1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! The `Box<T>` type for heap allocation. 4 //! 5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of 6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and 7 //! drop their contents when they go out of scope. Boxes also ensure that they 8 //! never allocate more than `isize::MAX` bytes. 9 //! 10 //! # Examples 11 //! 12 //! Move a value from the stack to the heap by creating a [`Box`]: 13 //! 14 //! ``` 15 //! let val: u8 = 5; 16 //! let boxed: Box<u8> = Box::new(val); 17 //! ``` 18 //! 19 //! Move a value from a [`Box`] back to the stack by [dereferencing]: 20 //! 21 //! ``` 22 //! let boxed: Box<u8> = Box::new(5); 23 //! let val: u8 = *boxed; 24 //! ``` 25 //! 26 //! Creating a recursive data structure: 27 //! 28 //! ``` 29 //! #[derive(Debug)] 30 //! enum List<T> { 31 //! Cons(T, Box<List<T>>), 32 //! Nil, 33 //! } 34 //! 35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); 36 //! println!("{list:?}"); 37 //! ``` 38 //! 39 //! This will print `Cons(1, Cons(2, Nil))`. 40 //! 41 //! Recursive structures must be boxed, because if the definition of `Cons` 42 //! looked like this: 43 //! 44 //! ```compile_fail,E0072 45 //! # enum List<T> { 46 //! Cons(T, List<T>), 47 //! # } 48 //! ``` 49 //! 50 //! It wouldn't work. This is because the size of a `List` depends on how many 51 //! elements are in the list, and so we don't know how much memory to allocate 52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how 53 //! big `Cons` needs to be. 54 //! 55 //! # Memory layout 56 //! 57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for 58 //! its allocation. It is valid to convert both ways between a [`Box`] and a 59 //! raw pointer allocated with the [`Global`] allocator, given that the 60 //! [`Layout`] used with the allocator is correct for the type. More precisely, 61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator 62 //! with `Layout::for_value(&*value)` may be converted into a box using 63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut 64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the 65 //! [`Global`] allocator with [`Layout::for_value(&*value)`]. 66 //! 67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads 68 //! and writes and sufficiently aligned. In particular, casting any aligned 69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a 70 //! pointer pointing into previously allocated memory that since got freed is 71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot 72 //! be used is to use [`ptr::NonNull::dangling`]. 73 //! 74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented 75 //! as a single pointer and is also ABI-compatible with C pointers 76 //! (i.e. the C type `T*`). This means that if you have extern "C" 77 //! Rust functions that will be called from C, you can define those 78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding 79 //! type on the C side. As an example, consider this C header which 80 //! declares functions that create and destroy some kind of `Foo` 81 //! value: 82 //! 83 //! ```c 84 //! /* C header */ 85 //! 86 //! /* Returns ownership to the caller */ 87 //! struct Foo* foo_new(void); 88 //! 89 //! /* Takes ownership from the caller; no-op when invoked with null */ 90 //! void foo_delete(struct Foo*); 91 //! ``` 92 //! 93 //! These two functions might be implemented in Rust as follows. Here, the 94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures 95 //! the ownership constraints. Note also that the nullable argument to 96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` 97 //! cannot be null. 98 //! 99 //! ``` 100 //! #[repr(C)] 101 //! pub struct Foo; 102 //! 103 //! #[no_mangle] 104 //! pub extern "C" fn foo_new() -> Box<Foo> { 105 //! Box::new(Foo) 106 //! } 107 //! 108 //! #[no_mangle] 109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} 110 //! ``` 111 //! 112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer, 113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` 114 //! and expect things to work. `Box<T>` values will always be fully aligned, 115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to 116 //! free the value with the global allocator. In general, the best practice 117 //! is to only use `Box<T>` for pointers that originated from the global 118 //! allocator. 119 //! 120 //! **Important.** At least at present, you should avoid using 121 //! `Box<T>` types for functions that are defined in C but invoked 122 //! from Rust. In those cases, you should directly mirror the C types 123 //! as closely as possible. Using types like `Box<T>` where the C 124 //! definition is just using `T*` can lead to undefined behavior, as 125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. 126 //! 127 //! # Considerations for unsafe code 128 //! 129 //! **Warning: This section is not normative and is subject to change, possibly 130 //! being relaxed in the future! It is a simplified summary of the rules 131 //! currently implemented in the compiler.** 132 //! 133 //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` 134 //! asserts uniqueness over its content. Using raw pointers derived from a box 135 //! after that box has been mutated through, moved or borrowed as `&mut T` 136 //! is not allowed. For more guidance on working with box from unsafe code, see 137 //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. 138 //! 139 //! 140 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 141 //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 142 //! [dereferencing]: core::ops::Deref 143 //! [`Box::<T>::from_raw(value)`]: Box::from_raw 144 //! [`Global`]: crate::alloc::Global 145 //! [`Layout`]: crate::alloc::Layout 146 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value 147 //! [valid]: ptr#safety 148 149 #![stable(feature = "rust1", since = "1.0.0")] 150 151 use core::any::Any; 152 use core::async_iter::AsyncIterator; 153 use core::borrow; 154 use core::cmp::Ordering; 155 use core::convert::{From, TryFrom}; 156 use core::error::Error; 157 use core::fmt; 158 use core::future::Future; 159 use core::hash::{Hash, Hasher}; 160 #[cfg(not(no_global_oom_handling))] 161 use core::iter::FromIterator; 162 use core::iter::{FusedIterator, Iterator}; 163 use core::marker::Tuple; 164 use core::marker::{Destruct, Unpin, Unsize}; 165 use core::mem; 166 use core::ops::{ 167 CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, 168 }; 169 use core::pin::Pin; 170 use core::ptr::{self, Unique}; 171 use core::task::{Context, Poll}; 172 173 #[cfg(not(no_global_oom_handling))] 174 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; 175 use crate::alloc::{AllocError, Allocator, Global, Layout}; 176 #[cfg(not(no_global_oom_handling))] 177 use crate::borrow::Cow; 178 use crate::raw_vec::RawVec; 179 #[cfg(not(no_global_oom_handling))] 180 use crate::str::from_boxed_utf8_unchecked; 181 #[cfg(not(no_global_oom_handling))] 182 use crate::string::String; 183 #[cfg(not(no_global_oom_handling))] 184 use crate::vec::Vec; 185 186 #[cfg(not(no_thin))] 187 #[unstable(feature = "thin_box", issue = "92791")] 188 pub use thin::ThinBox; 189 190 #[cfg(not(no_thin))] 191 mod thin; 192 193 /// A pointer type that uniquely owns a heap allocation of type `T`. 194 /// 195 /// See the [module-level documentation](../../std/boxed/index.html) for more. 196 #[lang = "owned_box"] 197 #[fundamental] 198 #[stable(feature = "rust1", since = "1.0.0")] 199 // The declaration of the `Box` struct must be kept in sync with the 200 // `alloc::alloc::box_free` function or ICEs will happen. See the comment 201 // on `box_free` for more details. 202 pub struct Box< 203 T: ?Sized, 204 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 205 >(Unique<T>, A); 206 207 impl<T> Box<T> { 208 /// Allocates memory on the heap and then places `x` into it. 209 /// 210 /// This doesn't actually allocate if `T` is zero-sized. 211 /// 212 /// # Examples 213 /// 214 /// ``` 215 /// let five = Box::new(5); 216 /// ``` 217 #[cfg(all(not(no_global_oom_handling)))] 218 #[inline(always)] 219 #[stable(feature = "rust1", since = "1.0.0")] 220 #[must_use] 221 pub fn new(x: T) -> Self { 222 #[rustc_box] 223 Box::new(x) 224 } 225 226 /// Constructs a new box with uninitialized contents. 227 /// 228 /// # Examples 229 /// 230 /// ``` 231 /// #![feature(new_uninit)] 232 /// 233 /// let mut five = Box::<u32>::new_uninit(); 234 /// 235 /// let five = unsafe { 236 /// // Deferred initialization: 237 /// five.as_mut_ptr().write(5); 238 /// 239 /// five.assume_init() 240 /// }; 241 /// 242 /// assert_eq!(*five, 5) 243 /// ``` 244 #[cfg(not(no_global_oom_handling))] 245 #[unstable(feature = "new_uninit", issue = "63291")] 246 #[must_use] 247 #[inline] 248 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { 249 Self::new_uninit_in(Global) 250 } 251 252 /// Constructs a new `Box` with uninitialized contents, with the memory 253 /// being filled with `0` bytes. 254 /// 255 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 256 /// of this method. 257 /// 258 /// # Examples 259 /// 260 /// ``` 261 /// #![feature(new_uninit)] 262 /// 263 /// let zero = Box::<u32>::new_zeroed(); 264 /// let zero = unsafe { zero.assume_init() }; 265 /// 266 /// assert_eq!(*zero, 0) 267 /// ``` 268 /// 269 /// [zeroed]: mem::MaybeUninit::zeroed 270 #[cfg(not(no_global_oom_handling))] 271 #[inline] 272 #[unstable(feature = "new_uninit", issue = "63291")] 273 #[must_use] 274 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { 275 Self::new_zeroed_in(Global) 276 } 277 278 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 279 /// `x` will be pinned in memory and unable to be moved. 