1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! A pointer type for heap allocation. 4 //! 5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of 6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and 7 //! drop their contents when they go out of scope. Boxes also ensure that they 8 //! never allocate more than `isize::MAX` bytes. 9 //! 10 //! # Examples 11 //! 12 //! Move a value from the stack to the heap by creating a [`Box`]: 13 //! 14 //! ``` 15 //! let val: u8 = 5; 16 //! let boxed: Box<u8> = Box::new(val); 17 //! ``` 18 //! 19 //! Move a value from a [`Box`] back to the stack by [dereferencing]: 20 //! 21 //! ``` 22 //! let boxed: Box<u8> = Box::new(5); 23 //! let val: u8 = *boxed; 24 //! ``` 25 //! 26 //! Creating a recursive data structure: 27 //! 28 //! ``` 29 //! #[derive(Debug)] 30 //! enum List<T> { 31 //! Cons(T, Box<List<T>>), 32 //! Nil, 33 //! } 34 //! 35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); 36 //! println!("{list:?}"); 37 //! ``` 38 //! 39 //! This will print `Cons(1, Cons(2, Nil))`. 40 //! 41 //! Recursive structures must be boxed, because if the definition of `Cons` 42 //! looked like this: 43 //! 44 //! ```compile_fail,E0072 45 //! # enum List<T> { 46 //! Cons(T, List<T>), 47 //! # } 48 //! ``` 49 //! 50 //! It wouldn't work. This is because the size of a `List` depends on how many 51 //! elements are in the list, and so we don't know how much memory to allocate 52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how 53 //! big `Cons` needs to be. 54 //! 55 //! # Memory layout 56 //! 57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for 58 //! its allocation. It is valid to convert both ways between a [`Box`] and a 59 //! raw pointer allocated with the [`Global`] allocator, given that the 60 //! [`Layout`] used with the allocator is correct for the type. More precisely, 61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator 62 //! with `Layout::for_value(&*value)` may be converted into a box using 63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut 64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the 65 //! [`Global`] allocator with [`Layout::for_value(&*value)`]. 66 //! 67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads 68 //! and writes and sufficiently aligned. In particular, casting any aligned 69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a 70 //! pointer pointing into previously allocated memory that since got freed is 71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot 72 //! be used is to use [`ptr::NonNull::dangling`]. 73 //! 74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented 75 //! as a single pointer and is also ABI-compatible with C pointers 76 //! (i.e. the C type `T*`). This means that if you have extern "C" 77 //! Rust functions that will be called from C, you can define those 78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding 79 //! type on the C side. As an example, consider this C header which 80 //! declares functions that create and destroy some kind of `Foo` 81 //! value: 82 //! 83 //! ```c 84 //! /* C header */ 85 //! 86 //! /* Returns ownership to the caller */ 87 //! struct Foo* foo_new(void); 88 //! 89 //! /* Takes ownership from the caller; no-op when invoked with null */ 90 //! void foo_delete(struct Foo*); 91 //! ``` 92 //! 93 //! These two functions might be implemented in Rust as follows. Here, the 94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures 95 //! the ownership constraints. Note also that the nullable argument to 96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` 97 //! cannot be null. 98 //! 99 //! ``` 100 //! #[repr(C)] 101 //! pub struct Foo; 102 //! 103 //! #[no_mangle] 104 //! pub extern "C" fn foo_new() -> Box<Foo> { 105 //! Box::new(Foo) 106 //! } 107 //! 108 //! #[no_mangle] 109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} 110 //! ``` 111 //! 112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer, 113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` 114 //! and expect things to work. `Box<T>` values will always be fully aligned, 115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to 116 //! free the value with the global allocator. In general, the best practice 117 //! is to only use `Box<T>` for pointers that originated from the global 118 //! allocator. 119 //! 120 //! **Important.** At least at present, you should avoid using 121 //! `Box<T>` types for functions that are defined in C but invoked 122 //! from Rust. In those cases, you should directly mirror the C types 123 //! as closely as possible. Using types like `Box<T>` where the C 124 //! definition is just using `T*` can lead to undefined behavior, as 125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. 126 //! 127 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 128 //! [dereferencing]: core::ops::Deref 129 //! [`Box::<T>::from_raw(value)`]: Box::from_raw 130 //! [`Global`]: crate::alloc::Global 131 //! [`Layout`]: crate::alloc::Layout 132 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value 133 //! [valid]: ptr#safety 134 135 #![stable(feature = "rust1", since = "1.0.0")] 136 137 use core::any::Any; 138 use core::async_iter::AsyncIterator; 139 use core::borrow; 140 use core::cmp::Ordering; 141 use core::convert::{From, TryFrom}; 142 use core::fmt; 143 use core::future::Future; 144 use core::hash::{Hash, Hasher}; 145 #[cfg(not(no_global_oom_handling))] 146 use core::iter::FromIterator; 147 use core::iter::{FusedIterator, Iterator}; 148 use core::marker::{Destruct, Unpin, Unsize}; 149 use core::mem; 150 use core::ops::{ 151 CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, 152 }; 153 use core::pin::Pin; 154 use core::ptr::{self, Unique}; 155 use core::task::{Context, Poll}; 156 157 #[cfg(not(no_global_oom_handling))] 158 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; 159 use crate::alloc::{AllocError, Allocator, Global, Layout}; 160 #[cfg(not(no_global_oom_handling))] 161 use crate::borrow::Cow; 162 use crate::raw_vec::RawVec; 163 #[cfg(not(no_global_oom_handling))] 164 use crate::str::from_boxed_utf8_unchecked; 165 #[cfg(not(no_global_oom_handling))] 166 use crate::vec::Vec; 167 168 #[cfg(not(no_thin))] 169 #[unstable(feature = "thin_box", issue = "92791")] 170 pub use thin::ThinBox; 171 172 #[cfg(not(no_thin))] 173 mod thin; 174 175 /// A pointer type for heap allocation. 176 /// 177 /// See the [module-level documentation](../../std/boxed/index.html) for more. 178 #[lang = "owned_box"] 179 #[fundamental] 180 #[stable(feature = "rust1", since = "1.0.0")] 181 // The declaration of the `Box` struct must be kept in sync with the 182 // `alloc::alloc::box_free` function or ICEs will happen. See the comment 183 // on `box_free` for more details. 184 pub struct Box< 185 T: ?Sized, 186 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 187 >(Unique<T>, A); 188 189 impl<T> Box<T> { 190 /// Allocates memory on the heap and then places `x` into it. 191 /// 192 /// This doesn't actually allocate if `T` is zero-sized. 193 /// 194 /// # Examples 195 /// 196 /// ``` 197 /// let five = Box::new(5); 198 /// ``` 199 #[cfg(not(no_global_oom_handling))] 200 #[inline(always)] 201 #[stable(feature = "rust1", since = "1.0.0")] 202 #[must_use] 203 pub fn new(x: T) -> Self { 204 box x 205 } 206 207 /// Constructs a new box with uninitialized contents. 208 /// 209 /// # Examples 210 /// 211 /// ``` 212 /// #![feature(new_uninit)] 213 /// 214 /// let mut five = Box::<u32>::new_uninit(); 215 /// 216 /// let five = unsafe { 217 /// // Deferred initialization: 218 /// five.as_mut_ptr().write(5); 219 /// 220 /// five.assume_init() 221 /// }; 222 /// 223 /// assert_eq!(*five, 5) 224 /// ``` 225 #[cfg(not(no_global_oom_handling))] 226 #[unstable(feature = "new_uninit", issue = "63291")] 227 #[must_use] 228 #[inline] 229 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { 230 Self::new_uninit_in(Global) 231 } 232 233 /// Constructs a new `Box` with uninitialized contents, with the memory 234 /// being filled with `0` bytes. 