1449 /// This conversion does not allocate on the heap and happens in place. 1450 /// 1451 /// This is also available via [`Box::into_pin`]. 1452 /// 1453 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> 1454 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1455 /// This `From` implementation is useful if you already have a `Box<T>`, or you are 1456 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1457 fn from(boxed: Box<T, A>) -> Self { 1458 Box::into_pin(boxed) 1459 } 1460 } 1461 1462 /// Specialization trait used for `From<&[T]>`. 1463 #[cfg(not(no_global_oom_handling))] 1464 trait BoxFromSlice<T> { 1465 fn from_slice(slice: &[T]) -> Self; 1466 } 1467 1468 #[cfg(not(no_global_oom_handling))] 1469 impl<T: Clone> BoxFromSlice<T> for Box<[T]> { 1470 #[inline] 1471 default fn from_slice(slice: &[T]) -> Self { 1472 slice.to_vec().into_boxed_slice() 1473 } 1474 } 1475 1476 #[cfg(not(no_global_oom_handling))] 1477 impl<T: Copy> BoxFromSlice<T> for Box<[T]> { 1478 #[inline] 1479 fn from_slice(slice: &[T]) -> Self { 1480 let len = slice.len(); 1481 let buf = RawVec::with_capacity(len); 1482 unsafe { 1483 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); 1484 buf.into_box(slice.len()).assume_init() 1485 } 1486 } 1487 } 1488 1489 #[cfg(not(no_global_oom_handling))] 1490 #[stable(feature = "box_from_slice", since = "1.17.0")] 1491 impl<T: Clone> From<&[T]> for Box<[T]> { 1492 /// Converts a `&[T]` into a `Box<[T]>` 1493 /// 1494 /// This conversion allocates on the heap 1495 /// and performs a copy of `slice` and its contents. 1496 /// 1497 /// # Examples 1498 /// ```rust 1499 /// // create a &[u8] which will be used to create a Box<[u8]> 1500 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1501 /// let boxed_slice: Box<[u8]> = Box::from(slice); 1502 /// 1503 /// println!("{boxed_slice:?}"); 1504 /// ``` 1505 #[inline] 1506 fn from(slice: &[T]) -> Box<[T]> { 1507 <Self as BoxFromSlice<T>>::from_slice(slice) 1508 } 1509 } 1510 1511 #[cfg(not(no_global_oom_handling))] 1512 #[stable(feature = "box_from_cow", since = "1.45.0")] 1513 impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> { 1514 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` 1515 /// 1516 /// When `cow` is the `Cow::Borrowed` variant, this 1517 /// conversion allocates on the heap and copies the 1518 /// underlying slice. Otherwise, it will try to reuse the owned 1519 /// `Vec`'s allocation. 1520 #[inline] 1521 fn from(cow: Cow<'_, [T]>) -> Box<[T]> { 1522 match cow { 1523 Cow::Borrowed(slice) => Box::from(slice), 1524 Cow::Owned(slice) => Box::from(slice), 1525 } 1526 } 1527 } 1528 1529 #[cfg(not(no_global_oom_handling))] 1530 #[stable(feature = "box_from_slice", since = "1.17.0")] 1531 impl From<&str> for Box<str> { 1532 /// Converts a `&str` into a `Box<str>` 1533 /// 1534 /// This conversion allocates on the heap 1535 /// and performs a copy of `s`. 1536 /// 1537 /// # Examples 1538 /// 1539 /// ```rust 1540 /// let boxed: Box<str> = Box::from("hello"); 1541 /// println!("{boxed}"); 1542 /// ``` 1543 #[inline] 1544 fn from(s: &str) -> Box<str> { 1545 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } 1546 } 1547 } 1548 1549 #[cfg(not(no_global_oom_handling))] 1550 #[stable(feature = "box_from_cow", since = "1.45.0")] 1551 impl From<Cow<'_, str>> for Box<str> { 1552 /// Converts a `Cow<'_, str>` into a `Box<str>` 1553 /// 1554 /// When `cow` is the `Cow::Borrowed` variant, this 1555 /// conversion allocates on the heap and copies the 1556 /// underlying `str`. Otherwise, it will try to reuse the owned 1557 /// `String`'s allocation. 1558 /// 1559 /// # Examples 1560 /// 1561 /// ```rust 1562 /// use std::borrow::Cow; 1563 /// 1564 /// let unboxed = Cow::Borrowed("hello"); 1565 /// let boxed: Box<str> = Box::from(unboxed); 1566 /// println!