280 /// 281 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` 282 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using 283 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to 284 /// construct a (pinned) `Box` in a different way than with [`Box::new`]. 285 #[cfg(not(no_global_oom_handling))] 286 #[stable(feature = "pin", since = "1.33.0")] 287 #[must_use] 288 #[inline(always)] 289 pub fn pin(x: T) -> Pin<Box<T>> { 290 (#[rustc_box] 291 Box::new(x)) 292 .into() 293 } 294 295 /// Allocates memory on the heap then places `x` into it, 296 /// returning an error if the allocation fails 297 /// 298 /// This doesn't actually allocate if `T` is zero-sized. 299 /// 300 /// # Examples 301 /// 302 /// ``` 303 /// #![feature(allocator_api)] 304 /// 305 /// let five = Box::try_new(5)?; 306 /// # Ok::<(), std::alloc::AllocError>(()) 307 /// ``` 308 #[unstable(feature = "allocator_api", issue = "32838")] 309 #[inline] 310 pub fn try_new(x: T) -> Result<Self, AllocError> { 311 Self::try_new_in(x, Global) 312 } 313 314 /// Constructs a new box with uninitialized contents on the heap, 315 /// returning an error if the allocation fails 316 /// 317 /// # Examples 318 /// 319 /// ``` 320 /// #![feature(allocator_api, new_uninit)] 321 /// 322 /// let mut five = Box::<u32>::try_new_uninit()?; 323 /// 324 /// let five = unsafe { 325 /// // Deferred initialization: 326 /// five.as_mut_ptr().write(5); 327 /// 328 /// five.assume_init() 329 /// }; 330 /// 331 /// assert_eq!(*five, 5); 332 /// # Ok::<(), std::alloc::AllocError>(()) 333 /// ``` 334 #[unstable(feature = "allocator_api", issue = "32838")] 335 // #[unstable(feature = "new_uninit", issue = "63291")] 336 #[inline] 337 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 338 Box::try_new_uninit_in(Global) 339 } 340 341 /// Constructs a new `Box` with uninitialized contents, with the memory 342 /// being filled with `0` bytes on the heap 343 /// 344 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 345 /// of this method. 346 /// 347 /// # Examples 348 /// 349 /// ``` 350 /// #![feature(allocator_api, new_uninit)] 351 /// 352 /// let zero = Box::<u32>::try_new_zeroed()?; 353 /// let zero = unsafe { zero.assume_init() }; 354 /// 355 /// assert_eq!(*zero, 0); 356 /// # Ok::<(), std::alloc::AllocError>(()) 357 /// ``` 358 /// 359 /// [zeroed]: mem::MaybeUninit::zeroed 360 #[unstable(feature = "allocator_api", issue = "32838")] 361 // #[unstable(feature = "new_uninit", issue = "63291")] 362 #[inline] 363 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 364 Box::try_new_zeroed_in(Global) 365 } 366 } 367 368 impl<T, A: Allocator> Box<T, A> { 369 /// Allocates memory in the given allocator then places `x` into it. 370 /// 371 /// This doesn't actually allocate if `T` is zero-sized. 372 /// 373 /// # Examples 374 /// 375 /// ``` 376 /// #![feature(allocator_api)] 377 /// 378 /// use std::alloc::System; 379 /// 380 /// let five = Box::new_in(5, System); 381 /// ``` 382 #[cfg(not(no_global_oom_handling))] 383 #[unstable(feature = "allocator_api", issue = "32838")] 384 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 385 #[must_use] 386 #[inline] 387 pub const fn new_in(x: T, alloc: A) -> Self 388 where 389 A: ~const Allocator + ~const Destruct, 390 { 391 let mut boxed = Self::new_uninit_in(alloc); 392 unsafe { 393 boxed.as_mut_ptr().write(x); 394 boxed.assume_init() 395 } 396 } 397 398 /// Allocates memory in the given allocator then places `x` into it, 399 /// returning an error if the allocation fails 400 /// 401 /// This doesn't actually allocate if `T` is zero-sized. 402 /// 403 /// # Examples 404 /// 405 /// ``` 406 /// #![feature(allocator_api)] 407 /// 408 /// use std::alloc::System; 409 /// 410 /// let five = Box::try_new_in(5, System)?; 411 /// # Ok::<(), std::alloc::AllocError>(()) 412 /// ``` 413 #[unstable(feature = "allocator_api", issue = "32838")] 414 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 415 #[inline] 416 pub const fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> 417 where 418 T: ~const Destruct, 419 A: ~const Allocator + ~const Destruct, 420 { 421 let mut boxed = Self::try_new_uninit_in(alloc)?; 422 unsafe { 423 boxed.as_mut_ptr().write(x); 424 Ok(boxed.assume_init()) 425 } 426 } 427 428 /// Constructs a new box with uninitialized contents in the provided allocator. 429 /// 430 /// # Examples 431 /// 432 /// ``` 433 /// #![feature(allocator_api, new_uninit)] 434 /// 435 /// use std::alloc::System; 436 /// 437 /// let mut five = Box::<u32, _>::new_uninit_in(System); 438 /// 439 /// let five = unsafe { 440 /// // Deferred initialization: 441 /// five.as_mut_ptr().write(5); 442 /// 443 /// five.assume_init() 444 /// }; 445 /// 446 /// assert_eq!(*five, 5) 447 /// ``` 448 #[unstable(feature = "allocator_api", issue = "32838")] 449 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 450 #[cfg(not(no_global_oom_handling))] 451 #[must_use] 452 // #[unstable(feature = "new_uninit", issue = "63291")] 453 pub const fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 454 where 455 A: ~const Allocator + ~const Destruct, 456 { 457 let layout = Layout::new::<mem::MaybeUninit<T>>(); 458 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 459 // That would make code size bigger. 460 match Box::try_new_uninit_in(alloc) { 461 Ok(m) => m, 462 Err(_) => handle_alloc_error(layout), 463 } 464 } 465 466 /// Constructs a new box with uninitialized contents in the provided allocator, 467 /// returning an error if the allocation fails 468 /// 469 /// # Examples 470 /// 471 /// ``` 472 /// #![feature(allocator_api, new_uninit)] 473 /// 474 /// use std::alloc::System; 475 /// 476 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; 477 /// 478 /// let five = unsafe { 479 /// // Deferred initialization: 480 /// five.as_mut_ptr().write(5); 481 /// 482 /// five.assume_init() 483 /// }; 484 /// 485 /// assert_eq!(*five, 5); 486 /// # Ok::<(), std::alloc::AllocError>(()) 487 /// ``` 488 #[unstable(feature = "allocator_api", issue = "32838")] 489 // #[unstable(feature = "new_uninit", issue = "63291")] 490 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 491 pub const fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 492 where 493 A: ~const Allocator + ~const Destruct, 494 { 495 let layout = Layout::new::<mem::MaybeUninit<T>>(); 496 let ptr = alloc.allocate(layout)?.cast(); 497 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 498 } 499 500 /// Constructs a new `Box` with uninitialized contents, with the memory 501 /// being filled with `0` bytes in the provided allocator. 502 /// 503 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 504 /// of this method. 505 /// 506 /// # Examples 507 /// 508 /// ``` 509 /// #![feature(allocator_api, new_uninit)] 510 /// 511 /// use std::alloc::System; 512 /// 513 /// let zero = Box::<u32, _>::new_zeroed_in(System); 514 /// let zero = unsafe { zero.assume_init() }; 515 /// 516 /// assert_eq!(*zero, 0) 517 /// ``` 518 /// 519 /// [zeroed]: mem::MaybeUninit::zeroed 520 #[unstable(feature = "allocator_api", issue = "32838")] 521 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 522 #[cfg(not(no_global_oom_handling))] 523 // #[unstable(feature = "new_uninit", issue = "63291")] 524 #[must_use] 525 pub const fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 526 where 527 A: ~const Allocator + ~const Destruct, 528 { 529 let layout = Layout::new::<mem::MaybeUninit<T>>(); 530 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 531 // That would make code size bigger. 532 match Box::try_new_zeroed_in(alloc) { 533 Ok(m) => m, 534 Err(_) => handle_alloc_error(layout), 535 } 536 } 537 538 /// Constructs a new `Box` with uninitialized contents, with the memory 539 /// being filled with `0` bytes in the provided allocator, 540 /// returning an error if the allocation fails, 541 /// 542 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 543 /// of this method. 544 /// 545 /// # Examples 546 /// 547 /// ``` 548 /// #![feature(allocator_api, new_uninit)] 549 /// 550 /// use std::alloc::System; 551 /// 552 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; 553 /// let zero = unsafe { zero.assume_init() }; 554 /// 555 /// assert_eq!(*zero, 0); 556 /// # Ok::<(), std::alloc::AllocError>(()) 557 /// ``` 558 /// 559 /// [zeroed]: mem::MaybeUninit::zeroed 560 #[unstable(feature = "allocator_api", issue = "32838")] 561 // #[unstable(feature = "new_uninit", issue = "63291")] 562 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 563 pub const fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 564 where 565 A: ~const Allocator + ~const Destruct, 566 { 567 let layout = Layout::new::<mem::MaybeUninit<T>>(); 568 let ptr = alloc.allocate_zeroed(layout)?.cast(); 569 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 570 } 571 572 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 573 /// `x` will be pinned in memory and unable to be moved. 574 /// 575 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` 576 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using 577 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to 578 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. 579 #[cfg(not(no_global_oom_handling))] 580 #[unstable(feature = "allocator_api", issue = "32838")] 581 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 582 #[must_use] 583 #[inline(always)] 584 pub const fn pin_in(x: T, alloc: A) -> Pin<Self> 585 where 586 A: 'static + ~const Allocator + ~const Destruct, 587 { 588 Self::into_pin(Self::new_in(x, alloc)) 589 } 590 591 /// Converts a `Box<T>` into a `Box<[T]>` 592 /// 593 /// This conversion does not allocate on the heap and happens in place. 