235 /// 236 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 237 /// of this method. 238 /// 239 /// # Examples 240 /// 241 /// ``` 242 /// #![feature(new_uninit)] 243 /// 244 /// let zero = Box::<u32>::new_zeroed(); 245 /// let zero = unsafe { zero.assume_init() }; 246 /// 247 /// assert_eq!(*zero, 0) 248 /// ``` 249 /// 250 /// [zeroed]: mem::MaybeUninit::zeroed 251 #[cfg(not(no_global_oom_handling))] 252 #[inline] 253 #[unstable(feature = "new_uninit", issue = "63291")] 254 #[must_use] 255 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { 256 Self::new_zeroed_in(Global) 257 } 258 259 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then 260 /// `x` will be pinned in memory and unable to be moved. 261 #[cfg(not(no_global_oom_handling))] 262 #[stable(feature = "pin", since = "1.33.0")] 263 #[must_use] 264 #[inline(always)] 265 pub fn pin(x: T) -> Pin<Box<T>> { 266 (box x).into() 267 } 268 269 /// Allocates memory on the heap then places `x` into it, 270 /// returning an error if the allocation fails 271 /// 272 /// This doesn't actually allocate if `T` is zero-sized. 273 /// 274 /// # Examples 275 /// 276 /// ``` 277 /// #![feature(allocator_api)] 278 /// 279 /// let five = Box::try_new(5)?; 280 /// # Ok::<(), std::alloc::AllocError>(()) 281 /// ``` 282 #[unstable(feature = "allocator_api", issue = "32838")] 283 #[inline] 284 pub fn try_new(x: T) -> Result<Self, AllocError> { 285 Self::try_new_in(x, Global) 286 } 287 288 /// Constructs a new box with uninitialized contents on the heap, 289 /// returning an error if the allocation fails 290 /// 291 /// # Examples 292 /// 293 /// ``` 294 /// #![feature(allocator_api, new_uninit)] 295 /// 296 /// let mut five = Box::<u32>::try_new_uninit()?; 297 /// 298 /// let five = unsafe { 299 /// // Deferred initialization: 300 /// five.as_mut_ptr().write(5); 301 /// 302 /// five.assume_init() 303 /// }; 304 /// 305 /// assert_eq!(*five, 5); 306 /// # Ok::<(), std::alloc::AllocError>(()) 307 /// ``` 308 #[unstable(feature = "allocator_api", issue = "32838")] 309 // #[unstable(feature = "new_uninit", issue = "63291")] 310 #[inline] 311 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 312 Box::try_new_uninit_in(Global) 313 } 314 315 /// Constructs a new `Box` with uninitialized contents, with the memory 316 /// being filled with `0` bytes on the heap 317 /// 318 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 319 /// of this method. 320 /// 321 /// # Examples 322 /// 323 /// ``` 324 /// #![feature(allocator_api, new_uninit)] 325 /// 326 /// let zero = Box::<u32>::try_new_zeroed()?; 327 /// let zero = unsafe { zero.assume_init() }; 328 /// 329 /// assert_eq!(*zero, 0); 330 /// # Ok::<(), std::alloc::AllocError>(()) 331 /// ``` 332 /// 333 /// [zeroed]: mem::MaybeUninit::zeroed 334 #[unstable(feature = "allocator_api", issue = "32838")] 335 // #[unstable(feature = "new_uninit", issue = "63291")] 336 #[inline] 337 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 338 Box::try_new_zeroed_in(Global) 339 } 340 } 341 342 impl<T, A: Allocator> Box<T, A> { 343 /// Allocates memory in the given allocator then places `x` into it. 344 /// 345 /// This doesn't actually allocate if `T` is zero-sized. 346 /// 347 /// # Examples 348 /// 349 /// ``` 350 /// #![feature(allocator_api)] 351 /// 352 /// use std::alloc::System; 353 /// 354 /// let five = Box::new_in(5, System); 355 /// ``` 356 #[cfg(not(no_global_oom_handling))] 357 #[unstable(feature = "allocator_api", issue = "32838")] 358 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 359 #[must_use] 360 #[inline] 361 pub const fn new_in(x: T, alloc: A) -> Self 362 where 363 A: ~const Allocator + ~const Destruct, 364 { 365 let mut boxed = Self::new_uninit_in(alloc); 366 unsafe { 367 boxed.as_mut_ptr().write(x); 368 boxed.assume_init() 369 } 370 } 371 372 /// Allocates memory in the given allocator then places `x` into it, 373 /// returning an error if the allocation fails 374 /// 375 /// This doesn't actually allocate if `T` is zero-sized. 376 /// 377 /// # Examples 378 /// 379 /// ``` 380 /// #![feature(allocator_api)] 381 /// 382 /// use std::alloc::System; 383 /// 384 /// let five = Box::try_new_in(5, System)?; 385 /// # Ok::<(), std::alloc::AllocError>(()) 386 /// ``` 387 #[unstable(feature = "allocator_api", issue = "32838")] 388 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 389 #[inline] 390 pub const fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> 391 where 392 T: ~const Destruct, 393 A: ~const Allocator + ~const Destruct, 394 { 395 let mut boxed = Self::try_new_uninit_in(alloc)?; 396 unsafe { 397 boxed.as_mut_ptr().write(x); 398 Ok(boxed.assume_init()) 399 } 400 } 401 402 /// Constructs a new box with uninitialized contents in the provided allocator. 403 /// 404 /// # Examples 405 /// 406 /// ``` 407 /// #![feature(allocator_api, new_uninit)] 408 /// 409 /// use std::alloc::System; 410 /// 411 /// let mut five = Box::<u32, _>::new_uninit_in(System); 412 /// 413 /// let five = unsafe { 414 /// // Deferred initialization: 415 /// five.as_mut_ptr().write(5); 416 /// 417 /// five.assume_init() 418 /// }; 419 /// 420 /// assert_eq!(*five, 5) 421 /// ``` 422 #[unstable(feature = "allocator_api", issue = "32838")] 423 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 424 #[cfg(not(no_global_oom_handling))] 425 #[must_use] 426 // #[unstable(feature = "new_uninit", issue = "63291")] 427 pub const fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 428 where 429 A: ~const Allocator + ~const Destruct, 430 { 431 let layout = Layout::new::<mem::MaybeUninit<T>>(); 432 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 433 // That would make code size bigger. 434 match Box::try_new_uninit_in(alloc) { 435 Ok(m) => m, 436 Err(_) => handle_alloc_error(layout), 437 } 438 } 439 440 /// Constructs a new box with uninitialized contents in the provided allocator, 441 /// returning an error if the allocation fails 442 /// 443 /// # Examples 444 /// 445 /// ``` 446 /// #![feature(allocator_api, new_uninit)] 447 /// 448 /// use std::alloc::System; 449 /// 450 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; 451 /// 452 /// let five = unsafe { 453 /// // Deferred initialization: 454 /// five.as_mut_ptr().write(5); 455 /// 456 /// five.assume_init() 457 /// }; 458 /// 459 /// assert_eq!(*five, 5); 460 /// # Ok::<(), std::alloc::AllocError>(()) 461 /// ``` 462 #[unstable(feature = "allocator_api", issue = "32838")] 463 // #[unstable(feature = "new_uninit", issue = "63291")] 464 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 465 pub const fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 466 where 467 A: ~const Allocator + ~const Destruct, 468 { 469 let layout = Layout::new::<mem::MaybeUninit<T>>(); 470 let ptr = alloc.allocate(layout)?.cast(); 471 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 472 } 473 474 /// Constructs a new `Box` with uninitialized contents, with the memory 475 /// being filled with `0` bytes in the provided allocator. 476 /// 477 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 478 /// of this method. 479 /// 480 /// # Examples 481 /// 482 /// ``` 483 /// #![feature(allocator_api, new_uninit)] 484 /// 485 /// use std::alloc::System; 486 /// 487 /// let zero = Box::<u32, _>::new_zeroed_in(System); 488 /// let zero = unsafe { zero.assume_init() }; 489 /// 490 /// assert_eq!(*zero, 0) 491 /// ``` 492 /// 493 /// [zeroed]: mem::MaybeUninit::zeroed 494 #[unstable(feature = "allocator_api", issue = "32838")] 495 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 496 #[cfg(not(no_global_oom_handling))] 497 // #[unstable(feature = "new_uninit", issue = "63291")] 498 #[must_use] 499 pub const fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 500 where 501 A: ~const Allocator + ~const Destruct, 502 { 503 let layout = Layout::new::<mem::MaybeUninit<T>>(); 504 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 505 // That would make code size bigger. 