("{boxed}"); 1567 /// ``` 1568 /// 1569 /// ```rust 1570 /// # use std::borrow::Cow; 1571 /// let unboxed = Cow::Owned("hello".to_string()); 1572 /// let boxed: Box<str> = Box::from(unboxed); 1573 /// println!("{boxed}"); 1574 /// ``` 1575 #[inline] 1576 fn from(cow: Cow<'_, str>) -> Box<str> { 1577 match cow { 1578 Cow::Borrowed(s) => Box::from(s), 1579 Cow::Owned(s) => Box::from(s), 1580 } 1581 } 1582 } 1583 1584 #[stable(feature = "boxed_str_conv", since = "1.19.0")] 1585 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { 1586 /// Converts a `Box<str>` into a `Box<[u8]>` 1587 /// 1588 /// This conversion does not allocate on the heap and happens in place. 1589 /// 1590 /// # Examples 1591 /// ```rust 1592 /// // create a Box<str> which will be used to create a Box<[u8]> 1593 /// let boxed: Box<str> = Box::from("hello"); 1594 /// let boxed_str: Box<[u8]> = Box::from(boxed); 1595 /// 1596 /// // create a &[u8] which will be used to create a Box<[u8]> 1597 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1598 /// let boxed_slice = Box::from(slice); 1599 /// 1600 /// assert_eq!(boxed_slice, boxed_str); 1601 /// ``` 1602 #[inline] 1603 fn from(s: Box<str, A>) -> Self { 1604 let (raw, alloc) = Box::into_raw_with_allocator(s); 1605 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } 1606 } 1607 } 1608 1609 #[cfg(not(no_global_oom_handling))] 1610 #[stable(feature = "box_from_array", since = "1.45.0")] 1611 impl<T, const N: usize> From<[T; N]> for Box<[T]> { 1612 /// Converts a `[T; N]` into a `Box<[T]>` 1613 /// 1614 /// This conversion moves the array to newly heap-allocated memory. 1615 /// 1616 /// # Examples 1617 /// 1618 /// ```rust 1619 /// let boxed: Box<[u8]> = Box::from([4, 2]); 1620 /// println!("{boxed:?}"); 1621 /// ``` 1622 fn from(array: [T; N]) -> Box<[T]> { 1623 Box::new(array) 1624 } 1625 } 1626 1627 /// Casts a boxed slice to a boxed array. 1628 /// 1629 /// # Safety 1630 /// 1631 /// `boxed_slice.len()` must be exactly `N`. 1632 unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( 1633 boxed_slice: Box<[T], A>, 1634 ) -> Box<[T; N], A> { 1635 debug_assert_eq!(boxed_slice.len(), N); 1636 1637 let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); 1638 // SAFETY: Pointer and allocator came from an existing box, 1639 // and our safety condition requires that the length is exactly `N` 1640 unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } 1641 } 1642 1643 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] 1644 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { 1645 type Error = Box<[T]>; 1646 1647 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. 1648 /// 1649 /// The conversion occurs in-place and does not require a 1650 /// new memory allocation. 1651 /// 1652 /// # Errors 1653 /// 1654 /// Returns the old `Box<[T]>` in the `Err` variant if 1655 /// `boxed_slice.len()` does not equal `N`. 1656 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { 1657 if boxed_slice.len() == N { 1658 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1659 } else { 1660 Err(boxed_slice) 1661 } 1662 } 1663 } 1664 1665 #[cfg(not(no_global_oom_handling))] 1666 #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] 1667 impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { 1668 type Error = Vec<T>; 1669 1670 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. 1671 /// 1672 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, 1673 /// but will require a reallocation otherwise. 1674 /// 1675 /// # Errors 1676 /// 1677 /// Returns the original `Vec<T>` in the `Err` variant if 1678 /// `boxed_slice.len()` does not equal `N`. 