594 #[unstable(feature = "box_into_boxed_slice", issue = "71582")] 595 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 596 pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> { 597 let (raw, alloc) = Box::into_raw_with_allocator(boxed); 598 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } 599 } 600 601 /// Consumes the `Box`, returning the wrapped value. 602 /// 603 /// # Examples 604 /// 605 /// ``` 606 /// #![feature(box_into_inner)] 607 /// 608 /// let c = Box::new(5); 609 /// 610 /// assert_eq!(Box::into_inner(c), 5); 611 /// ``` 612 #[unstable(feature = "box_into_inner", issue = "80437")] 613 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 614 #[inline] 615 pub const fn into_inner(boxed: Self) -> T 616 where 617 Self: ~const Destruct, 618 { 619 *boxed 620 } 621 } 622 623 impl<T> Box<[T]> { 624 /// Constructs a new boxed slice with uninitialized contents. 625 /// 626 /// # Examples 627 /// 628 /// ``` 629 /// #![feature(new_uninit)] 630 /// 631 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 632 /// 633 /// let values = unsafe { 634 /// // Deferred initialization: 635 /// values[0].as_mut_ptr().write(1); 636 /// values[1].as_mut_ptr().write(2); 637 /// values[2].as_mut_ptr().write(3); 638 /// 639 /// values.assume_init() 640 /// }; 641 /// 642 /// assert_eq!(*values, [1, 2, 3]) 643 /// ``` 644 #[cfg(not(no_global_oom_handling))] 645 #[unstable(feature = "new_uninit", issue = "63291")] 646 #[must_use] 647 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 648 unsafe { RawVec::with_capacity(len).into_box(len) } 649 } 650 651 /// Constructs a new boxed slice with uninitialized contents, with the memory 652 /// being filled with `0` bytes. 653 /// 654 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 655 /// of this method. 656 /// 657 /// # Examples 658 /// 659 /// ``` 660 /// #![feature(new_uninit)] 661 /// 662 /// let values = Box::<[u32]>::new_zeroed_slice(3); 663 /// let values = unsafe { values.assume_init() }; 664 /// 665 /// assert_eq!(*values, [0, 0, 0]) 666 /// ``` 667 /// 668 /// [zeroed]: mem::MaybeUninit::zeroed 669 #[cfg(not(no_global_oom_handling))] 670 #[unstable(feature = "new_uninit", issue = "63291")] 671 #[must_use] 672 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 673 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } 674 } 675 676 /// Constructs a new boxed slice with uninitialized contents. Returns an error if 677 /// the allocation fails 678 /// 679 /// # Examples 680 /// 681 /// ``` 682 /// #![feature(allocator_api, new_uninit)] 683 /// 684 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; 685 /// let values = unsafe { 686 /// // Deferred initialization: 687 /// values[0].as_mut_ptr().write(1); 688 /// values[1].as_mut_ptr().write(2); 689 /// values[2].as_mut_ptr().write(3); 690 /// values.assume_init() 691 /// }; 692 /// 693 /// assert_eq!(*values, [1, 2, 3]); 694 /// # Ok::<(), std::alloc::AllocError>(()) 695 /// ``` 696 #[unstable(feature = "allocator_api", issue = "32838")] 697 #[inline] 698 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 699 unsafe { 700 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 701 Ok(l) => l, 702 Err(_) => return Err(AllocError), 703 }; 704 let ptr = Global.allocate(layout)?; 705 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 706 } 707 } 708 709 /// Constructs a new boxed slice with uninitialized contents, with the memory 710 /// being filled with `0` bytes. Returns an error if the allocation fails 711 /// 712 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 713 /// of this method. 714 /// 715 /// # Examples 716 /// 717 /// ``` 718 /// #![feature(allocator_api, new_uninit)] 719 /// 720 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; 721 /// let values = unsafe { values.assume_init() }; 722 /// 723 /// assert_eq!(*values, [0, 0, 0]); 724 /// # Ok::<(), std::alloc::AllocError>(()) 725 /// ``` 726 /// 727 /// [zeroed]: mem::MaybeUninit::zeroed 728 #[unstable(feature = "allocator_api", issue = "32838")] 729 #[inline] 730 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 731 unsafe { 732 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 733 Ok(l) => l, 734 Err(_) => return Err(AllocError), 735 }; 736 let ptr = Global.allocate_zeroed(layout)?; 737 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 738 } 739 } 740 } 741 742 impl<T, A: Allocator> Box<[T], A> { 743 /// Constructs a new boxed slice with uninitialized contents in the provided allocator. 744 /// 745 /// # Examples 746 /// 747 /// ``` 748 /// #![feature(allocator_api, new_uninit)] 749 /// 750 /// use std::alloc::System; 751 /// 752 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); 753 /// 754 /// let values = unsafe { 755 /// // Deferred initialization: 756 /// values[0].as_mut_ptr().write(1); 757 /// values[1].as_mut_ptr().write(2); 758 /// values[2].as_mut_ptr().write(3); 759 /// 760 /// values.assume_init() 761 /// }; 762 /// 763 /// assert_eq!(*values, [1, 2, 3]) 764 /// ``` 765 #[cfg(not(no_global_oom_handling))] 766 #[unstable(feature = "allocator_api", issue = "32838")] 767 // #[unstable(feature = "new_uninit", issue = "63291")] 768 #[must_use] 769 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 770 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } 771 } 772 773 /// Constructs a new boxed slice with uninitialized contents in the provided allocator, 774 /// with the memory being filled with `0` bytes. 775 /// 776 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 777 /// of this method. 778 /// 779 /// # Examples 780 /// 781 /// ``` 782 /// #![feature(allocator_api, new_uninit)] 783 /// 784 /// use std::alloc::System; 785 /// 786 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); 787 /// let values = unsafe { values.assume_init() }; 788 /// 789 /// assert_eq!(*values, [0, 0, 0]) 790 /// ``` 791 /// 792 /// [zeroed]: mem::MaybeUninit::zeroed 793 #[cfg(not(no_global_oom_handling))] 794 #[unstable(feature = "allocator_api", issue = "32838")] 795 // #[unstable(feature = "new_uninit", issue = "63291")] 796 #[must_use] 797 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 798 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } 799 } 800 } 801 802 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { 803 /// Converts to `Box<T, A>`. 804 /// 805 /// # Safety 806 /// 807 /// As with [`MaybeUninit::assume_init`], 808 /// it is up to the caller to guarantee that the value 809 /// really is in an initialized state. 810 /// Calling this when the content is not yet fully initialized 811 /// causes immediate undefined behavior. 812 /// 813 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 814 /// 815 /// # Examples 816 /// 817 /// ``` 818 /// #![feature(new_uninit)] 819 /// 820 /// let mut five = Box::<u32>::new_uninit(); 821 /// 822 /// let five: Box<u32> = unsafe { 823 /// // Deferred initialization: 824 /// five.as_mut_ptr().write(5); 825 /// 826 /// five.assume_init() 827 /// }; 828 /// 829 /// assert_eq!(*five, 5) 830 /// ``` 831 #[unstable(feature = "new_uninit", issue = "63291")] 832 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 833 #[inline] 834 pub const unsafe fn assume_init(self) -> Box<T, A> { 835 let (raw, alloc) = Box::into_raw_with_allocator(self); 836 unsafe { Box::from_raw_in(raw as *mut T, alloc) } 837 } 838 839 /// Writes the value and converts to `Box<T, A>`. 840 /// 841 /// This method converts the box similarly to [`Box::assume_init`] but 842 /// writes `value` into it before conversion thus guaranteeing safety. 843 /// In some scenarios use of this method may improve performance because 844 /// the compiler may be able to optimize copying from stack. 845 /// 846 /// # Examples 847 /// 848 /// ``` 849 /// #![feature(new_uninit)] 850 /// 851 /// let big_box = Box::<[usize; 1024]>::new_uninit(); 852 /// 853 /// let mut array = [0; 1024]; 854 /// for (i, place) in array.iter_mut().enumerate() { 855 /// *place = i; 856 /// } 857 /// 858 /// // The optimizer may be able to elide this copy, so previous code writes 859 /// // to heap directly. 860 /// let big_box = Box::write(big_box, array); 861 /// 862 /// for (i, x) in big_box.iter().enumerate() { 863 /// assert_eq!(*x, i); 864 /// } 865 /// ``` 866 #[unstable(feature = "new_uninit", issue = "63291")] 867 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 868 #[inline] 869 pub const fn write(mut boxed: Self, value: T) -> Box<T, A> { 870 unsafe { 871 (*boxed).write(value); 872 boxed.assume_init() 873 } 874 } 875 } 876 877 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { 878 /// Converts to `Box<[T], A>`. 879 /// 880 /// # Safety 881 /// 882 /// As with [`MaybeUninit::assume_init`], 883 /// it is up to the caller to guarantee that the values 884 /// really are in an initialized state. 885 /// Calling this when the content is not yet fully initialized 886 /// causes immediate undefined behavior. 887 /// 888 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 889 /// 890 /// # Examples 891 /// 892 /// ``` 893 /// #![feature(new_uninit)] 894 /// 895 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 896 /// 897 /// let values = unsafe { 898 /// // Deferred initialization: 899 /// values[0].as_mut_ptr().write(1); 900 /// values[1].as_mut_ptr().write(2); 901 /// values[2].as_mut_ptr().write(3); 902 /// 903 /// values.assume_init() 904 /// }; 905 /// 906 /// assert_eq!(*values, [1, 2, 3]) 907 /// ``` 908 #[unstable(feature = "new_uninit", issue = "63291")] 909 #[inline] 910 pub unsafe fn assume_init(self) -> Box<[T], A> { 911 let (raw, alloc) = Box::into_raw_with_allocator(self); 912 unsafe { Box::from_raw_in(raw as *mut [T], alloc) } 913 } 914 } 915 916 impl<T: ?Sized> Box<T> { 917 /// Constructs a box from a raw pointer. 