506 match Box::try_new_zeroed_in(alloc) { 507 Ok(m) => m, 508 Err(_) => handle_alloc_error(layout), 509 } 510 } 511 512 /// Constructs a new `Box` with uninitialized contents, with the memory 513 /// being filled with `0` bytes in the provided allocator, 514 /// returning an error if the allocation fails, 515 /// 516 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 517 /// of this method. 518 /// 519 /// # Examples 520 /// 521 /// ``` 522 /// #![feature(allocator_api, new_uninit)] 523 /// 524 /// use std::alloc::System; 525 /// 526 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; 527 /// let zero = unsafe { zero.assume_init() }; 528 /// 529 /// assert_eq!(*zero, 0); 530 /// # Ok::<(), std::alloc::AllocError>(()) 531 /// ``` 532 /// 533 /// [zeroed]: mem::MaybeUninit::zeroed 534 #[unstable(feature = "allocator_api", issue = "32838")] 535 // #[unstable(feature = "new_uninit", issue = "63291")] 536 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 537 pub const fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 538 where 539 A: ~const Allocator + ~const Destruct, 540 { 541 let layout = Layout::new::<mem::MaybeUninit<T>>(); 542 let ptr = alloc.allocate_zeroed(layout)?.cast(); 543 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 544 } 545 546 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then 547 /// `x` will be pinned in memory and unable to be moved. 548 #[cfg(not(no_global_oom_handling))] 549 #[unstable(feature = "allocator_api", issue = "32838")] 550 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 551 #[must_use] 552 #[inline(always)] 553 pub const fn pin_in(x: T, alloc: A) -> Pin<Self> 554 where 555 A: 'static + ~const Allocator + ~const Destruct, 556 { 557 Self::into_pin(Self::new_in(x, alloc)) 558 } 559 560 /// Converts a `Box<T>` into a `Box<[T]>` 561 /// 562 /// This conversion does not allocate on the heap and happens in place. 563 #[unstable(feature = "box_into_boxed_slice", issue = "71582")] 564 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 565 pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> { 566 let (raw, alloc) = Box::into_raw_with_allocator(boxed); 567 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } 568 } 569 570 /// Consumes the `Box`, returning the wrapped value. 571 /// 572 /// # Examples 573 /// 574 /// ``` 575 /// #![feature(box_into_inner)] 576 /// 577 /// let c = Box::new(5); 578 /// 579 /// assert_eq!(Box::into_inner(c), 5); 580 /// ``` 581 #[unstable(feature = "box_into_inner", issue = "80437")] 582 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 583 #[inline] 584 pub const fn into_inner(boxed: Self) -> T 585 where 586 Self: ~const Destruct, 587 { 588 *boxed 589 } 590 } 591 592 impl<T> Box<[T]> { 593 /// Constructs a new boxed slice with uninitialized contents. 594 /// 595 /// # Examples 596 /// 597 /// ``` 598 /// #![feature(new_uninit)] 599 /// 600 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 601 /// 602 /// let values = unsafe { 603 /// // Deferred initialization: 604 /// values[0].as_mut_ptr().write(1); 605 /// values[1].as_mut_ptr().write(2); 606 /// values[2].as_mut_ptr().write(3); 607 /// 608 /// values.assume_init() 609 /// }; 610 /// 611 /// assert_eq!(*values, [1, 2, 3]) 612 /// ``` 613 #[cfg(not(no_global_oom_handling))] 614 #[unstable(feature = "new_uninit", issue = "63291")] 615 #[must_use] 616 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 617 unsafe { RawVec::with_capacity(len).into_box(len) } 618 } 619 620 /// Constructs a new boxed slice with uninitialized contents, with the memory 621 /// being filled with `0` bytes. 622 /// 623 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 624 /// of this method. 625 /// 626 /// # Examples 627 /// 628 /// ``` 629 /// #![feature(new_uninit)] 630 /// 631 /// let values = Box::<[u32]>::new_zeroed_slice(3); 632 /// let values = unsafe { values.assume_init() }; 633 /// 634 /// assert_eq!(*values, [0, 0, 0]) 635 /// ``` 636 /// 637 /// [zeroed]: mem::MaybeUninit::zeroed 638 #[cfg(not(no_global_oom_handling))] 639 #[unstable(feature = "new_uninit", issue = "63291")] 640 #[must_use] 641 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 642 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } 643 } 644 645 /// Constructs a new boxed slice with uninitialized contents. Returns an error if 646 /// the allocation fails 647 /// 648 /// # Examples 649 /// 650 /// ``` 651 /// #![feature(allocator_api, new_uninit)] 652 /// 653 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; 654 /// let values = unsafe { 655 /// // Deferred initialization: 656 /// values[0].as_mut_ptr().write(1); 657 /// values[1].as_mut_ptr().write(2); 658 /// values[2].as_mut_ptr().write(3); 659 /// values.assume_init() 660 /// }; 661 /// 662 /// assert_eq!(*values, [1, 2, 3]); 663 /// # Ok::<(), std::alloc::AllocError>(()) 664 /// ``` 665 #[unstable(feature = "allocator_api", issue = "32838")] 666 #[inline] 667 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 668 unsafe { 669 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 670 Ok(l) => l, 671 Err(_) => return Err(AllocError), 672 }; 673 let ptr = Global.allocate(layout)?; 674 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 675 } 676 } 677 678 /// Constructs a new boxed slice with uninitialized contents, with the memory 679 /// being filled with `0` bytes. Returns an error if the allocation fails 680 /// 681 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 682 /// of this method. 683 /// 684 /// # Examples 685 /// 686 /// ``` 687 /// #![feature(allocator_api, new_uninit)] 688 /// 689 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; 690 /// let values = unsafe { values.assume_init() }; 691 /// 692 /// assert_eq!(*values, [0, 0, 0]); 693 /// # Ok::<(), std::alloc::AllocError>(()) 694 /// ``` 695 /// 696 /// [zeroed]: mem::MaybeUninit::zeroed 697 #[unstable(feature = "allocator_api", issue = "32838")] 698 #[inline] 699 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 700 unsafe { 701 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 702 Ok(l) => l, 703 Err(_) => return Err(AllocError), 704 }; 705 let ptr = Global.allocate_zeroed(layout)?; 706 Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) 707 } 708 } 709 } 710 711 impl<T, A: Allocator> Box<[T], A> { 712 /// Constructs a new boxed slice with uninitialized contents in the provided allocator. 713 /// 714 /// # Examples 715 /// 716 /// ``` 717 /// #![feature(allocator_api, new_uninit)] 718 /// 719 /// use std::alloc::System; 720 /// 721 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); 722 /// 723 /// let values = unsafe { 724 /// // Deferred initialization: 725 /// values[0].as_mut_ptr().write(1); 726 /// values[1].as_mut_ptr().write(2); 727 /// values[2].as_mut_ptr().write(3); 728 /// 729 /// values.assume_init() 730 /// }; 731 /// 732 /// assert_eq!(*values, [1, 2, 3]) 733 /// ``` 734 #[cfg(not(no_global_oom_handling))] 735 #[unstable(feature = "allocator_api", issue = "32838")] 736 // #[unstable(feature = "new_uninit", issue = "63291")] 737 #[must_use] 738 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 739 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } 740 } 741 742 /// Constructs a new boxed slice with uninitialized contents in the provided allocator, 743 /// with the memory being filled with `0` bytes. 744 /// 745 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 746 /// of this method. 747 /// 748 /// # Examples 749 /// 750 /// ``` 751 /// #![feature(allocator_api, new_uninit)] 752 /// 753 /// use std::alloc::System; 754 /// 755 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); 756 /// let values = unsafe { values.assume_init() }; 757 /// 758 /// assert_eq!(*values, [0, 0, 0]) 759 /// ``` 760 /// 761 /// [zeroed]: mem::MaybeUninit::zeroed 762 #[cfg(not(no_global_oom_handling))] 763 #[unstable(feature = "allocator_api", issue = "32838")] 764 // #[unstable(feature = "new_uninit", issue = "63291")] 765 #[must_use] 766 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 767 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } 768 } 769 } 770 771 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { 772 /// Converts to `Box<T, A>`. 