1679 /// 1680 /// # Examples 1681 /// 1682 /// This can be used with [`vec!`] to create an array on the heap: 1683 /// 1684 /// ``` 1685 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); 1686 /// assert_eq!(state.len(), 100); 1687 /// ``` 1688 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { 1689 if vec.len() == N { 1690 let boxed_slice = vec.into_boxed_slice(); 1691 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1692 } else { 1693 Err(vec) 1694 } 1695 } 1696 } 1697 1698 impl<A: Allocator> Box<dyn Any, A> { 1699 /// Attempt to downcast the box to a concrete type. 1700 /// 1701 /// # Examples 1702 /// 1703 /// ``` 1704 /// use std::any::Any; 1705 /// 1706 /// fn print_if_string(value: Box<dyn Any>) { 1707 /// if let Ok(string) = value.downcast::<String>() { 1708 /// println!("String ({}): {}", string.len(), string); 1709 /// } 1710 /// } 1711 /// 1712 /// let my_string = "Hello World".to_string(); 1713 /// print_if_string(Box::new(my_string)); 1714 /// print_if_string(Box::new(0i8)); 1715 /// ``` 1716 #[inline] 1717 #[stable(feature = "rust1", since = "1.0.0")] 1718 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1719 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1720 } 1721 1722 /// Downcasts the box to a concrete type. 1723 /// 1724 /// For a safe alternative see [`downcast`]. 1725 /// 1726 /// # Examples 1727 /// 1728 /// ``` 1729 /// #![feature(downcast_unchecked)] 1730 /// 1731 /// use std::any::Any; 1732 /// 1733 /// let x: Box<dyn Any> = Box::new(1_usize); 1734 /// 1735 /// unsafe { 1736 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1737 /// } 1738 /// ``` 1739 /// 1740 /// # Safety 1741 /// 1742 /// The contained value must be of type `T`. Calling this method 1743 /// with the incorrect type is *undefined behavior*. 1744 /// 1745 /// [`downcast`]: Self::downcast 1746 #[inline] 1747 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1748 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1749 debug_assert!(self.is::<T>()); 1750 unsafe { 1751 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); 1752 Box::from_raw_in(raw as *mut T, alloc) 1753 } 1754 } 1755 } 1756 1757 impl<A: Allocator> Box<dyn Any + Send, A> { 1758 /// Attempt to downcast the box to a concrete type. 1759 /// 1760 /// # Examples 1761 /// 1762 /// ``` 1763 /// use std::any::Any; 1764 /// 1765 /// fn print_if_string(value: Box<dyn Any + Send>) { 1766 /// if let Ok(string) = value.downcast::<String>() { 1767 /// println!("String ({}): {}", string.len(), string); 1768 /// } 1769 /// } 1770 /// 1771 /// let my_string = "Hello World".to_string(); 1772 /// print_if_string(Box::new(my_string)); 1773 /// print_if_string(Box::new(0i8)); 1774 /// ``` 1775 #[inline] 1776 #[stable(feature = "rust1", since = "1.0.0")] 1777 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1778 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1779 } 1780 1781 /// Downcasts the box to a concrete type. 1782 /// 1783 /// For a safe alternative see [`downcast`]. 1784 /// 1785 /// # Examples 1786 /// 1787 /// ``` 1788 /// #![feature(downcast_unchecked)] 1789 /// 1790 /// use std::any::Any; 1791 /// 1792 /// let x: Box<dyn Any + Send> = Box::new(1_usize); 1793 /// 1794 /// unsafe { 1795 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1796 /// } 1797 /// ``` 1798 /// 1799 /// # Safety 1800 /// 1801 /// The contained value must be of type `T`. Calling this method 1802 /// with the incorrect type is *undefined behavior*. 1803 /// 1804 /// [`downcast`]: Self::downcast 1805 #[inline] 1806 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1807 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1808 debug_assert!