918 /// 919 /// After calling this function, the raw pointer is owned by the 920 /// resulting `Box`. Specifically, the `Box` destructor will call 921 /// the destructor of `T` and free the allocated memory. For this 922 /// to be safe, the memory must have been allocated in accordance 923 /// with the [memory layout] used by `Box` . 924 /// 925 /// # Safety 926 /// 927 /// This function is unsafe because improper use may lead to 928 /// memory problems. For example, a double-free may occur if the 929 /// function is called twice on the same raw pointer. 930 /// 931 /// The safety conditions are described in the [memory layout] section. 932 /// 933 /// # Examples 934 /// 935 /// Recreate a `Box` which was previously converted to a raw pointer 936 /// using [`Box::into_raw`]: 937 /// ``` 938 /// let x = Box::new(5); 939 /// let ptr = Box::into_raw(x); 940 /// let x = unsafe { Box::from_raw(ptr) }; 941 /// ``` 942 /// Manually create a `Box` from scratch by using the global allocator: 943 /// ``` 944 /// use std::alloc::{alloc, Layout}; 945 /// 946 /// unsafe { 947 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; 948 /// // In general .write is required to avoid attempting to destruct 949 /// // the (uninitialized) previous contents of `ptr`, though for this 950 /// // simple example `*ptr = 5` would have worked as well. 951 /// ptr.write(5); 952 /// let x = Box::from_raw(ptr); 953 /// } 954 /// ``` 955 /// 956 /// [memory layout]: self#memory-layout 957 /// [`Layout`]: crate::Layout 958 #[stable(feature = "box_raw", since = "1.4.0")] 959 #[inline] 960 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] 961 pub unsafe fn from_raw(raw: *mut T) -> Self { 962 unsafe { Self::from_raw_in(raw, Global) } 963 } 964 } 965 966 impl<T: ?Sized, A: Allocator> Box<T, A> { 967 /// Constructs a box from a raw pointer in the given allocator. 968 /// 969 /// After calling this function, the raw pointer is owned by the 970 /// resulting `Box`. Specifically, the `Box` destructor will call 971 /// the destructor of `T` and free the allocated memory. For this 972 /// to be safe, the memory must have been allocated in accordance 973 /// with the [memory layout] used by `Box` . 974 /// 975 /// # Safety 976 /// 977 /// This function is unsafe because improper use may lead to 978 /// memory problems. For example, a double-free may occur if the 979 /// function is called twice on the same raw pointer. 980 /// 981 /// 982 /// # Examples 983 /// 984 /// Recreate a `Box` which was previously converted to a raw pointer 985 /// using [`Box::into_raw_with_allocator`]: 986 /// ``` 987 /// #![feature(allocator_api)] 988 /// 989 /// use std::alloc::System; 990 /// 991 /// let x = Box::new_in(5, System); 992 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 993 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 994 /// ``` 995 /// Manually create a `Box` from scratch by using the system allocator: 996 /// ``` 997 /// #![feature(allocator_api, slice_ptr_get)] 998 /// 999 /// use std::alloc::{Allocator, Layout, System}; 1000 /// 1001 /// unsafe { 1002 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; 1003 /// // In general .write is required to avoid attempting to destruct 1004 /// // the (uninitialized) previous contents of `ptr`, though for this 1005 /// // simple example `*ptr = 5` would have worked as well. 1006 /// ptr.write(5); 1007 /// let x = Box::from_raw_in(ptr, System); 1008 /// } 1009 /// # Ok::<(), std::alloc::AllocError>(()) 1010 /// ``` 1011 /// 1012 /// [memory layout]: self#memory-layout 1013 /// [`Layout`]: crate::Layout 1014 #[unstable(feature = "allocator_api", issue = "32838")] 1015 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1016 #[inline] 1017 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { 1018 Box(unsafe { Unique::new_unchecked(raw) }, alloc) 1019 } 1020 1021 /// Consumes the `Box`, returning a wrapped raw pointer. 1022 /// 1023 /// The pointer will be properly aligned and non-null. 1024 /// 1025 /// After calling this function, the caller is responsible for the 1026 /// memory previously managed by the `Box`. In particular, the 1027 /// caller should properly destroy `T` and release the memory, taking 1028 /// into account the [memory layout] used by `Box`. The easiest way to 1029 /// do this is to convert the raw pointer back into a `Box` with the 1030 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform 1031 /// the cleanup. 1032 /// 1033 /// Note: this is an associated function, which means that you have 1034 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This 1035 /// is so that there is no conflict with a method on the inner type. 1036 /// 1037 /// # Examples 1038 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] 1039 /// for automatic cleanup: 1040 /// ``` 1041 /// let x = Box::new(String::from("Hello")); 1042 /// let ptr = Box::into_raw(x); 1043 /// let x = unsafe { Box::from_raw(ptr) }; 1044 /// ``` 1045 /// Manual cleanup by explicitly running the destructor and deallocating 1046 /// the memory: 1047 /// ``` 1048 /// use std::alloc::{dealloc, Layout}; 1049 /// use std::ptr; 1050 /// 1051 /// let x = Box::new(String::from("Hello")); 1052 /// let p = Box::into_raw(x); 1053 /// unsafe { 1054 /// ptr::drop_in_place(p); 1055 /// dealloc(p as *mut u8, Layout::new::<String>()); 1056 /// } 1057 /// ``` 1058 /// 1059 /// [memory layout]: self#memory-layout 1060 #[stable(feature = "box_raw", since = "1.4.0")] 1061 #[inline] 1062 pub fn into_raw(b: Self) -> *mut T { 1063 Self::into_raw_with_allocator(b).0 1064 } 1065 1066 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. 1067 /// 1068 /// The pointer will be properly aligned and non-null. 1069 /// 1070 /// After calling this function, the caller is responsible for the 1071 /// memory previously managed by the `Box`. In particular, the 1072 /// caller should properly destroy `T` and release the memory, taking 1073 /// into account the [memory layout] used by `Box`. The easiest way to 1074 /// do this is to convert the raw pointer back into a `Box` with the 1075 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform 1076 /// the cleanup. 1077 /// 1078 /// Note: this is an associated function, which means that you have 1079 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This 1080 /// is so that there is no conflict with a method on the inner type. 1081 /// 1082 /// # Examples 1083 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] 1084 /// for automatic cleanup: 1085 /// ``` 1086 /// #![feature(allocator_api)] 1087 /// 1088 /// use std::alloc::System; 1089 /// 1090 /// let x = Box::new_in(String::from("Hello"), System); 1091 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1092 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 1093 /// ``` 1094 /// Manual cleanup by explicitly running the destructor and deallocating 1095 /// the memory: 1096 /// ``` 1097 /// #![feature(allocator_api)] 1098 /// 1099 /// use std::alloc::{Allocator, Layout, System}; 1100 /// use std::ptr::{self, NonNull}; 1101 /// 1102 /// let x = Box::new_in(String::from("Hello"), System); 1103 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1104 /// unsafe { 1105 /// ptr::drop_in_place(ptr); 1106 /// let non_null = NonNull::new_unchecked(ptr); 1107 /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); 1108 /// } 1109 /// ``` 1110 /// 1111 /// [memory layout]: self#memory-layout 1112 #[unstable(feature = "allocator_api", issue = "32838")] 1113 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1114 #[inline] 1115 pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) { 1116 let (leaked, alloc) = Box::into_unique(b); 1117 (leaked.as_ptr(), alloc) 1118 } 1119 1120 #[unstable( 1121 feature = "ptr_internals", 1122 issue = "none", 1123 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" 1124 )] 1125 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1126 #[inline] 1127 #[doc(hidden)] 1128 pub const fn into_unique(b: Self) -> (Unique<T>, A) { 1129 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a 1130 // raw pointer for the type system. Turning it directly into a raw pointer would not be 1131 // recognized as "releasing" the unique pointer to permit aliased raw accesses, 1132 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer 1133 // behaves correctly. 1134 let alloc = unsafe { ptr::read(&b.1) }; 1135 (Unique::from(Box::leak(b)), alloc) 1136 } 1137 1138 /// Returns a reference to the underlying allocator. 1139 /// 1140 /// Note: this is an associated function, which means that you have 1141 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This 1142 /// is so that there is no conflict with a method on the inner type. 1143 #[unstable(feature = "allocator_api", issue = "32838")] 1144 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1145 #[inline] 1146 pub const fn allocator(b: &Self) -> &A { 1147 &b.1 1148 } 1149 1150 /// Consumes and leaks the `Box`, returning a mutable reference, 1151 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime 1152 /// `'a`. If the type has only static references, or none at all, then this 1153 /// may be chosen to be `'static`. 1154 /// 1155 /// This function is mainly useful for data that lives for the remainder of 1156 /// the program's life. Dropping the returned reference will cause a memory 1157 /// leak. If this is not acceptable, the reference should first be wrapped 1158 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can 1159 /// then be dropped which will properly destroy `T` and release the 1160 /// allocated memory. 