xref: /openbmc/linux/rust/alloc/boxed.rs (revision 73596f5a)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! The `Box<T>` type for heap allocation.
4 //!
5 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
6 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
7 //! drop their contents when they go out of scope. Boxes also ensure that they
8 //! never allocate more than `isize::MAX` bytes.
9 //!
10 //! # Examples
11 //!
12 //! Move a value from the stack to the heap by creating a [`Box`]:
13 //!
14 //! ```
15 //! let val: u8 = 5;
16 //! let boxed: Box<u8> = Box::new(val);
17 //! ```
18 //!
19 //! Move a value from a [`Box`] back to the stack by [dereferencing]:
20 //!
21 //! ```
22 //! let boxed: Box<u8> = Box::new(5);
23 //! let val: u8 = *boxed;
24 //! ```
25 //!
26 //! Creating a recursive data structure:
27 //!
28 //! ```
29 //! #[derive(Debug)]
30 //! enum List<T> {
31 //!     Cons(T, Box<List<T>>),
32 //!     Nil,
33 //! }
34 //!
35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
36 //! println!("{list:?}");
37 //! ```
38 //!
39 //! This will print `Cons(1, Cons(2, Nil))`.
40 //!
41 //! Recursive structures must be boxed, because if the definition of `Cons`
42 //! looked like this:
43 //!
44 //! ```compile_fail,E0072
45 //! # enum List<T> {
46 //! Cons(T, List<T>),
47 //! # }
48 //! ```
49 //!
50 //! It wouldn't work. This is because the size of a `List` depends on how many
51 //! elements are in the list, and so we don't know how much memory to allocate
52 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
53 //! big `Cons` needs to be.
54 //!
55 //! # Memory layout
56 //!
57 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
58 //! its allocation. It is valid to convert both ways between a [`Box`] and a
59 //! raw pointer allocated with the [`Global`] allocator, given that the
60 //! [`Layout`] used with the allocator is correct for the type. More precisely,
61 //! a `value: *mut T` that has been allocated with the [`Global`] allocator
62 //! with `Layout::for_value(&*value)` may be converted into a box using
63 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
64 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
65 //! [`Global`] allocator with [`Layout::for_value(&*value)`].
66 //!
67 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
68 //! and writes and sufficiently aligned. In particular, casting any aligned
69 //! non-zero integer literal to a raw pointer produces a valid pointer, but a
70 //! pointer pointing into previously allocated memory that since got freed is
71 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
72 //! be used is to use [`ptr::NonNull::dangling`].
73 //!
74 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
75 //! as a single pointer and is also ABI-compatible with C pointers
76 //! (i.e. the C type `T*`). This means that if you have extern "C"
77 //! Rust functions that will be called from C, you can define those
78 //! Rust functions using `Box<T>` types, and use `T*` as corresponding
79 //! type on the C side. As an example, consider this C header which
80 //! declares functions that create and destroy some kind of `Foo`
81 //! value:
82 //!
83 //! ```c
84 //! /* C header */
85 //!
86 //! /* Returns ownership to the caller */
87 //! struct Foo* foo_new(void);
88 //!
89 //! /* Takes ownership from the caller; no-op when invoked with null */
90 //! void foo_delete(struct Foo*);
91 //! ```
92 //!
93 //! These two functions might be implemented in Rust as follows. Here, the
94 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
95 //! the ownership constraints. Note also that the nullable argument to
96 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
97 //! cannot be null.
98 //!
99 //! ```
100 //! #[repr(C)]
101 //! pub struct Foo;
102 //!
103 //! #[no_mangle]
104 //! pub extern "C" fn foo_new() -> Box<Foo> {
105 //!     Box::new(Foo)
106 //! }
107 //!
108 //! #[no_mangle]
109 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
110 //! ```
111 //!
112 //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
113 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
114 //! and expect things to work. `Box<T>` values will always be fully aligned,
115 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
116 //! free the value with the global allocator. In general, the best practice
117 //! is to only use `Box<T>` for pointers that originated from the global
118 //! allocator.
119 //!
120 //! **Important.** At least at present, you should avoid using
121 //! `Box<T>` types for functions that are defined in C but invoked
122 //! from Rust. In those cases, you should directly mirror the C types
123 //! as closely as possible. Using types like `Box<T>` where the C
124 //! definition is just using `T*` can lead to undefined behavior, as
125 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
126 //!
127 //! # Considerations for unsafe code
128 //!
129 //! **Warning: This section is not normative and is subject to change, possibly
130 //! being relaxed in the future! It is a simplified summary of the rules
131 //! currently implemented in the compiler.**
132 //!
133 //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
134 //! asserts uniqueness over its content. Using raw pointers derived from a box
135 //! after that box has been mutated through, moved or borrowed as `&mut T`
136 //! is not allowed. For more guidance on working with box from unsafe code, see
137 //! [rust-lang/unsafe-code-guidelines#326][ucg#326].