(self.is::<T>()); 1809 unsafe { 1810 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); 1811 Box::from_raw_in(raw as *mut T, alloc) 1812 } 1813 } 1814 } 1815 1816 impl<A: Allocator> Box<dyn Any + Send + Sync, A> { 1817 /// Attempt to downcast the box to a concrete type. 1818 /// 1819 /// # Examples 1820 /// 1821 /// ``` 1822 /// use std::any::Any; 1823 /// 1824 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { 1825 /// if let Ok(string) = value.downcast::<String>() { 1826 /// println!("String ({}): {}", string.len(), string); 1827 /// } 1828 /// } 1829 /// 1830 /// let my_string = "Hello World".to_string(); 1831 /// print_if_string(Box::new(my_string)); 1832 /// print_if_string(Box::new(0i8)); 1833 /// ``` 1834 #[inline] 1835 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] 1836 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1837 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1838 } 1839 1840 /// Downcasts the box to a concrete type. 1841 /// 1842 /// For a safe alternative see [`downcast`]. 1843 /// 1844 /// # Examples 1845 /// 1846 /// ``` 1847 /// #![feature(downcast_unchecked)] 1848 /// 1849 /// use std::any::Any; 1850 /// 1851 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); 1852 /// 1853 /// unsafe { 1854 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1855 /// } 1856 /// ``` 1857 /// 1858 /// # Safety 1859 /// 1860 /// The contained value must be of type `T`. Calling this method 1861 /// with the incorrect type is *undefined behavior*. 1862 /// 1863 /// [`downcast`]: Self::downcast 1864 #[inline] 1865 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1866 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1867 debug_assert!(self.is::<T>()); 1868 unsafe { 1869 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = 1870 Box::into_raw_with_allocator(self); 1871 Box::from_raw_in(raw as *mut T, alloc) 1872 } 1873 } 1874 } 1875 1876 #[stable(feature = "rust1", since = "1.0.0")] 1877 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { 1878 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1879 fmt::Display::fmt(&**self, f) 1880 } 1881 } 1882 1883 #[stable(feature = "rust1", since = "1.0.0")] 1884 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { 1885 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1886 fmt::Debug::fmt(&**self, f) 1887 } 1888 } 1889 1890 #[stable(feature = "rust1", since = "1.0.0")] 1891 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { 1892 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1893 // It's not possible to extract the inner Uniq directly from the Box, 1894 // instead we cast it to a *const which aliases the Unique 1895 let ptr: *const T = &**self; 1896 fmt::Pointer::fmt(&ptr, f) 1897 } 1898 } 1899 1900 #[stable(feature = "rust1", since = "1.0.0")] 1901 impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { 1902 type Target = T; 1903 1904 fn deref(&self) -> &T { 1905 &**self 1906 } 1907 } 1908 1909 #[stable(feature = "rust1", since = "1.0.0")] 1910 impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { 1911 fn deref_mut(&mut self) -> &mut T { 1912 &mut **self 1913 } 1914 } 1915 1916 #[unstable(feature = "receiver_trait", issue = "none")] 1917 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} 1918 1919 #[stable(feature = "rust1", since = "1.0.0")] 1920 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { 1921 type Item = I::Item; 1922 fn next(&mut self) -> Option<I::Item> { 1923 (**self).next() 1924 } 1925 fn size_hint(&self) -> (usize, Option<usize>) { 1926 (**self).size_hint() 1927 } 1928 fn nth(&mut self, n: usize) -> Option<I::Item> { 1929 (**self).nth(n) 1930 } 1931 fn last(self) -> Option<I::Item> { 1932 BoxIter::last(self) 1933 } 1934 } 1935 1936 trait BoxIter { 1937 type Item; 1938 fn last(self) -> Option<Self::Item>; 1939 } 1940 1941 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { 1942 type Item = I::Item; 1943 default fn last(self) -> Option<I::Item> { 1944 #[inline] 1945 fn some<T>(_: Option<T>, x: T) -> Option<T> { 1946 Some(x) 1947 } 1948 1949 self.fold(None, some) 1950 } 1951 } 1952 1953 /// Specialization for sized `I`s that uses `I`s implementation of `last()` 1954 /// instead of the default. 