1161 /// 1162 /// Note: this is an associated function, which means that you have 1163 /// to call it as `Box::leak(b)` instead of `b.leak()`. This 1164 /// is so that there is no conflict with a method on the inner type. 1165 /// 1166 /// # Examples 1167 /// 1168 /// Simple usage: 1169 /// 1170 /// ``` 1171 /// let x = Box::new(41); 1172 /// let static_ref: &'static mut usize = Box::leak(x); 1173 /// *static_ref += 1; 1174 /// assert_eq!(*static_ref, 42); 1175 /// ``` 1176 /// 1177 /// Unsized data: 1178 /// 1179 /// ``` 1180 /// let x = vec![1, 2, 3].into_boxed_slice(); 1181 /// let static_ref = Box::leak(x); 1182 /// static_ref[0] = 4; 1183 /// assert_eq!(*static_ref, [4, 2, 3]); 1184 /// ``` 1185 #[stable(feature = "box_leak", since = "1.26.0")] 1186 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1187 #[inline] 1188 pub const fn leak<'a>(b: Self) -> &'a mut T 1189 where 1190 A: 'a, 1191 { 1192 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } 1193 } 1194 1195 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1196 /// `*boxed` will be pinned in memory and unable to be moved. 1197 /// 1198 /// This conversion does not allocate on the heap and happens in place. 1199 /// 1200 /// This is also available via [`From`]. 1201 /// 1202 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> 1203 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1204 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are 1205 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1206 /// 1207 /// # Notes 1208 /// 1209 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, 1210 /// as it'll introduce an ambiguity when calling `Pin::from`. 1211 /// A demonstration of such a poor impl is shown below. 1212 /// 1213 /// ```compile_fail 1214 /// # use std::pin::Pin; 1215 /// struct Foo; // A type defined in this crate. 1216 /// impl From<Box<()>> for Pin<Foo> { 1217 /// fn from(_: Box<()>) -> Pin<Foo> { 1218 /// Pin::new(Foo) 1219 /// } 1220 /// } 1221 /// 1222 /// let foo = Box::new(()); 1223 /// let bar = Pin::from(foo); 1224 /// ``` 1225 #[stable(feature = "box_into_pin", since = "1.63.0")] 1226 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1227 pub const fn into_pin(boxed: Self) -> Pin<Self> 1228 where 1229 A: 'static, 1230 { 1231 // It's not possible to move or replace the insides of a `Pin<Box<T>>` 1232 // when `T: !Unpin`, so it's safe to pin it directly without any 1233 // additional requirements. 1234 unsafe { Pin::new_unchecked(boxed) } 1235 } 1236 } 1237 1238 #[stable(feature = "rust1", since = "1.0.0")] 1239 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { 1240 fn drop(&mut self) { 1241 // FIXME: Do nothing, drop is currently performed by compiler. 1242 } 1243 } 1244 1245 #[cfg(not(no_global_oom_handling))] 1246 #[stable(feature = "rust1", since = "1.0.0")] 1247 impl<T: Default> Default for Box<T> { 1248 /// Creates a `Box<T>`, with the `Default` value for T. 1249 fn default() -> Self { 1250 #[rustc_box] 1251 Box::new(T::default()) 1252 } 1253 } 1254 1255 #[cfg(not(no_global_oom_handling))] 1256 #[stable(feature = "rust1", since = "1.0.0")] 1257 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] 1258 impl<T> const Default for Box<[T]> { 1259 fn default() -> Self { 1260 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); 1261 Box(ptr, Global) 1262 } 1263 } 1264 1265 #[cfg(not(no_global_oom_handling))] 1266 #[stable(feature = "default_box_extra", since = "1.17.0")] 1267 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] 1268 impl const Default for Box<str> { 1269 fn default() -> Self { 1270 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. 1271 let ptr: Unique<str> = unsafe { 1272 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); 1273 Unique::new_unchecked(bytes.as_ptr() as *mut str) 1274 }; 1275 Box(ptr, Global) 1276 } 1277 } 1278 1279 #[cfg(not(no_global_oom_handling))] 1280 #[stable(feature = "rust1", since = "1.0.0")] 1281 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { 1282 /// Returns a new box with a `clone()` of this box's contents. 1283 /// 1284 /// # Examples 1285 /// 1286 /// ``` 1287 /// let x = Box::new(5); 1288 /// let y = x.clone(); 1289 /// 1290 /// // The value is the same 1291 /// assert_eq!(x, y); 1292 /// 1293 /// // But they are unique objects 1294 /// assert_ne!(&*x as *const i32, &*y as *const i32); 1295 /// ``` 1296 #[inline] 1297 fn clone(&self) -> Self { 1298 // Pre-allocate memory to allow writing the cloned value directly. 1299 let mut boxed = Self::new_uninit_in(self.1.clone()); 1300 unsafe { 1301 (**self).write_clone_into_raw(boxed.as_mut_ptr()); 1302 boxed.assume_init() 1303 } 1304 } 1305 1306 /// Copies `source`'s contents into `self` without creating a new allocation. 1307 /// 1308 /// # Examples 1309 /// 1310 /// ``` 1311 /// let x = Box::new(5); 1312 /// let mut y = Box::new(10); 1313 /// let yp: *const i32 = &*y; 1314 /// 1315 /// y.clone_from(&x); 1316 /// 1317 /// // The value is the same 1318 /// assert_eq!(x, y); 1319 /// 1320 /// // And no allocation occurred 1321 /// assert_eq!(yp, &*y); 1322 /// ``` 1323 #[inline] 1324 fn clone_from(&mut self, source: &Self) { 1325 (**self).clone_from(&(**source)); 1326 } 1327 } 1328 1329 #[cfg(not(no_global_oom_handling))] 1330 #[stable(feature = "box_slice_clone", since = "1.3.0")] 1331 impl Clone for Box<str> { 1332 fn clone(&self) -> Self { 1333 // this makes a copy of the data 1334 let buf: Box<[u8]> = self.as_bytes().into(); 1335 unsafe { from_boxed_utf8_unchecked(buf) } 1336 } 1337 } 1338 1339 #[stable(feature = "rust1", since = "1.0.0")] 1340 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { 1341 #[inline] 1342 fn eq(&self, other: &Self) -> bool { 1343 PartialEq::eq(&**self, &**other) 1344 } 1345 #[inline] 1346 fn ne(&self, other: &Self) -> bool { 1347 PartialEq::ne(&**self, &**other) 1348 } 1349 } 1350 #[stable(feature = "rust1", since = "1.0.0")] 1351 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { 1352 #[inline] 1353 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 1354 PartialOrd::partial_cmp(&**self, &**other) 1355 } 1356 #[inline] 1357 fn lt(&self, other: &Self) -> bool { 1358 PartialOrd::lt(&**self, &**other) 1359 } 1360 #[inline] 1361 fn le(&self, other: &Self) -> bool { 1362 PartialOrd::le(&**self, &**other) 1363 } 1364 #[inline] 1365 fn ge(&self, other: &Self) -> bool { 1366 PartialOrd::ge(&**self, &**other) 1367 } 1368 #[inline] 1369 fn gt(&self, other: &Self) -> bool { 1370 PartialOrd::gt(&**self, &**other) 1371 } 1372 } 1373 #[stable(feature = "rust1", since = "1.0.0")] 1374 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { 1375 #[inline] 1376 fn cmp(&self, other: &Self) -> Ordering { 1377 Ord::cmp(&**self, &**other) 1378 } 1379 } 1380 #[stable(feature = "rust1", since = "1.0.0")] 1381 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} 1382 1383 #[stable(feature = "rust1", since = "1.0.0")] 1384 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { 1385 fn hash<H: Hasher>(&self, state: &mut H) { 1386 (**self).hash(state); 1387 } 1388 } 1389 1390 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] 1391 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { 1392 fn finish(&self) -> u64 { 1393 (**self).finish() 1394 } 1395 fn write(&mut self, bytes: &[u8]) { 1396 (**self).write(bytes) 1397 } 1398 fn write_u8(&mut self, i: u8) { 1399 (**self).write_u8(i) 1400 } 1401 fn write_u16(&mut self, i: u16) { 1402 (**self).write_u16(i) 1403 } 1404 fn write_u32(&mut self, i: u32) { 1405 (**self).write_u32(i) 1406 } 1407 fn write_u64(&mut self, i: u64) { 1408 (**self).write_u64(i) 1409 } 1410 fn write_u128(&mut self, i: u128) { 1411 (**self).write_u128(i) 1412 } 1413 fn write_usize(&mut self, i: usize) { 1414 (**self).write_usize(i) 1415 } 1416 fn write_i8(&mut self, i: i8) { 1417 (**self).write_i8(i) 1418 } 1419 fn write_i16(&mut self, i: i16) { 1420 (**self).write_i16(i) 1421 } 1422 fn write_i32(&mut self, i: i32) { 1423 (**self).write_i32(i) 1424 } 1425 fn write_i64(&mut self, i: i64) { 1426 (**self).write_i64(i) 1427 } 1428 fn write_i128(&mut self, i: i128) { 1429 (**self).write_i128(i) 1430 } 1431 fn write_isize(&mut self, i: isize) { 1432 (**self).write_isize(i) 1433 } 1434 fn write_length_prefix(&mut self, len: usize) { 1435 (**self).write_length_prefix(len) 1436 } 1437 fn write_str(&mut self, s: &str) { 1438 (**self).write_str(s) 1439 } 1440 } 1441 1442 #[cfg(not(no_global_oom_handling))] 1443 #[stable(feature = "from_for_ptrs", since = "1.6.0")] 1444 impl<T> From<T> for Box<T> { 1445 /// Converts a `T` into a `Box<T>` 1446 /// 1447 /// The conversion allocates on the heap and moves `t` 1448 /// from the stack into it. 1449 /// 1450 /// # Examples 1451 /// 1452 /// ```rust 1453 /// let x = 5; 1454 /// let boxed = Box::new(5); 1455 /// 1456 /// assert_eq!(Box::from(x), boxed); 1457 /// ``` 1458 fn from(t: T) -> Self { 1459 Box::new(t) 1460 } 1461 } 1462 1463 #[stable(feature = "pin", since = "1.33.0")] 1464 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1465 impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>> 1466 where 1467 A: 'static, 1468 { 1469 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1470 /// `*boxed` will be pinned in memory and unable to be moved. 1471 /// 1472 /// This conversion does not allocate on the heap and happens in place. 1473 /// 1474 /// This is also available via [`Box::into_pin`]. 