773 /// 774 /// # Safety 775 /// 776 /// As with [`MaybeUninit::assume_init`], 777 /// it is up to the caller to guarantee that the value 778 /// really is in an initialized state. 779 /// Calling this when the content is not yet fully initialized 780 /// causes immediate undefined behavior. 781 /// 782 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 783 /// 784 /// # Examples 785 /// 786 /// ``` 787 /// #![feature(new_uninit)] 788 /// 789 /// let mut five = Box::<u32>::new_uninit(); 790 /// 791 /// let five: Box<u32> = unsafe { 792 /// // Deferred initialization: 793 /// five.as_mut_ptr().write(5); 794 /// 795 /// five.assume_init() 796 /// }; 797 /// 798 /// assert_eq!(*five, 5) 799 /// ``` 800 #[unstable(feature = "new_uninit", issue = "63291")] 801 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 802 #[inline] 803 pub const unsafe fn assume_init(self) -> Box<T, A> { 804 let (raw, alloc) = Box::into_raw_with_allocator(self); 805 unsafe { Box::from_raw_in(raw as *mut T, alloc) } 806 } 807 808 /// Writes the value and converts to `Box<T, A>`. 809 /// 810 /// This method converts the box similarly to [`Box::assume_init`] but 811 /// writes `value` into it before conversion thus guaranteeing safety. 812 /// In some scenarios use of this method may improve performance because 813 /// the compiler may be able to optimize copying from stack. 814 /// 815 /// # Examples 816 /// 817 /// ``` 818 /// #![feature(new_uninit)] 819 /// 820 /// let big_box = Box::<[usize; 1024]>::new_uninit(); 821 /// 822 /// let mut array = [0; 1024]; 823 /// for (i, place) in array.iter_mut().enumerate() { 824 /// *place = i; 825 /// } 826 /// 827 /// // The optimizer may be able to elide this copy, so previous code writes 828 /// // to heap directly. 829 /// let big_box = Box::write(big_box, array); 830 /// 831 /// for (i, x) in big_box.iter().enumerate() { 832 /// assert_eq!(*x, i); 833 /// } 834 /// ``` 835 #[unstable(feature = "new_uninit", issue = "63291")] 836 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 837 #[inline] 838 pub const fn write(mut boxed: Self, value: T) -> Box<T, A> { 839 unsafe { 840 (*boxed).write(value); 841 boxed.assume_init() 842 } 843 } 844 } 845 846 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { 847 /// Converts to `Box<[T], A>`. 848 /// 849 /// # Safety 850 /// 851 /// As with [`MaybeUninit::assume_init`], 852 /// it is up to the caller to guarantee that the values 853 /// really are in an initialized state. 854 /// Calling this when the content is not yet fully initialized 855 /// causes immediate undefined behavior. 856 /// 857 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 858 /// 859 /// # Examples 860 /// 861 /// ``` 862 /// #![feature(new_uninit)] 863 /// 864 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 865 /// 866 /// let values = unsafe { 867 /// // Deferred initialization: 868 /// values[0].as_mut_ptr().write(1); 869 /// values[1].as_mut_ptr().write(2); 870 /// values[2].as_mut_ptr().write(3); 871 /// 872 /// values.assume_init() 873 /// }; 874 /// 875 /// assert_eq!(*values, [1, 2, 3]) 876 /// ``` 877 #[unstable(feature = "new_uninit", issue = "63291")] 878 #[inline] 879 pub unsafe fn assume_init(self) -> Box<[T], A> { 880 let (raw, alloc) = Box::into_raw_with_allocator(self); 881 unsafe { Box::from_raw_in(raw as *mut [T], alloc) } 882 } 883 } 884 885 impl<T: ?Sized> Box<T> { 886 /// Constructs a box from a raw pointer. 887 /// 888 /// After calling this function, the raw pointer is owned by the 889 /// resulting `Box`. Specifically, the `Box` destructor will call 890 /// the destructor of `T` and free the allocated memory. For this 891 /// to be safe, the memory must have been allocated in accordance 892 /// with the [memory layout] used by `Box` . 893 /// 894 /// # Safety 895 /// 896 /// This function is unsafe because improper use may lead to 897 /// memory problems. For example, a double-free may occur if the 898 /// function is called twice on the same raw pointer. 899 /// 900 /// The safety conditions are described in the [memory layout] section. 901 /// 902 /// # Examples 903 /// 904 /// Recreate a `Box` which was previously converted to a raw pointer 905 /// using [`Box::into_raw`]: 906 /// ``` 907 /// let x = Box::new(5); 908 /// let ptr = Box::into_raw(x); 909 /// let x = unsafe { Box::from_raw(ptr) }; 910 /// ``` 911 /// Manually create a `Box` from scratch by using the global allocator: 912 /// ``` 913 /// use std::alloc::{alloc, Layout}; 914 /// 915 /// unsafe { 916 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; 917 /// // In general .write is required to avoid attempting to destruct 918 /// // the (uninitialized) previous contents of `ptr`, though for this 919 /// // simple example `*ptr = 5` would have worked as well. 920 /// ptr.write(5); 921 /// let x = Box::from_raw(ptr); 922 /// } 923 /// ``` 924 /// 925 /// [memory layout]: self#memory-layout 926 /// [`Layout`]: crate::Layout 927 #[stable(feature = "box_raw", since = "1.4.0")] 928 #[inline] 929 pub unsafe fn from_raw(raw: *mut T) -> Self { 930 unsafe { Self::from_raw_in(raw, Global) } 931 } 932 } 933 934 impl<T: ?Sized, A: Allocator> Box<T, A> { 935 /// Constructs a box from a raw pointer in the given allocator. 936 /// 937 /// After calling this function, the raw pointer is owned by the 938 /// resulting `Box`. Specifically, the `Box` destructor will call 939 /// the destructor of `T` and free the allocated memory. For this 940 /// to be safe, the memory must have been allocated in accordance 941 /// with the [memory layout] used by `Box` . 942 /// 943 /// # Safety 944 /// 945 /// This function is unsafe because improper use may lead to 946 /// memory problems. For example, a double-free may occur if the 947 /// function is called twice on the same raw pointer. 948 /// 949 /// 950 /// # Examples 951 /// 952 /// Recreate a `Box` which was previously converted to a raw pointer 953 /// using [`Box::into_raw_with_allocator`]: 954 /// ``` 955 /// #![feature(allocator_api)] 956 /// 957 /// use std::alloc::System; 958 /// 959 /// let x = Box::new_in(5, System); 960 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 961 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 962 /// ``` 963 /// Manually create a `Box` from scratch by using the system allocator: 964 /// ``` 965 /// #![feature(allocator_api, slice_ptr_get)] 966 /// 967 /// use std::alloc::{Allocator, Layout, System}; 968 /// 969 /// unsafe { 970 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; 971 /// // In general .write is required to avoid attempting to destruct 972 /// // the (uninitialized) previous contents of `ptr`, though for this 973 /// // simple example `*ptr = 5` would have worked as well. 974 /// ptr.write(5); 975 /// let x = Box::from_raw_in(ptr, System); 976 /// } 977 /// # Ok::<(), std::alloc::AllocError>(()) 978 /// ``` 979 /// 980 /// [memory layout]: self#memory-layout 981 /// [`Layout`]: crate::Layout 982 #[unstable(feature = "allocator_api", issue = "32838")] 983 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 984 #[inline] 985 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { 986 Box(unsafe { Unique::new_unchecked(raw) }, alloc) 987 } 988 989 /// Consumes the `Box`, returning a wrapped raw pointer. 990 /// 991 /// The pointer will be properly aligned and non-null. 992 /// 993 /// After calling this function, the caller is responsible for the 994 /// memory previously managed by the `Box`. In particular, the 995 /// caller should properly destroy `T` and release the memory, taking 996 /// into account the [memory layout] used by `Box`. The easiest way to 997 /// do this is to convert the raw pointer back into a `Box` with the 998 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform 999 /// the cleanup. 