1955 #[stable(feature = "rust1", since = "1.0.0")] 1956 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { 1957 fn last(self) -> Option<I::Item> { 1958 (*self).last() 1959 } 1960 } 1961 1962 #[stable(feature = "rust1", since = "1.0.0")] 1963 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { 1964 fn next_back(&mut self) -> Option<I::Item> { 1965 (**self).next_back() 1966 } 1967 fn nth_back(&mut self, n: usize) -> Option<I::Item> { 1968 (**self).nth_back(n) 1969 } 1970 } 1971 #[stable(feature = "rust1", since = "1.0.0")] 1972 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { 1973 fn len(&self) -> usize { 1974 (**self).len() 1975 } 1976 fn is_empty(&self) -> bool { 1977 (**self).is_empty() 1978 } 1979 } 1980 1981 #[stable(feature = "fused", since = "1.26.0")] 1982 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} 1983 1984 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1985 impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { 1986 type Output = <F as FnOnce<Args>>::Output; 1987 1988 extern "rust-call" fn call_once(self, args: Args) -> Self::Output { 1989 <F as FnOnce<Args>>::call_once(*self, args) 1990 } 1991 } 1992 1993 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1994 impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { 1995 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { 1996 <F as FnMut<Args>>::call_mut(self, args) 1997 } 1998 } 1999 2000 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2001 impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { 2002 extern "rust-call" fn call(&self, args: Args) -> Self::Output { 2003 <F as Fn<Args>>::call(self, args) 2004 } 2005 } 2006 2007 #[unstable(feature = "coerce_unsized", issue = "18598")] 2008 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} 2009 2010 #[unstable(feature = "dispatch_from_dyn", issue = "none")] 2011 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} 2012 2013 #[cfg(not(no_global_oom_handling))] 2014 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] 2015 impl<I> FromIterator<I> for Box<[I]> { 2016 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { 2017 iter.into_iter().collect::<Vec<_>>().into_boxed_slice() 2018 } 2019 } 2020 2021 #[cfg(not(no_global_oom_handling))] 2022 #[stable(feature = "box_slice_clone", since = "1.3.0")] 2023 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { 2024 fn clone(&self) -> Self { 2025 let alloc = Box::allocator(self).clone(); 2026 self.to_vec_in(alloc).into_boxed_slice() 2027 } 2028 2029 fn clone_from(&mut self, other: &Self) { 2030 if self.len() == other.len() { 2031 self.clone_from_slice(&other); 2032 } else { 2033 *self = other.clone(); 2034 } 2035 } 2036 } 2037 2038 #[stable(feature = "box_borrow", since = "1.1.0")] 2039 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { 2040 fn borrow(&self) -> &T { 2041 &**self 2042 } 2043 } 2044 2045 #[stable(feature = "box_borrow", since = "1.1.0")] 2046 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { 2047 fn borrow_mut(&mut self) -> &mut T { 2048 &mut **self 2049 } 2050 } 2051 2052 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2053 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { 2054 fn as_ref(&self) -> &T { 2055 &**self 2056 } 2057 } 2058 2059 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2060 