1475 /// 1476 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> 1477 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1478 /// This `From` implementation is useful if you already have a `Box<T>`, or you are 1479 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1480 fn from(boxed: Box<T, A>) -> Self { 1481 Box::into_pin(boxed) 1482 } 1483 } 1484 1485 #[cfg(not(no_global_oom_handling))] 1486 #[stable(feature = "box_from_slice", since = "1.17.0")] 1487 impl<T: Copy> From<&[T]> for Box<[T]> { 1488 /// Converts a `&[T]` into a `Box<[T]>` 1489 /// 1490 /// This conversion allocates on the heap 1491 /// and performs a copy of `slice` and its contents. 1492 /// 1493 /// # Examples 1494 /// ```rust 1495 /// // create a &[u8] which will be used to create a Box<[u8]> 1496 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1497 /// let boxed_slice: Box<[u8]> = Box::from(slice); 1498 /// 1499 /// println!("{boxed_slice:?}"); 1500 /// ``` 1501 fn from(slice: &[T]) -> Box<[T]> { 1502 let len = slice.len(); 1503 let buf = RawVec::with_capacity(len); 1504 unsafe { 1505 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); 1506 buf.into_box(slice.len()).assume_init() 1507 } 1508 } 1509 } 1510 1511 #[cfg(not(no_global_oom_handling))] 1512 #[stable(feature = "box_from_cow", since = "1.45.0")] 1513 impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> { 1514 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` 1515 /// 1516 /// When `cow` is the `Cow::Borrowed` variant, this 1517 /// conversion allocates on the heap and copies the 1518 /// underlying slice. Otherwise, it will try to reuse the owned 1519 /// `Vec`'s allocation. 1520 #[inline] 1521 fn from(cow: Cow<'_, [T]>) -> Box<[T]> { 1522 match cow { 1523 Cow::Borrowed(slice) => Box::from(slice), 1524 Cow::Owned(slice) => Box::from(slice), 1525 } 1526 } 1527 } 1528 1529 #[cfg(not(no_global_oom_handling))] 1530 #[stable(feature = "box_from_slice", since = "1.17.0")] 1531 impl From<&str> for Box<str> { 1532 /// Converts a `&str` into a `Box<str>` 1533 /// 1534 /// This conversion allocates on the heap 1535 /// and performs a copy of `s`. 1536 /// 1537 /// # Examples 1538 /// 1539 /// ```rust 1540 /// let boxed: Box<str> = Box::from("hello"); 1541 /// println!("{boxed}"); 1542 /// ``` 1543 #[inline] 1544 fn from(s: &str) -> Box<str> { 1545 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } 1546 } 1547 } 1548 1549 #[cfg(not(no_global_oom_handling))] 1550 #[stable(feature = "box_from_cow", since = "1.45.0")] 1551 impl From<Cow<'_, str>> for Box<str> { 1552 /// Converts a `Cow<'_, str>` into a `Box<str>` 1553 /// 1554 /// When `cow` is the `Cow::Borrowed` variant, this 1555 /// conversion allocates on the heap and copies the 1556 /// underlying `str`. Otherwise, it will try to reuse the owned 1557 /// `String`'s allocation. 1558 /// 1559 /// # Examples 1560 /// 1561 /// ```rust 1562 /// use std::borrow::Cow; 1563 /// 1564 /// let unboxed = Cow::Borrowed("hello"); 1565 /// let boxed: Box<str> = Box::from(unboxed); 1566 /// println!("{boxed}"); 1567 /// ``` 1568 /// 1569 /// ```rust 1570 /// # use std::borrow::Cow; 1571 /// let unboxed = Cow::Owned("hello".to_string()); 1572 /// let boxed: Box<str> = Box::from(unboxed); 1573 /// println!("{boxed}"); 1574 /// ``` 1575 #[inline] 1576 fn from(cow: Cow<'_, str>) -> Box<str> { 1577 match cow { 1578 Cow::Borrowed(s) => Box::from(s), 1579 Cow::Owned(s) => Box::from(s), 1580 } 1581 } 1582 } 1583 1584 #[stable(feature = "boxed_str_conv", since = "1.19.0")] 1585 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { 1586 /// Converts a `Box<str>` into a `Box<[u8]>` 1587 /// 1588 /// This conversion does not allocate on the heap and happens in place. 1589 /// 1590 /// # Examples 1591 /// ```rust 1592 /// // create a Box<str> which will be used to create a Box<[u8]> 1593 /// let boxed: Box<str> = Box::from("hello"); 1594 /// let boxed_str: Box<[u8]> = Box::from(boxed); 1595 /// 1596 /// // create a &[u8] which will be used to create a Box<[u8]> 1597 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1598 /// let boxed_slice = Box::from(slice); 1599 /// 1600 /// assert_eq!(boxed_slice, boxed_str); 1601 /// ``` 1602 #[inline] 1603 fn from(s: Box<str, A>) -> Self { 1604 let (raw, alloc) = Box::into_raw_with_allocator(s); 1605 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } 1606 } 1607 } 1608 1609 #[cfg(not(no_global_oom_handling))] 1610 #[stable(feature = "box_from_array", since = "1.45.0")] 1611 impl<T, const N: usize> From<[T; N]> for Box<[T]> { 1612 /// Converts a `[T; N]` into a `Box<[T]>` 1613 /// 1614 /// This conversion moves the array to newly heap-allocated memory. 1615 /// 1616 /// # Examples 1617 /// 1618 /// ```rust 1619 /// let boxed: Box<[u8]> = Box::from([4, 2]); 1620 /// println!("{boxed:?}"); 1621 /// ``` 1622 fn from(array: [T; N]) -> Box<[T]> { 1623 #[rustc_box] 1624 Box::new(array) 1625 } 1626 } 1627 1628 /// Casts a boxed slice to a boxed array. 1629 /// 1630 /// # Safety 1631 /// 1632 /// `boxed_slice.len()` must be exactly `N`. 1633 unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( 1634 boxed_slice: Box<[T], A>, 1635 ) -> Box<[T; N], A> { 1636 debug_assert_eq!(boxed_slice.len(), N); 1637 1638 let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); 1639 // SAFETY: Pointer and allocator came from an existing box, 1640 // and our safety condition requires that the length is exactly `N` 1641 unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } 1642 } 1643 1644 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] 1645 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { 1646 type Error = Box<[T]>; 1647 1648 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. 1649 /// 1650 /// The conversion occurs in-place and does not require a 1651 /// new memory allocation. 1652 /// 1653 /// # Errors 1654 /// 1655 /// Returns the old `Box<[T]>` in the `Err` variant if 1656 /// `boxed_slice.len()` does not equal `N`. 1657 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { 1658 if boxed_slice.len() == N { 1659 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1660 } else { 1661 Err(boxed_slice) 1662 } 1663 } 1664 } 1665 1666 #[cfg(not(no_global_oom_handling))] 1667 #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] 1668 impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { 1669 type Error = Vec<T>; 1670 1671 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. 1672 /// 1673 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, 1674 /// but will require a reallocation otherwise. 1675 /// 1676 /// # Errors 1677 /// 1678 /// Returns the original `Vec<T>` in the `Err` variant if 1679 /// `boxed_slice.len()` does not equal `N`. 1680 /// 1681 /// # Examples 1682 /// 1683 /// This can be used with [`vec!`] to create an array on the heap: 1684 /// 1685 /// ``` 1686 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); 1687 /// assert_eq!(state.len(), 100); 1688 /// ``` 1689 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { 1690 if vec.len() == N { 1691 let boxed_slice = vec.into_boxed_slice(); 1692 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1693 } else { 1694 Err(vec) 1695 } 1696 } 1697 } 1698 1699 impl<A: Allocator> Box<dyn Any, A> { 1700 /// Attempt to downcast the box to a concrete type. 1701 /// 1702 /// # Examples 1703 /// 1704 /// ``` 1705 /// use std::any::Any; 1706 /// 1707 /// fn print_if_string(value: Box<dyn Any>) { 1708 /// if let Ok(string) = value.downcast::<String>() { 1709 /// println!("String ({}): {}", string.len(), string); 1710 /// } 1711 /// } 1712 /// 1713 /// let my_string = "Hello World".to_string(); 1714 /// print_if_string(Box::new(my_string)); 1715 /// print_if_string(Box::new(0i8)); 1716 /// ``` 1717 #[inline] 1718 #[stable(feature = "rust1", since = "1.0.0")] 1719 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1720 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1721 } 1722 1723 /// Downcasts the box to a concrete type. 1724 /// 1725 /// For a safe alternative see [`downcast`]. 1726 /// 1727 /// # Examples 1728 /// 1729 /// ``` 1730 /// #![feature(downcast_unchecked)] 1731 /// 1732 /// use std::any::Any; 1733 /// 1734 /// let x: Box<dyn Any> = Box::new(1_usize); 1735 /// 1736 /// unsafe { 1737 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1738 /// } 1739 /// ``` 1740 /// 1741 /// # Safety 1742 /// 1743 /// The contained value must be of type `T`. Calling this method 1744 /// with the incorrect type is *undefined behavior*. 1745 /// 1746 /// [`downcast`]: Self::downcast 1747 #[inline] 1748 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1749 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1750 debug_assert!(self.is::<T>()); 1751 unsafe { 1752 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); 1753 Box::from_raw_in(raw as *mut T, alloc) 1754 } 1755 } 1756 } 1757 1758 impl<A: Allocator> Box<dyn Any + Send, A> { 1759 /// Attempt to downcast the box to a concrete type. 1760 /// 1761 /// # Examples 1762 /// 1763 /// ``` 1764 /// use std::any::Any; 1765 /// 1766 /// fn print_if_string(value: Box<dyn Any + Send>) { 1767 /// if let Ok(string) = value.downcast::<String>() { 1768 /// println!("String ({}): {}", string.len(), string); 1769 /// } 1770 /// } 1771 /// 1772 /// let my_string = "Hello World".to_string(); 1773 /// print_if_string(Box::new(my_string)); 1774 /// print_if_string(Box::new(0i8)); 1775 /// ``` 1776 #[inline] 1777 #[stable(feature = "rust1", since = "1.0.0")] 1778 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1779 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1780 } 1781 1782 /// Downcasts the box to a concrete type. 1783 /// 1784 /// For a safe alternative see [`downcast`]. 