1000 /// 1001 /// Note: this is an associated function, which means that you have 1002 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This 1003 /// is so that there is no conflict with a method on the inner type. 1004 /// 1005 /// # Examples 1006 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] 1007 /// for automatic cleanup: 1008 /// ``` 1009 /// let x = Box::new(String::from("Hello")); 1010 /// let ptr = Box::into_raw(x); 1011 /// let x = unsafe { Box::from_raw(ptr) }; 1012 /// ``` 1013 /// Manual cleanup by explicitly running the destructor and deallocating 1014 /// the memory: 1015 /// ``` 1016 /// use std::alloc::{dealloc, Layout}; 1017 /// use std::ptr; 1018 /// 1019 /// let x = Box::new(String::from("Hello")); 1020 /// let p = Box::into_raw(x); 1021 /// unsafe { 1022 /// ptr::drop_in_place(p); 1023 /// dealloc(p as *mut u8, Layout::new::<String>()); 1024 /// } 1025 /// ``` 1026 /// 1027 /// [memory layout]: self#memory-layout 1028 #[stable(feature = "box_raw", since = "1.4.0")] 1029 #[inline] 1030 pub fn into_raw(b: Self) -> *mut T { 1031 Self::into_raw_with_allocator(b).0 1032 } 1033 1034 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. 1035 /// 1036 /// The pointer will be properly aligned and non-null. 1037 /// 1038 /// After calling this function, the caller is responsible for the 1039 /// memory previously managed by the `Box`. In particular, the 1040 /// caller should properly destroy `T` and release the memory, taking 1041 /// into account the [memory layout] used by `Box`. The easiest way to 1042 /// do this is to convert the raw pointer back into a `Box` with the 1043 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform 1044 /// the cleanup. 1045 /// 1046 /// Note: this is an associated function, which means that you have 1047 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This 1048 /// is so that there is no conflict with a method on the inner type. 1049 /// 1050 /// # Examples 1051 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] 1052 /// for automatic cleanup: 1053 /// ``` 1054 /// #![feature(allocator_api)] 1055 /// 1056 /// use std::alloc::System; 1057 /// 1058 /// let x = Box::new_in(String::from("Hello"), System); 1059 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1060 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 1061 /// ``` 1062 /// Manual cleanup by explicitly running the destructor and deallocating 1063 /// the memory: 1064 /// ``` 1065 /// #![feature(allocator_api)] 1066 /// 1067 /// use std::alloc::{Allocator, Layout, System}; 1068 /// use std::ptr::{self, NonNull}; 1069 /// 1070 /// let x = Box::new_in(String::from("Hello"), System); 1071 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1072 /// unsafe { 1073 /// ptr::drop_in_place(ptr); 1074 /// let non_null = NonNull::new_unchecked(ptr); 1075 /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); 1076 /// } 1077 /// ``` 1078 /// 1079 /// [memory layout]: self#memory-layout 1080 #[unstable(feature = "allocator_api", issue = "32838")] 1081 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1082 #[inline] 1083 pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) { 1084 let (leaked, alloc) = Box::into_unique(b); 1085 (leaked.as_ptr(), alloc) 1086 } 1087 1088 #[unstable( 1089 feature = "ptr_internals", 1090 issue = "none", 1091 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" 1092 )] 1093 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1094 #[inline] 1095 #[doc(hidden)] 1096 pub const fn into_unique(b: Self) -> (Unique<T>, A) { 1097 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a 1098 // raw pointer for the type system. Turning it directly into a raw pointer would not be 1099 // recognized as "releasing" the unique pointer to permit aliased raw accesses, 1100 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer 1101 // behaves correctly. 1102 let alloc = unsafe { ptr::read(&b.1) }; 1103 (Unique::from(Box::leak(b)), alloc) 1104 } 1105 1106 /// Returns a reference to the underlying allocator. 1107 /// 1108 /// Note: this is an associated function, which means that you have 1109 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This 1110 /// is so that there is no conflict with a method on the inner type. 1111 #[unstable(feature = "allocator_api", issue = "32838")] 1112 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1113 #[inline] 1114 pub const fn allocator(b: &Self) -> &A { 1115 &b.1 1116 } 1117 1118 /// Consumes and leaks the `Box`, returning a mutable reference, 1119 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime 1120 /// `'a`. If the type has only static references, or none at all, then this 1121 /// may be chosen to be `'static`. 1122 /// 1123 /// This function is mainly useful for data that lives for the remainder of 1124 /// the program's life. Dropping the returned reference will cause a memory 1125 /// leak. If this is not acceptable, the reference should first be wrapped 1126 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can 1127 /// then be dropped which will properly destroy `T` and release the 1128 /// allocated memory. 1129 /// 1130 /// Note: this is an associated function, which means that you have 1131 /// to call it as `Box::leak(b)` instead of `b.leak()`. This 1132 /// is so that there is no conflict with a method on the inner type. 1133 /// 1134 /// # Examples 1135 /// 1136 /// Simple usage: 1137 /// 1138 /// ``` 1139 /// let x = Box::new(41); 1140 /// let static_ref: &'static mut usize = Box::leak(x); 1141 /// *static_ref += 1; 1142 /// assert_eq!(*static_ref, 42); 1143 /// ``` 1144 /// 1145 /// Unsized data: 1146 /// 1147 /// ``` 1148 /// let x = vec![1, 2, 3].into_boxed_slice(); 1149 /// let static_ref = Box::leak(x); 1150 /// static_ref[0] = 4; 1151 /// assert_eq!(*static_ref, [4, 2, 3]); 1152 /// ``` 1153 #[stable(feature = "box_leak", since = "1.26.0")] 1154 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1155 #[inline] 1156 pub const fn leak<'a>(b: Self) -> &'a mut T 1157 where 1158 A: 'a, 1159 { 1160 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } 1161 } 1162 1163 /// Converts a `Box<T>` into a `Pin<Box<T>>` 1164 /// 1165 /// This conversion does not allocate on the heap and happens in place. 1166 /// 1167 /// This is also available via [`From`]. 1168 #[unstable(feature = "box_into_pin", issue = "62370")] 1169 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1170 pub const fn into_pin(boxed: Self) -> Pin<Self> 1171 where 1172 A: 'static, 1173 { 1174 // It's not possible to move or replace the insides of a `Pin<Box<T>>` 1175 // when `T: !Unpin`, so it's safe to pin it directly without any 1176 // additional requirements. 1177 unsafe { Pin::new_unchecked(boxed) } 1178 } 1179 } 1180 1181 #[stable(feature = "rust1", since = "1.0.0")] 1182 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { 1183 fn drop(&mut self) { 1184 // FIXME: Do nothing, drop is currently performed by compiler. 1185 } 1186 } 1187 1188 #[cfg(not(no_global_oom_handling))] 1189 #[stable(feature = "rust1", since = "1.0.0")] 1190 impl<T: Default> Default for Box<T> { 1191 /// Creates a `Box<T>`, with the `Default` value for T. 1192 fn default() -> Self { 1193 box T::default() 1194 } 1195 } 1196 1197 #[cfg(not(no_global_oom_handling))] 1198 #[stable(feature = "rust1", since = "1.0.0")] 1199 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] 1200 impl<T> const Default for Box<[T]> { 1201 fn default() -> Self { 1202 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); 1203 Box(ptr, Global) 1204 } 1205 } 1206 1207 #[cfg(not(no_global_oom_handling))] 1208 #[stable(feature = "default_box_extra", since = "1.17.0")] 1209 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] 1210 impl const Default for Box<str> { 1211 fn default() -> Self { 1212 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. 1213 let ptr: Unique<str> = unsafe { 1214 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); 1215 Unique::new_unchecked(bytes.as_ptr() as *mut str) 1216 }; 1217 Box(ptr, Global) 1218 } 1219 } 1220 1221 #[cfg(not(no_global_oom_handling))] 1222 #[stable(feature = "rust1", since = "1.0.0")] 1223 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { 1224 /// Returns a new box with a `clone()` of this box's contents. 