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { 2061 fn as_mut(&mut self) -> &mut T { 2062 &mut **self 2063 } 2064 } 2065 2066 /* Nota bene 2067 * 2068 * We could have chosen not to add this impl, and instead have written a 2069 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, 2070 * because Box<T> implements Unpin even when T does not, as a result of 2071 * this impl. 2072 * 2073 * We chose this API instead of the alternative for a few reasons: 2074 * - Logically, it is helpful to understand pinning in regard to the 2075 * memory region being pointed to. For this reason none of the 2076 * standard library pointer types support projecting through a pin 2077 * (Box<T> is the only pointer type in std for which this would be 2078 * safe.) 2079 * - It is in practice very useful to have Box<T> be unconditionally 2080 * Unpin because of trait objects, for which the structural auto 2081 * trait functionality does not apply (e.g., Box<dyn Foo> would 2082 * otherwise not be Unpin). 2083 * 2084 * Another type with the same semantics as Box but only a conditional 2085 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and 2086 * could have a method to project a Pin<T> from it. 2087 */ 2088 #[stable(feature = "pin", since = "1.33.0")] 2089 impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} 2090 2091 #[unstable(feature = "generator_trait", issue = "43122")] 2092 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> 2093 where 2094 A: 'static, 2095 { 2096 type Yield = G::Yield; 2097 type Return = G::Return; 2098 2099 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2100 G::resume(Pin::new(&mut *self), arg) 2101 } 2102 } 2103 2104 #[unstable(feature = "generator_trait", issue = "43122")] 2105 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> 2106 where 2107 A: 'static, 2108 { 2109 type Yield = G::Yield; 2110 type Return = G::Return; 2111 2112 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2113 G::resume((*self).as_mut(), arg) 2114 } 2115 } 2116 2117 #[stable(feature = "futures_api", since = "1.36.0")] 2118 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> 2119 where 2120 A: 'static, 2121 { 2122 type Output = F::Output; 2123 2124 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { 2125 F::poll(Pin::new(&mut *self), cx) 2126 } 2127 } 2128 2129 #[unstable(feature = "async_iterator", issue = "79024")] 2130 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { 2131 type Item = S::Item; 2132 2133 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 2134 Pin::new(&mut **self).poll_next(cx) 2135 } 2136 2137 fn size_hint(&self) -> (usize, Option<usize>) { 2138 (**self).size_hint() 2139 } 2140 } 2141 2142 impl dyn Error { 2143 #[inline] 2144 #[stable(feature = "error_downcast", since = "1.3.0")] 2145 #[rustc_allow_incoherent_impl] 2146 /// Attempts to downcast the box to a concrete type. 2147 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { 2148 if self.is::<T>() { 2149 unsafe { 2150 let raw: *mut dyn Error = Box::into_raw(self); 2151 Ok(Box::from_raw(raw as *mut T)) 2152 } 2153 } else { 2154 Err(self) 2155 } 2156 } 2157 } 2158 2159 impl dyn Error + Send { 2160 #[inline] 2161 #[stable(feature = "error_downcast", since = "1.3.0")] 2162 #[rustc_allow_incoherent_impl] 2163 /// Attempts to downcast the box to a concrete type. 2164 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { 2165 let err: Box<dyn Error> = self; 2166 <dyn Error>::downcast(err).map_err(|s| unsafe { 2167 // Reapply the `Send` marker. 