1785 /// 1786 /// # Examples 1787 /// 1788 /// ``` 1789 /// #![feature(downcast_unchecked)] 1790 /// 1791 /// use std::any::Any; 1792 /// 1793 /// let x: Box<dyn Any + Send> = Box::new(1_usize); 1794 /// 1795 /// unsafe { 1796 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1797 /// } 1798 /// ``` 1799 /// 1800 /// # Safety 1801 /// 1802 /// The contained value must be of type `T`. Calling this method 1803 /// with the incorrect type is *undefined behavior*. 1804 /// 1805 /// [`downcast`]: Self::downcast 1806 #[inline] 1807 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1808 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1809 debug_assert!(self.is::<T>()); 1810 unsafe { 1811 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); 1812 Box::from_raw_in(raw as *mut T, alloc) 1813 } 1814 } 1815 } 1816 1817 impl<A: Allocator> Box<dyn Any + Send + Sync, A> { 1818 /// Attempt to downcast the box to a concrete type. 1819 /// 1820 /// # Examples 1821 /// 1822 /// ``` 1823 /// use std::any::Any; 1824 /// 1825 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { 1826 /// if let Ok(string) = value.downcast::<String>() { 1827 /// println!("String ({}): {}", string.len(), string); 1828 /// } 1829 /// } 1830 /// 1831 /// let my_string = "Hello World".to_string(); 1832 /// print_if_string(Box::new(my_string)); 1833 /// print_if_string(Box::new(0i8)); 1834 /// ``` 1835 #[inline] 1836 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] 1837 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1838 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1839 } 1840 1841 /// Downcasts the box to a concrete type. 1842 /// 1843 /// For a safe alternative see [`downcast`]. 1844 /// 1845 /// # Examples 1846 /// 1847 /// ``` 1848 /// #![feature(downcast_unchecked)] 1849 /// 1850 /// use std::any::Any; 1851 /// 1852 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); 1853 /// 1854 /// unsafe { 1855 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1856 /// } 1857 /// ``` 1858 /// 1859 /// # Safety 1860 /// 1861 /// The contained value must be of type `T`. Calling this method 1862 /// with the incorrect type is *undefined behavior*. 1863 /// 1864 /// [`downcast`]: Self::downcast 1865 #[inline] 1866 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1867 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1868 debug_assert!(self.is::<T>()); 1869 unsafe { 1870 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = 1871 Box::into_raw_with_allocator(self); 1872 Box::from_raw_in(raw as *mut T, alloc) 1873 } 1874 } 1875 } 1876 1877 #[stable(feature = "rust1", since = "1.0.0")] 1878 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { 1879 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1880 fmt::Display::fmt(&**self, f) 1881 } 1882 } 1883 1884 #[stable(feature = "rust1", since = "1.0.0")] 1885 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { 1886 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1887 fmt::Debug::fmt(&**self, f) 1888 } 1889 } 1890 1891 #[stable(feature = "rust1", since = "1.0.0")] 1892 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { 1893 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1894 // It's not possible to extract the inner Uniq directly from the Box, 1895 // instead we cast it to a *const which aliases the Unique 1896 let ptr: *const T = &**self; 1897 fmt::Pointer::fmt(&ptr, f) 1898 } 1899 } 1900 1901 #[stable(feature = "rust1", since = "1.0.0")] 1902 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1903 impl<T: ?Sized, A: Allocator> const Deref for Box<T, A> { 1904 type Target = T; 1905 1906 fn deref(&self) -> &T { 1907 &**self 1908 } 1909 } 1910 1911 #[stable(feature = "rust1", since = "1.0.0")] 1912 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1913 impl<T: ?Sized, A: Allocator> const DerefMut for Box<T, A> { 1914 fn deref_mut(&mut self) -> &mut T { 1915 &mut **self 1916 } 1917 } 1918 1919 #[unstable(feature = "receiver_trait", issue = "none")] 1920 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} 1921 1922 #[stable(feature = "rust1", since = "1.0.0")] 1923 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { 1924 type Item = I::Item; 1925 fn next(&mut self) -> Option<I::Item> { 1926 (**self).next() 1927 } 1928 fn size_hint(&self) -> (usize, Option<usize>) { 1929 (**self).size_hint() 1930 } 1931 fn nth(&mut self, n: usize) -> Option<I::Item> { 1932 (**self).nth(n) 1933 } 1934 fn last(self) -> Option<I::Item> { 1935 BoxIter::last(self) 1936 } 1937 } 1938 1939 trait BoxIter { 1940 type Item; 1941 fn last(self) -> Option<Self::Item>; 1942 } 1943 1944 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { 1945 type Item = I::Item; 1946 default fn last(self) -> Option<I::Item> { 1947 #[inline] 1948 fn some<T>(_: Option<T>, x: T) -> Option<T> { 1949 Some(x) 1950 } 1951 1952 self.fold(None, some) 1953 } 1954 } 1955 1956 /// Specialization for sized `I`s that uses `I`s implementation of `last()` 1957 /// instead of the default. 1958 #[stable(feature = "rust1", since = "1.0.0")] 1959 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { 1960 fn last(self) -> Option<I::Item> { 1961 (*self).last() 1962 } 1963 } 1964 1965 #[stable(feature = "rust1", since = "1.0.0")] 1966 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { 1967 fn next_back(&mut self) -> Option<I::Item> { 1968 (**self).next_back() 1969 } 1970 fn nth_back(&mut self, n: usize) -> Option<I::Item> { 1971 (**self).nth_back(n) 1972 } 1973 } 1974 #[stable(feature = "rust1", since = "1.0.0")] 1975 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { 1976 fn len(&self) -> usize { 1977 (**self).len() 1978 } 1979 fn is_empty(&self) -> bool { 1980 (**self).is_empty() 1981 } 1982 } 1983 1984 #[stable(feature = "fused", since = "1.26.0")] 1985 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} 1986 1987 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1988 impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { 1989 type Output = <F as FnOnce<Args>>::Output; 1990 1991 extern "rust-call" fn call_once(self, args: Args) -> Self::Output { 1992 <F as FnOnce<Args>>::call_once(*self, args) 1993 } 1994 } 1995 1996 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1997 impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { 1998 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { 1999 <F as FnMut<Args>>::call_mut(self, args) 2000 } 2001 } 2002 2003 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2004 impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { 2005 extern "rust-call" fn call(&self, args: Args) -> Self::Output { 2006 <F as Fn<Args>>::call(self, args) 2007 } 2008 } 2009 2010 #[unstable(feature = "coerce_unsized", issue = "18598")] 2011 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} 2012 2013 #[unstable(feature = "dispatch_from_dyn", issue = "none")] 2014 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} 2015 2016 #[cfg(not(no_global_oom_handling))] 2017 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] 2018 impl<I> FromIterator<I> for Box<[I]> { 2019 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { 2020 iter.into_iter().collect::<Vec<_>>().into_boxed_slice() 2021 } 2022 } 2023 2024 #[cfg(not(no_global_oom_handling))] 2025 #[stable(feature = "box_slice_clone", since = "1.3.0")] 2026 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { 2027 fn clone(&self) -> Self { 2028 let alloc = Box::allocator(self).clone(); 2029 self.to_vec_in(alloc).into_boxed_slice() 2030 } 2031 2032 fn clone_from(&mut self, other: &Self) { 2033 if self.len() == other.len() { 2034 self.clone_from_slice(&other); 2035 } else { 2036 *self = other.clone(); 2037 } 2038 } 2039 } 2040 2041 #[stable(feature = "box_borrow", since = "1.1.0")] 2042 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { 2043 fn borrow(&self) -> &T { 2044 &**self 2045 } 2046 } 2047 2048 #[stable(feature = "box_borrow", since = "1.1.0")] 2049 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { 2050 fn borrow_mut(&mut self) -> &mut T { 2051 &mut **self 2052 } 2053 } 2054 2055 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2056 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { 2057 fn as_ref(&self) -> &T { 2058 &**self 2059 } 2060 } 2061 2062 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2063 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { 2064 fn as_mut(&mut self) -> &mut T { 2065 &mut **self 2066 } 2067 } 2068 2069 /* Nota bene 2070 * 2071 * We could have chosen not to add this impl, and instead have written a 2072 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, 2073 * because Box<T> implements Unpin even when T does not, as a result of 2074 * this impl. 2075 * 2076 * We chose this API instead of the alternative for a few reasons: 2077 * - Logically, it is helpful to understand pinning in regard to the 2078 * memory region being pointed to. For this reason none of the 2079 * standard library pointer types support projecting through a pin 2080 * (Box<T> is the only pointer type in std for which this would be 2081 * safe.) 2082 * - It is in practice very useful to have Box<T> be unconditionally 2083 * Unpin because of trait objects, for which the structural auto 2084 * trait functionality does not apply (e.g., Box<dyn Foo> would 2085 * otherwise not be Unpin). 