1225 /// 1226 /// # Examples 1227 /// 1228 /// ``` 1229 /// let x = Box::new(5); 1230 /// let y = x.clone(); 1231 /// 1232 /// // The value is the same 1233 /// assert_eq!(x, y); 1234 /// 1235 /// // But they are unique objects 1236 /// assert_ne!(&*x as *const i32, &*y as *const i32); 1237 /// ``` 1238 #[inline] 1239 fn clone(&self) -> Self { 1240 // Pre-allocate memory to allow writing the cloned value directly. 1241 let mut boxed = Self::new_uninit_in(self.1.clone()); 1242 unsafe { 1243 (**self).write_clone_into_raw(boxed.as_mut_ptr()); 1244 boxed.assume_init() 1245 } 1246 } 1247 1248 /// Copies `source`'s contents into `self` without creating a new allocation. 1249 /// 1250 /// # Examples 1251 /// 1252 /// ``` 1253 /// let x = Box::new(5); 1254 /// let mut y = Box::new(10); 1255 /// let yp: *const i32 = &*y; 1256 /// 1257 /// y.clone_from(&x); 1258 /// 1259 /// // The value is the same 1260 /// assert_eq!(x, y); 1261 /// 1262 /// // And no allocation occurred 1263 /// assert_eq!(yp, &*y); 1264 /// ``` 1265 #[inline] 1266 fn clone_from(&mut self, source: &Self) { 1267 (**self).clone_from(&(**source)); 1268 } 1269 } 1270 1271 #[cfg(not(no_global_oom_handling))] 1272 #[stable(feature = "box_slice_clone", since = "1.3.0")] 1273 impl Clone for Box<str> { 1274 fn clone(&self) -> Self { 1275 // this makes a copy of the data 1276 let buf: Box<[u8]> = self.as_bytes().into(); 1277 unsafe { from_boxed_utf8_unchecked(buf) } 1278 } 1279 } 1280 1281 #[stable(feature = "rust1", since = "1.0.0")] 1282 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { 1283 #[inline] 1284 fn eq(&self, other: &Self) -> bool { 1285 PartialEq::eq(&**self, &**other) 1286 } 1287 #[inline] 1288 fn ne(&self, other: &Self) -> bool { 1289 PartialEq::ne(&**self, &**other) 1290 } 1291 } 1292 #[stable(feature = "rust1", since = "1.0.0")] 1293 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { 1294 #[inline] 1295 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 1296 PartialOrd::partial_cmp(&**self, &**other) 1297 } 1298 #[inline] 1299 fn lt(&self, other: &Self) -> bool { 1300 PartialOrd::lt(&**self, &**other) 1301 } 1302 #[inline] 1303 fn le(&self, other: &Self) -> bool { 1304 PartialOrd::le(&**self, &**other) 1305 } 1306 #[inline] 1307 fn ge(&self, other: &Self) -> bool { 1308 PartialOrd::ge(&**self, &**other) 1309 } 1310 #[inline] 1311 fn gt(&self, other: &Self) -> bool { 1312 PartialOrd::gt(&**self, &**other) 1313 } 1314 } 1315 #[stable(feature = "rust1", since = "1.0.0")] 1316 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { 1317 #[inline] 1318 fn cmp(&self, other: &Self) -> Ordering { 1319 Ord::cmp(&**self, &**other) 1320 } 1321 } 1322 #[stable(feature = "rust1", since = "1.0.0")] 1323 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} 1324 1325 #[stable(feature = "rust1", since = "1.0.0")] 1326 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { 1327 fn hash<H: Hasher>(&self, state: &mut H) { 1328 (**self).hash(state); 1329 } 1330 } 1331 1332 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] 1333 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { 1334 fn finish(&self) -> u64 { 1335 (**self).finish() 1336 } 1337 fn write(&mut self, bytes: &[u8]) { 1338 (**self).write(bytes) 1339 } 1340 fn write_u8(&mut self, i: u8) { 1341 (**self).write_u8(i) 1342 } 1343 fn write_u16(&mut self, i: u16) { 1344 (**self).write_u16(i) 1345 } 1346 fn write_u32(&mut self, i: u32) { 1347 (**self).write_u32(i) 1348 } 1349 fn write_u64(&mut self, i: u64) { 1350 (**self).write_u64(i) 1351 } 1352 fn write_u128(&mut self, i: u128) { 1353 (**self).write_u128(i) 1354 } 1355 fn write_usize(&mut self, i: usize) { 1356 (**self).write_usize(i) 1357 } 1358 fn write_i8(&mut self, i: i8) { 1359 (**self).write_i8(i) 1360 } 1361 fn write_i16(&mut self, i: i16) { 1362 (**self).write_i16(i) 1363 } 1364 fn write_i32(&mut self, i: i32) { 1365 (**self).write_i32(i) 1366 } 1367 fn write_i64(&mut self, i: i64) { 1368 (**self).write_i64(i) 1369 } 1370 fn write_i128(&mut self, i: i128) { 1371 (**self).write_i128(i) 1372 } 1373 fn write_isize(&mut self, i: isize) { 1374 (**self).write_isize(i) 1375 } 1376 fn write_length_prefix(&mut self, len: usize) { 1377 (**self).write_length_prefix(len) 1378 } 1379 fn write_str(&mut self, s: &str) { 1380 (**self).write_str(s) 1381 } 1382 } 1383 1384 #[cfg(not(no_global_oom_handling))] 1385 #[stable(feature = "from_for_ptrs", since = "1.6.0")] 1386 impl<T> From<T> for Box<T> { 1387 /// Converts a `T` into a `Box<T>` 1388 /// 1389 /// The conversion allocates on the heap and moves `t` 1390 /// from the stack into it. 1391 /// 1392 /// # Examples 1393 /// 1394 /// ```rust 1395 /// let x = 5; 1396 /// let boxed = Box::new(5); 1397 /// 1398 /// assert_eq!(Box::from(x), boxed); 1399 /// ``` 1400 fn from(t: T) -> Self { 1401 Box::new(t) 1402 } 1403 } 1404 1405 #[stable(feature = "pin", since = "1.33.0")] 1406 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1407 impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>> 1408 where 1409 A: 'static, 1410 { 1411 /// Converts a `Box<T>` into a `Pin<Box<T>>` 1412 /// 1413 /// This conversion does not allocate on the heap and happens in place. 1414 fn from(boxed: Box<T, A>) -> Self { 1415 Box::into_pin(boxed) 1416 } 1417 } 1418 1419 #[cfg(not(no_global_oom_handling))] 1420 #[stable(feature = "box_from_slice", since = "1.17.0")] 1421 impl<T: Copy> From<&[T]> for Box<[T]> { 1422 /// Converts a `&[T]` into a `Box<[T]>` 1423 /// 1424 /// This conversion allocates on the heap 1425 /// and performs a copy of `slice`. 1426 /// 1427 /// # Examples 1428 /// ```rust 1429 /// // create a &[u8] which will be used to create a Box<[u8]> 1430 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1431 /// let boxed_slice: Box<[u8]> = Box::from(slice); 1432 /// 1433 /// println!("{boxed_slice:?}"); 1434 /// ``` 1435 fn from(slice: &[T]) -> Box<[T]> { 1436 let len = slice.len(); 1437 let buf = RawVec::with_capacity(len); 1438 unsafe { 1439 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); 1440 buf.into_box(slice.len()).assume_init() 1441 } 1442 } 1443 } 1444 1445 #[cfg(not(no_global_oom_handling))] 1446 #[stable(feature = "box_from_cow", since = "1.45.0")] 1447 impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> { 1448 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` 1449 /// 1450 /// When `cow` is the `Cow::Borrowed` variant, this 1451 /// conversion allocates on the heap and copies the 1452 /// underlying slice. Otherwise, it will try to reuse the owned 1453 /// `Vec`'s allocation. 1454 #[inline] 1455 fn from(cow: Cow<'_, [T]>) -> Box<[T]> { 1456 match cow { 1457 Cow::Borrowed(slice) => Box::from(slice), 1458 Cow::Owned(slice) => Box::from(slice), 1459 } 1460 } 1461 } 1462 1463 #[cfg(not(no_global_oom_handling))] 1464 #[stable(feature = "box_from_slice", since = "1.17.0")] 1465 impl From<&str> for Box<str> { 1466 /// Converts a `&str` into a `Box<str>` 1467 /// 1468 /// This conversion allocates on the heap 1469 /// and performs a copy of `s`. 1470 /// 1471 /// # Examples 1472 /// 1473 /// ```rust 1474 /// let boxed: Box<str> = Box::from("hello"); 1475 /// println!("{boxed}"); 1476 /// ``` 1477 #[inline] 1478 fn from(s: &str) -> Box<str> { 1479 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } 1480 } 1481 } 1482 1483 #[cfg(not(no_global_oom_handling))] 1484 #[stable(feature = "box_from_cow", since = "1.45.0")] 1485 impl From<Cow<'_, str>> for Box<str> { 1486 /// Converts a `Cow<'_, str>` into a `Box<str>` 1487 /// 1488 /// When `cow` is the `Cow::Borrowed` variant, this 1489 /// conversion allocates on the heap and copies the 1490 /// underlying `str`. Otherwise, it will try to reuse the owned 1491 /// `String`'s allocation. 1492 /// 1493 /// # Examples 1494 /// 1495 /// ```rust 1496 /// use std::borrow::Cow; 1497 /// 1498 /// let unboxed = Cow::Borrowed("hello"); 1499 /// let boxed: Box<str> = Box::from(unboxed); 1500 /// println!