2168 mem::transmute::<Box<dyn Error>, Box<dyn Error + Send>>(s) 2169 }) 2170 } 2171 } 2172 2173 impl dyn Error + Send + Sync { 2174 #[inline] 2175 #[stable(feature = "error_downcast", since = "1.3.0")] 2176 #[rustc_allow_incoherent_impl] 2177 /// Attempts to downcast the box to a concrete type. 2178 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { 2179 let err: Box<dyn Error> = self; 2180 <dyn Error>::downcast(err).map_err(|s| unsafe { 2181 // Reapply the `Send + Sync` marker. 2182 mem::transmute::<Box<dyn Error>, Box<dyn Error + Send + Sync>>(s) 2183 }) 2184 } 2185 } 2186 2187 #[cfg(not(no_global_oom_handling))] 2188 #[stable(feature = "rust1", since = "1.0.0")] 2189 impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { 2190 /// Converts a type of [`Error`] into a box of dyn [`Error`]. 2191 /// 2192 /// # Examples 2193 /// 2194 /// ``` 2195 /// use std::error::Error; 2196 /// use std::fmt; 2197 /// use std::mem; 2198 /// 2199 /// #[derive(Debug)] 2200 /// struct AnError; 2201 /// 2202 /// impl fmt::Display for AnError { 2203 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2204 /// write!(f, "An error") 2205 /// } 2206 /// } 2207 /// 2208 /// impl Error for AnError {} 2209 /// 2210 /// let an_error = AnError; 2211 /// assert!(0 == mem::size_of_val(&an_error)); 2212 /// let a_boxed_error = Box::<dyn Error>::from(an_error); 2213 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2214 /// ``` 2215 fn from(err: E) -> Box<dyn Error + 'a> { 2216 Box::new(err) 2217 } 2218 } 2219 2220 #[cfg(not(no_global_oom_handling))] 2221 #[stable(feature = "rust1", since = "1.0.0")] 2222 impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { 2223 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of 2224 /// dyn [`Error`] + [`Send`] + [`Sync`]. 2225 /// 2226 /// # Examples 2227 /// 2228 /// ``` 2229 /// use std::error::Error; 2230 /// use std::fmt; 2231 /// use std::mem; 2232 /// 2233 /// #[derive(Debug)] 2234 /// struct AnError; 2235 /// 2236 /// impl fmt::Display for AnError { 2237 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2238 /// write!(f, "An error") 2239 /// } 2240 /// } 2241 /// 2242 /// impl Error for AnError {} 2243 /// 2244 /// unsafe impl Send for AnError {} 2245 /// 2246 /// unsafe impl Sync for AnError {} 2247 /// 2248 /// let an_error = AnError; 2249 /// assert!(0 == mem::size_of_val(&an_error)); 2250 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); 2251 /// assert!( 2252 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2253 /// ``` 2254 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { 2255 Box::new(err) 2256 } 2257 } 2258 2259 #[cfg(not(no_global_oom_handling))] 2260 #[stable(feature = "rust1", since = "1.0.0")] 2261 impl From<String> for Box<dyn Error + Send + Sync> { 2262 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2263 /// 2264 /// # Examples 2265 /// 2266 /// ``` 2267 /// use std::error::Error; 2268 /// use std::mem; 2269 /// 2270 /// let a_string_error = "a string error".to_string(); 2271 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); 2272 /// assert!( 2273 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2274 /// ``` 2275 #[inline] 2276 fn from(err: String) -> Box<dyn Error + Send + Sync> { 2277 struct StringError(String); 2278 2279 impl Error for StringError { 2280 #[allow(deprecated)] 2281 fn description(&self) -> &str { 2282 &self.0 2283 } 2284 } 2285 2286 impl fmt::Display for StringError { 2287 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2288 fmt::Display::fmt(&self.0, f) 2289 } 2290 } 2291 2292 // Purposefully skip printing "StringError(..)" 2293 impl fmt::Debug for StringError { 2294 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2295 fmt::Debug::fmt(&self.0, f) 2296 } 2297 } 2298 2299 Box::new(StringError(err)) 2300 } 2301 } 2302 2303 #[cfg(not(no_global_oom_handling))] 2304 #[stable(feature = "string_box_error", since = "1.6.0")] 2305 impl From<String> for Box<dyn Error> { 2306 /// Converts a [`String`] into a box of dyn [`Error`]. 