2086 * 2087 * Another type with the same semantics as Box but only a conditional 2088 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and 2089 * could have a method to project a Pin<T> from it. 2090 */ 2091 #[stable(feature = "pin", since = "1.33.0")] 2092 impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} 2093 2094 #[unstable(feature = "generator_trait", issue = "43122")] 2095 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> 2096 where 2097 A: 'static, 2098 { 2099 type Yield = G::Yield; 2100 type Return = G::Return; 2101 2102 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2103 G::resume(Pin::new(&mut *self), arg) 2104 } 2105 } 2106 2107 #[unstable(feature = "generator_trait", issue = "43122")] 2108 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> 2109 where 2110 A: 'static, 2111 { 2112 type Yield = G::Yield; 2113 type Return = G::Return; 2114 2115 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2116 G::resume((*self).as_mut(), arg) 2117 } 2118 } 2119 2120 #[stable(feature = "futures_api", since = "1.36.0")] 2121 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> 2122 where 2123 A: 'static, 2124 { 2125 type Output = F::Output; 2126 2127 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { 2128 F::poll(Pin::new(&mut *self), cx) 2129 } 2130 } 2131 2132 #[unstable(feature = "async_iterator", issue = "79024")] 2133 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { 2134 type Item = S::Item; 2135 2136 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 2137 Pin::new(&mut **self).poll_next(cx) 2138 } 2139 2140 fn size_hint(&self) -> (usize, Option<usize>) { 2141 (**self).size_hint() 2142 } 2143 } 2144 2145 impl dyn Error { 2146 #[inline] 2147 #[stable(feature = "error_downcast", since = "1.3.0")] 2148 #[rustc_allow_incoherent_impl] 2149 /// Attempts to downcast the box to a concrete type. 2150 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { 2151 if self.is::<T>() { 2152 unsafe { 2153 let raw: *mut dyn Error = Box::into_raw(self); 2154 Ok(Box::from_raw(raw as *mut T)) 2155 } 2156 } else { 2157 Err(self) 2158 } 2159 } 2160 } 2161 2162 impl dyn Error + Send { 2163 #[inline] 2164 #[stable(feature = "error_downcast", since = "1.3.0")] 2165 #[rustc_allow_incoherent_impl] 2166 /// Attempts to downcast the box to a concrete type. 2167 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { 2168 let err: Box<dyn Error> = self; 2169 <dyn Error>::downcast(err).map_err(|s| unsafe { 2170 // Reapply the `Send` marker. 2171 mem::transmute::<Box<dyn Error>, Box<dyn Error + Send>>(s) 2172 }) 2173 } 2174 } 2175 2176 impl dyn Error + Send + Sync { 2177 #[inline] 2178 #[stable(feature = "error_downcast", since = "1.3.0")] 2179 #[rustc_allow_incoherent_impl] 2180 /// Attempts to downcast the box to a concrete type. 2181 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { 2182 let err: Box<dyn Error> = self; 2183 <dyn Error>::downcast(err).map_err(|s| unsafe { 2184 // Reapply the `Send + Sync` marker. 2185 mem::transmute::<Box<dyn Error>, Box<dyn Error + Send + Sync>>(s) 2186 }) 2187 } 2188 } 2189 2190 #[cfg(not(no_global_oom_handling))] 2191 #[stable(feature = "rust1", since = "1.0.0")] 2192 impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { 2193 /// Converts a type of [`Error`] into a box of dyn [`Error`]. 2194 /// 2195 /// # Examples 2196 /// 2197 /// ``` 2198 /// use std::error::Error; 2199 /// use std::fmt; 2200 /// use std::mem; 2201 /// 2202 /// #[derive(Debug)] 2203 /// struct AnError; 2204 /// 2205 /// impl fmt::Display for AnError { 2206 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2207 /// write!(f, "An error") 2208 /// } 2209 /// } 2210 /// 2211 /// impl Error for AnError {} 2212 /// 2213 /// let an_error = AnError; 2214 /// assert!(0 == mem::size_of_val(&an_error)); 2215 /// let a_boxed_error = Box::<dyn Error>::from(an_error); 2216 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2217 /// ``` 2218 fn from(err: E) -> Box<dyn Error + 'a> { 2219 Box::new(err) 2220 } 2221 } 2222 2223 #[cfg(not(no_global_oom_handling))] 2224 #[stable(feature = "rust1", since = "1.0.0")] 2225 impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { 2226 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of 2227 /// dyn [`Error`] + [`Send`] + [`Sync`]. 2228 /// 2229 /// # Examples 2230 /// 2231 /// ``` 2232 /// use std::error::Error; 2233 /// use std::fmt; 2234 /// use std::mem; 2235 /// 2236 /// #[derive(Debug)] 2237 /// struct AnError; 2238 /// 2239 /// impl fmt::Display for AnError { 2240 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2241 /// write!(f, "An error") 2242 /// } 2243 /// } 2244 /// 2245 /// impl Error for AnError {} 2246 /// 2247 /// unsafe impl Send for AnError {} 2248 /// 2249 /// unsafe impl Sync for AnError {} 2250 /// 2251 /// let an_error = AnError; 2252 /// assert!(0 == mem::size_of_val(&an_error)); 2253 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); 2254 /// assert!( 2255 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2256 /// ``` 2257 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { 2258 Box::new(err) 2259 } 2260 } 2261 2262 #[cfg(not(no_global_oom_handling))] 2263 #[stable(feature = "rust1", since = "1.0.0")] 2264 impl From<String> for Box<dyn Error + Send + Sync> { 2265 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2266 /// 2267 /// # Examples 2268 /// 2269 /// ``` 2270 /// use std::error::Error; 2271 /// use std::mem; 2272 /// 2273 /// let a_string_error = "a string error".to_string(); 2274 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); 2275 /// assert!( 2276 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2277 /// ``` 2278 #[inline] 2279 fn from(err: String) -> Box<dyn Error + Send + Sync> { 2280 struct StringError(String); 2281 2282 impl Error for StringError { 2283 #[allow(deprecated)] 2284 fn description(&self) -> &str { 2285 &self.0 2286 } 2287 } 2288 2289 impl fmt::Display for StringError { 2290 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2291 fmt::Display::fmt(&self.0, f) 2292 } 2293 } 2294 2295 // Purposefully skip printing "StringError(..)" 2296 impl fmt::Debug for StringError { 2297 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2298 fmt::Debug::fmt(&self.0, f) 2299 } 2300 } 2301 2302 Box::new(StringError(err)) 2303 } 2304 } 2305 2306 #[cfg(not(no_global_oom_handling))] 2307 #[stable(feature = "string_box_error", since = "1.6.0")] 2308 impl From<String> for Box<dyn Error> { 2309 /// Converts a [`String`] into a box of dyn [`Error`]. 2310 /// 2311 /// # Examples 2312 /// 2313 /// ``` 2314 /// use std::error::Error; 2315 /// use std::mem; 2316 /// 2317 /// let a_string_error = "a string error".to_string(); 2318 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); 2319 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2320 /// ``` 2321 fn from(str_err: String) -> Box<dyn Error> { 2322 let err1: Box<dyn Error + Send + Sync> = From::from(str_err); 2323 let err2: Box<dyn Error> = err1; 2324 err2 2325 } 2326 } 2327 2328 #[cfg(not(no_global_oom_handling))] 2329 #[stable(feature = "rust1", since = "1.0.0")] 2330 impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { 2331 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2332 /// 2333 /// [`str`]: prim@str 2334 /// 2335 /// # Examples 2336 /// 2337 /// ``` 2338 /// use std::error::Error; 2339 /// use std::mem; 2340 /// 2341 /// let a_str_error = "a str error"; 2342 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); 2343 /// assert!( 2344 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2345 /// ``` 2346 #[inline] 2347 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { 2348 From::from(String::from(err)) 2349 } 2350 } 2351 2352 #[cfg(not(no_global_oom_handling))] 2353 #[stable(feature = "string_box_error", since = "1.6.0")] 2354 impl From<&str> for Box<dyn Error> { 2355 /// Converts a [`str`] into a box of dyn [`Error`]. 2356 /// 2357 /// [`str`]: prim@str 2358 /// 2359 /// # Examples 2360 /// 2361 /// ``` 2362 /// use std::error::Error; 2363 /// use std::mem; 2364 /// 2365 /// let a_str_error = "a str error"; 2366 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); 2367 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2368 /// ``` 2369 fn from(err: &str) -> Box<dyn Error> { 2370 From::from(String::from(err)) 2371 } 2372 } 2373 2374 #[cfg(not(no_global_oom_handling))] 2375 #[stable(feature = "cow_box_error", since = "1.22.0")] 2376 impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { 2377 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2378 /// 2379 /// # Examples 2380 /// 2381 /// ``` 2382 /// use std::error::Error; 2383 /// use std::mem; 2384 /// use std::borrow::Cow; 2385 /// 2386 /// let a_cow_str_error = Cow::from("a str error"); 2387 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); 2388 /// assert!( 2389 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2390 /// ``` 2391 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { 2392 From::from(String::from(err)) 2393 } 2394 } 2395 2396 #[cfg(not(no_global_oom_handling))] 2397 #[stable(feature = "cow_box_error", since = "1.22.0")] 2398 impl<'a> From<Cow<'a, str>> for Box<dyn Error> { 2399 /// Converts a [`Cow`] into a box of dyn [`Error`]. 2400 /// 2401 /// # Examples 2402 /// 2403 /// ``` 2404 /// use std::error::Error; 2405 /// use std::mem; 2406 /// use std::borrow::Cow; 2407 /// 2408 /// let a_cow_str_error = Cow::from("a str error"); 2409 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); 2410 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2411 /// ``` 2412 fn from(err: Cow<'a, str>) -> Box<dyn Error> { 2413 From::from(String::from(err)) 2414 } 2415 } 2416 2417 #[stable(feature = "box_error", since = "1.8.0")] 2418 impl<T: core::error::Error> core::error::Error for Box<T> { 2419 #[allow(deprecated, deprecated_in_future)] 2420 fn description(&self) -> &str { 2421 core::error::Error::description(&**self) 2422 } 2423 2424 #[allow(deprecated)] 2425 fn cause(&self) -> Option<&dyn core::error::Error> { 2426 core::error::Error::cause(&**self) 2427 } 2428 2429 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { 2430 core::error::Error::source(&**self) 2431 } 2432 } 2433