("{boxed}"); 1501 /// ``` 1502 /// 1503 /// ```rust 1504 /// # use std::borrow::Cow; 1505 /// let unboxed = Cow::Owned("hello".to_string()); 1506 /// let boxed: Box<str> = Box::from(unboxed); 1507 /// println!("{boxed}"); 1508 /// ``` 1509 #[inline] 1510 fn from(cow: Cow<'_, str>) -> Box<str> { 1511 match cow { 1512 Cow::Borrowed(s) => Box::from(s), 1513 Cow::Owned(s) => Box::from(s), 1514 } 1515 } 1516 } 1517 1518 #[stable(feature = "boxed_str_conv", since = "1.19.0")] 1519 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { 1520 /// Converts a `Box<str>` into a `Box<[u8]>` 1521 /// 1522 /// This conversion does not allocate on the heap and happens in place. 1523 /// 1524 /// # Examples 1525 /// ```rust 1526 /// // create a Box<str> which will be used to create a Box<[u8]> 1527 /// let boxed: Box<str> = Box::from("hello"); 1528 /// let boxed_str: Box<[u8]> = Box::from(boxed); 1529 /// 1530 /// // create a &[u8] which will be used to create a Box<[u8]> 1531 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1532 /// let boxed_slice = Box::from(slice); 1533 /// 1534 /// assert_eq!(boxed_slice, boxed_str); 1535 /// ``` 1536 #[inline] 1537 fn from(s: Box<str, A>) -> Self { 1538 let (raw, alloc) = Box::into_raw_with_allocator(s); 1539 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } 1540 } 1541 } 1542 1543 #[cfg(not(no_global_oom_handling))] 1544 #[stable(feature = "box_from_array", since = "1.45.0")] 1545 impl<T, const N: usize> From<[T; N]> for Box<[T]> { 1546 /// Converts a `[T; N]` into a `Box<[T]>` 1547 /// 1548 /// This conversion moves the array to newly heap-allocated memory. 1549 /// 1550 /// # Examples 1551 /// 1552 /// ```rust 1553 /// let boxed: Box<[u8]> = Box::from([4, 2]); 1554 /// println!("{boxed:?}"); 1555 /// ``` 1556 fn from(array: [T; N]) -> Box<[T]> { 1557 box array 1558 } 1559 } 1560 1561 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] 1562 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { 1563 type Error = Box<[T]>; 1564 1565 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. 1566 /// 1567 /// The conversion occurs in-place and does not require a 1568 /// new memory allocation. 1569 /// 1570 /// # Errors 1571 /// 1572 /// Returns the old `Box<[T]>` in the `Err` variant if 1573 /// `boxed_slice.len()` does not equal `N`. 1574 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { 1575 if boxed_slice.len() == N { 1576 Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) }) 1577 } else { 1578 Err(boxed_slice) 1579 } 1580 } 1581 } 1582 1583 impl<A: Allocator> Box<dyn Any, A> { 1584 /// Attempt to downcast the box to a concrete type. 1585 /// 1586 /// # Examples 1587 /// 1588 /// ``` 1589 /// use std::any::Any; 1590 /// 1591 /// fn print_if_string(value: Box<dyn Any>) { 1592 /// if let Ok(string) = value.downcast::<String>() { 1593 /// println!("String ({}): {}", string.len(), string); 1594 /// } 1595 /// } 1596 /// 1597 /// let my_string = "Hello World".to_string(); 1598 /// print_if_string(Box::new(my_string)); 1599 /// print_if_string(Box::new(0i8)); 1600 /// ``` 1601 #[inline] 1602 #[stable(feature = "rust1", since = "1.0.0")] 1603 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1604 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1605 } 1606 1607 /// Downcasts the box to a concrete type. 1608 /// 1609 /// For a safe alternative see [`downcast`]. 1610 /// 1611 /// # Examples 1612 /// 1613 /// ``` 1614 /// #![feature(downcast_unchecked)] 1615 /// 1616 /// use std::any::Any; 1617 /// 1618 /// let x: Box<dyn Any> = Box::new(1_usize); 1619 /// 1620 /// unsafe { 1621 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1622 /// } 1623 /// ``` 1624 /// 1625 /// # Safety 1626 /// 1627 /// The contained value must be of type `T`. Calling this method 1628 /// with the incorrect type is *undefined behavior*. 1629 /// 1630 /// [`downcast`]: Self::downcast 1631 #[inline] 1632 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1633 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1634 debug_assert!(self.is::<T>()); 1635 unsafe { 1636 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); 1637 Box::from_raw_in(raw as *mut T, alloc) 1638 } 1639 } 1640 } 1641 1642 impl<A: Allocator> Box<dyn Any + Send, A> { 1643 /// Attempt to downcast the box to a concrete type. 1644 /// 1645 /// # Examples 1646 /// 1647 /// ``` 1648 /// use std::any::Any; 1649 /// 1650 /// fn print_if_string(value: Box<dyn Any + Send>) { 1651 /// if let Ok(string) = value.downcast::<String>() { 1652 /// println!("String ({}): {}", string.len(), string); 1653 /// } 1654 /// } 1655 /// 1656 /// let my_string = "Hello World".to_string(); 1657 /// print_if_string(Box::new(my_string)); 1658 /// print_if_string(Box::new(0i8)); 1659 /// ``` 1660 #[inline] 1661 #[stable(feature = "rust1", since = "1.0.0")] 1662 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1663 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1664 } 1665 1666 /// Downcasts the box to a concrete type. 1667 /// 1668 /// For a safe alternative see [`downcast`]. 1669 /// 1670 /// # Examples 1671 /// 1672 /// ``` 1673 /// #![feature(downcast_unchecked)] 1674 /// 1675 /// use std::any::Any; 1676 /// 1677 /// let x: Box<dyn Any + Send> = Box::new(1_usize); 1678 /// 1679 /// unsafe { 1680 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1681 /// } 1682 /// ``` 1683 /// 1684 /// # Safety 1685 /// 1686 /// The contained value must be of type `T`. Calling this method 1687 /// with the incorrect type is *undefined behavior*. 1688 /// 1689 /// [`downcast`]: Self::downcast 1690 #[inline] 1691 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1692 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1693 debug_assert!(self.is::<T>()); 1694 unsafe { 1695 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); 1696 Box::from_raw_in(raw as *mut T, alloc) 1697 } 1698 } 1699 } 1700 1701 impl<A: Allocator> Box<dyn Any + Send + Sync, A> { 1702 /// Attempt to downcast the box to a concrete type. 1703 /// 1704 /// # Examples 1705 /// 1706 /// ``` 1707 /// use std::any::Any; 1708 /// 1709 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { 1710 /// if let Ok(string) = value.downcast::<String>() { 1711 /// println!("String ({}): {}", string.len(), string); 1712 /// } 1713 /// } 1714 /// 1715 /// let my_string = "Hello World".to_string(); 1716 /// print_if_string(Box::new(my_string)); 1717 /// print_if_string(Box::new(0i8)); 1718 /// ``` 1719 #[inline] 1720 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] 1721 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1722 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1723 } 1724 1725 /// Downcasts the box to a concrete type. 1726 /// 1727 /// For a safe alternative see [`downcast`]. 1728 /// 1729 /// # Examples 1730 /// 1731 /// ``` 1732 /// #![feature(downcast_unchecked)] 1733 /// 1734 /// use std::any::Any; 1735 /// 1736 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); 1737 /// 1738 /// unsafe { 1739 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1740 /// } 1741 /// ``` 1742 /// 1743 /// # Safety 1744 /// 1745 /// The contained value must be of type `T`. Calling this method 1746 /// with the incorrect type is *undefined behavior*. 1747 /// 1748 /// [`downcast`]: Self::downcast 1749 #[inline] 1750 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1751 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1752 debug_assert!