2307 /// 2308 /// # Examples 2309 /// 2310 /// ``` 2311 /// use std::error::Error; 2312 /// use std::mem; 2313 /// 2314 /// let a_string_error = "a string error".to_string(); 2315 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); 2316 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2317 /// ``` 2318 fn from(str_err: String) -> Box<dyn Error> { 2319 let err1: Box<dyn Error + Send + Sync> = From::from(str_err); 2320 let err2: Box<dyn Error> = err1; 2321 err2 2322 } 2323 } 2324 2325 #[cfg(not(no_global_oom_handling))] 2326 #[stable(feature = "rust1", since = "1.0.0")] 2327 impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { 2328 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2329 /// 2330 /// [`str`]: prim@str 2331 /// 2332 /// # Examples 2333 /// 2334 /// ``` 2335 /// use std::error::Error; 2336 /// use std::mem; 2337 /// 2338 /// let a_str_error = "a str error"; 2339 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); 2340 /// assert!( 2341 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2342 /// ``` 2343 #[inline] 2344 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { 2345 From::from(String::from(err)) 2346 } 2347 } 2348 2349 #[cfg(not(no_global_oom_handling))] 2350 #[stable(feature = "string_box_error", since = "1.6.0")] 2351 impl From<&str> for Box<dyn Error> { 2352 /// Converts a [`str`] into a box of dyn [`Error`]. 2353 /// 2354 /// [`str`]: prim@str 2355 /// 2356 /// # Examples 2357 /// 2358 /// ``` 2359 /// use std::error::Error; 2360 /// use std::mem; 2361 /// 2362 /// let a_str_error = "a str error"; 2363 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); 2364 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2365 /// ``` 2366 fn from(err: &str) -> Box<dyn Error> { 2367 From::from(String::from(err)) 2368 } 2369 } 2370 2371 #[cfg(not(no_global_oom_handling))] 2372 #[stable(feature = "cow_box_error", since = "1.22.0")] 2373 impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { 2374 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2375 /// 2376 /// # Examples 2377 /// 2378 /// ``` 2379 /// use std::error::Error; 2380 /// use std::mem; 2381 /// use std::borrow::Cow; 2382 /// 2383 /// let a_cow_str_error = Cow::from("a str error"); 2384 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); 2385 /// assert!( 2386 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2387 /// ``` 2388 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { 2389 From::from(String::from(err)) 2390 } 2391 } 2392 2393 #[cfg(not(no_global_oom_handling))] 2394 #[stable(feature = "cow_box_error", since = "1.22.0")] 2395 impl<'a> From<Cow<'a, str>> for Box<dyn Error> { 2396 /// Converts a [`Cow`] into a box of dyn [`Error`]. 2397 /// 2398 /// # Examples 2399 /// 2400 /// ``` 2401 /// use std::error::Error; 2402 /// use std::mem; 2403 /// use std::borrow::Cow; 2404 /// 2405 /// let a_cow_str_error = Cow::from("a str error"); 2406 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); 2407 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2408 /// ``` 2409 fn from(err: Cow<'a, str>) -> Box<dyn Error> { 2410 From::from(String::from(err)) 2411 } 2412 } 2413 2414 #[stable(feature = "box_error", since = "1.8.0")] 2415 impl<T: core::error::Error> core::error::Error for Box<T> { 2416 #[allow(deprecated, deprecated_in_future)] 2417 fn description(&self) -> &str { 2418 core::error::Error::description(&**self) 2419 } 2420 2421 #[allow(deprecated)] 2422 fn cause(&self) -> Option<&dyn core::error::Error> { 2423 core::error::Error::cause(&**self) 2424 } 2425 2426 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { 2427 core::error::Error::source(&**self) 2428 } 2429 } 2430