(self.is::<T>()); 1753 unsafe { 1754 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = 1755 Box::into_raw_with_allocator(self); 1756 Box::from_raw_in(raw as *mut T, alloc) 1757 } 1758 } 1759 } 1760 1761 #[stable(feature = "rust1", since = "1.0.0")] 1762 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { 1763 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1764 fmt::Display::fmt(&**self, f) 1765 } 1766 } 1767 1768 #[stable(feature = "rust1", since = "1.0.0")] 1769 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { 1770 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1771 fmt::Debug::fmt(&**self, f) 1772 } 1773 } 1774 1775 #[stable(feature = "rust1", since = "1.0.0")] 1776 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { 1777 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1778 // It's not possible to extract the inner Uniq directly from the Box, 1779 // instead we cast it to a *const which aliases the Unique 1780 let ptr: *const T = &**self; 1781 fmt::Pointer::fmt(&ptr, f) 1782 } 1783 } 1784 1785 #[stable(feature = "rust1", since = "1.0.0")] 1786 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1787 impl<T: ?Sized, A: Allocator> const Deref for Box<T, A> { 1788 type Target = T; 1789 1790 fn deref(&self) -> &T { 1791 &**self 1792 } 1793 } 1794 1795 #[stable(feature = "rust1", since = "1.0.0")] 1796 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1797 impl<T: ?Sized, A: Allocator> const DerefMut for Box<T, A> { 1798 fn deref_mut(&mut self) -> &mut T { 1799 &mut **self 1800 } 1801 } 1802 1803 #[unstable(feature = "receiver_trait", issue = "none")] 1804 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} 1805 1806 #[stable(feature = "rust1", since = "1.0.0")] 1807 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { 1808 type Item = I::Item; 1809 fn next(&mut self) -> Option<I::Item> { 1810 (**self).next() 1811 } 1812 fn size_hint(&self) -> (usize, Option<usize>) { 1813 (**self).size_hint() 1814 } 1815 fn nth(&mut self, n: usize) -> Option<I::Item> { 1816 (**self).nth(n) 1817 } 1818 fn last(self) -> Option<I::Item> { 1819 BoxIter::last(self) 1820 } 1821 } 1822 1823 trait BoxIter { 1824 type Item; 1825 fn last(self) -> Option<Self::Item>; 1826 } 1827 1828 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { 1829 type Item = I::Item; 1830 default fn last(self) -> Option<I::Item> { 1831 #[inline] 1832 fn some<T>(_: Option<T>, x: T) -> Option<T> { 1833 Some(x) 1834 } 1835 1836 self.fold(None, some) 1837 } 1838 } 1839 1840 /// Specialization for sized `I`s that uses `I`s implementation of `last()` 1841 /// instead of the default. 1842 #[stable(feature = "rust1", since = "1.0.0")] 1843 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { 1844 fn last(self) -> Option<I::Item> { 1845 (*self).last() 1846 } 1847 } 1848 1849 #[stable(feature = "rust1", since = "1.0.0")] 1850 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { 1851 fn next_back(&mut self) -> Option<I::Item> { 1852 (**self).next_back() 1853 } 1854 fn nth_back(&mut self, n: usize) -> Option<I::Item> { 1855 (**self).nth_back(n) 1856 } 1857 } 1858 #[stable(feature = "rust1", since = "1.0.0")] 1859 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { 1860 fn len(&self) -> usize { 1861 (**self).len() 1862 } 1863 fn is_empty(&self) -> bool { 1864 (**self).is_empty() 1865 } 1866 } 1867 1868 #[stable(feature = "fused", since = "1.26.0")] 1869 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} 1870 1871 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1872 impl<Args, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { 1873 type Output = <F as FnOnce<Args>>::Output; 1874 1875 extern "rust-call" fn call_once(self, args: Args) -> Self::Output { 1876 <F as FnOnce<Args>>::call_once(*self, args) 1877 } 1878 } 1879 1880 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1881 impl<Args, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { 1882 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { 1883 <F as FnMut<Args>>::call_mut(self, args) 1884 } 1885 } 1886 1887 #[stable(feature = "boxed_closure_impls", since = "1.35.0")] 1888 impl<Args, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { 1889 extern "rust-call" fn call(&self, args: Args) -> Self::Output { 1890 <F as Fn<Args>>::call(self, args) 1891 } 1892 } 1893 1894 #[unstable(feature = "coerce_unsized", issue = "27732")] 1895 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} 1896 1897 #[unstable(feature = "dispatch_from_dyn", issue = "none")] 1898 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} 1899 1900 #[cfg(not(no_global_oom_handling))] 1901 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] 1902 impl<I> FromIterator<I> for Box<[I]> { 1903 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { 1904 iter.into_iter().collect::<Vec<_>>().into_boxed_slice() 1905 } 1906 } 1907 1908 #[cfg(not(no_global_oom_handling))] 1909 #[stable(feature = "box_slice_clone", since = "1.3.0")] 1910 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { 1911 fn clone(&self) -> Self { 1912 let alloc = Box::allocator(self).clone(); 1913 self.to_vec_in(alloc).into_boxed_slice() 1914 } 1915 1916 fn clone_from(&mut self, other: &Self) { 1917 if self.len() == other.len() { 1918 self.clone_from_slice(&other); 1919 } else { 1920 *self = other.clone(); 1921 } 1922 } 1923 } 1924 1925 #[stable(feature = "box_borrow", since = "1.1.0")] 1926 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { 1927 fn borrow(&self) -> &T { 1928 &**self 1929 } 1930 } 1931 1932 #[stable(feature = "box_borrow", since = "1.1.0")] 1933 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { 1934 fn borrow_mut(&mut self) -> &mut T { 1935 &mut **self 1936 } 1937 } 1938 1939 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 1940 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { 1941 fn as_ref(&self) -> &T { 1942 &**self 1943 } 1944 } 1945 1946 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 1947 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { 1948 fn as_mut(&mut self) -> &mut T { 1949 &mut **self 1950 } 1951 } 1952 1953 /* Nota bene 1954 * 1955 * We could have chosen not to add this impl, and instead have written a 1956 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, 1957 * because Box<T> implements Unpin even when T does not, as a result of 1958 * this impl. 1959 * 1960 * We chose this API instead of the alternative for a few reasons: 1961 * - Logically, it is helpful to understand pinning in regard to the 1962 * memory region being pointed to. For this reason none of the 1963 * standard library pointer types support projecting through a pin 1964 * (Box<T> is the only pointer type in std for which this would be 1965 * safe.) 1966 * - It is in practice very useful to have Box<T> be unconditionally 1967 * Unpin because of trait objects, for which the structural auto 1968 * trait functionality does not apply (e.g., Box<dyn Foo> would 1969 * otherwise not be Unpin). 1970 * 1971 * Another type with the same semantics as Box but only a conditional 1972 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and 1973 * could have a method to project a Pin<T> from it. 1974 */ 1975 #[stable(feature = "pin", since = "1.33.0")] 1976 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1977 impl<T: ?Sized, A: Allocator> const Unpin for Box<T, A> where A: 'static {} 1978 1979 #[unstable(feature = "generator_trait", issue = "43122")] 1980 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> 1981 where 1982 A: 'static, 1983 { 1984 type Yield = G::Yield; 1985 type Return = G::Return; 1986 1987 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 1988 G::resume(Pin::new(&mut *self), arg) 1989 } 1990 } 1991 1992 #[unstable(feature = "generator_trait", issue = "43122")] 1993 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> 1994 where 1995 A: 'static, 1996 { 1997 type Yield = G::Yield; 1998 type Return = G::Return; 1999 2000 fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { 2001 G::resume((*self).as_mut(), arg) 2002 } 2003 } 2004 2005 #[stable(feature = "futures_api", since = "1.36.0")] 2006 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> 2007 where 2008 A: 'static, 2009 { 2010 type Output = F::Output; 2011 2012 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { 2013 F::poll(Pin::new(&mut *self), cx) 2014 } 2015 } 2016 2017 #[unstable(feature = "async_iterator", issue = "79024")] 2018 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { 2019 type Item = S::Item; 2020 2021 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 2022 Pin::new(&mut **self).poll_next(cx) 2023 } 2024 2025 fn size_hint(&self) -> (usize, Option<usize>) { 2026 (**self).size_hint() 2027 } 2028 } 2029