138 //!
139 //!
140 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
141 //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
142 //! [dereferencing]: core::ops::Deref
143 //! [`Box::<T>::from_raw(value)`]: Box::from_raw
144 //! [`Global`]: crate::alloc::Global
145 //! [`Layout`]: crate::alloc::Layout
146 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
147 //! [valid]: ptr#safety
148 
149 #![stable(feature = "rust1", since = "1.0.0")]
150 
151 use core::any::Any;
152 use core::async_iter::AsyncIterator;
153 use core::borrow;
154 use core::cmp::Ordering;
155 use core::error::Error;
156 use core::fmt;
157 use core::future::Future;
158 use core::hash::{Hash, Hasher};
159 use core::iter::FusedIterator;
160 use core::marker::Tuple;
161 use core::marker::Unsize;
162 use core::mem::{self, SizedTypeProperties};
163 use core::ops::{
164     CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
165 };
166 use core::pin::Pin;
167 use core::ptr::{self, NonNull, Unique};
168 use core::task::{Context, Poll};
169 
170 #[cfg(not(no_global_oom_handling))]
171 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
172 use crate::alloc::{AllocError, Allocator, Global, Layout};
173 #[cfg(not(no_global_oom_handling))]
174 use crate::borrow::Cow;
175 use crate::raw_vec::RawVec;
176 #[cfg(not(no_global_oom_handling))]
177 use crate::str::from_boxed_utf8_unchecked;
178 #[cfg(not(no_global_oom_handling))]
179 use crate::string::String;
180 #[cfg(not(no_global_oom_handling))]
181 use crate::vec::Vec;
182 
183 #[cfg(not(no_thin))]
184 #[unstable(feature = "thin_box", issue = "92791")]
185 pub use thin::ThinBox;
186 
187 #[cfg(not(no_thin))]
188 mod thin;
189 
190 /// A pointer type that uniquely owns a heap allocation of type `T`.
191 ///
192 /// See the [module-level documentation](../../std/boxed/index.html) for more.
193 #[lang = "owned_box"]
194 #[fundamental]
195 #[stable(feature = "rust1", since = "1.0.0")]
196 // The declaration of the `Box` struct must be kept in sync with the
197 // `alloc::alloc::box_free` function or ICEs will happen. See the comment
198 // on `box_free` for more details.
199 pub struct Box<
200     T: ?Sized,
201     #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
202 >(Unique<T>, A);
203 
204 impl<T> Box<T> {
205     /// Allocates memory on the heap and then places `x` into it.
206     ///
207     /// This doesn't actually allocate if `T` is zero-sized.
208     ///
209     /// # Examples
210     ///
211     /// ```
212     /// let five = Box::new(5);
213     /// ```
214     #[cfg(all(not(no_global_oom_handling)))]
215     #[inline(always)]
216     #[stable(feature = "rust1", since = "1.0.0")]
217     #[must_use]
218     #[rustc_diagnostic_item = "box_new"]
new(x: T) -> Self219     pub fn new(x: T) -> Self {
220         #[rustc_box]
221         Box::new(x)
222     }
223 
224     /// Constructs a new box with uninitialized contents.
225     ///
226     /// # Examples
227     ///
228     /// ```
229     /// #![feature(new_uninit)]
230     ///
231     /// let mut five = Box::<u32>::new_uninit();
232     ///
233     /// let five = unsafe {
234     ///     // Deferred initialization:
235     ///     five.as_mut_ptr().write(5);
236     ///
237     ///     five.assume_init()
238     /// };
239     ///
240     /// assert_eq!(*five, 5)
241     /// ```
242     #[cfg(not(no_global_oom_handling))]
243     #[unstable(feature = "new_uninit", issue = "63291")]
244     #[must_use]
245     #[inline]
new_uninit() -> Box<mem::MaybeUninit<T>>246     pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
247         Self::new_uninit_in(Global)
248     }
249 
250     /// Constructs a new `Box` with uninitialized contents, with the memory
251     /// being filled with `0` bytes.
252     ///
253     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
254     /// of this method.
255     ///
256     /// # Examples
257     ///
258     /// ```
259     /// #![feature(new_uninit)]
260     ///
261     /// let zero = Box::<u32>::new_zeroed();
262     /// let zero = unsafe { zero.assume_init() };
263     ///
264     /// assert_eq!(*zero, 0)
265     /// ```
266     ///
267     /// [zeroed]: mem::MaybeUninit::zeroed
268     #[cfg(not(no_global_oom_handling))]
269     #[inline]
270     #[unstable(feature = "new_uninit", issue = "63291")]
271     #[must_use]
new_zeroed() -> Box<mem::MaybeUninit<T>>272     pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
273         Self::new_zeroed_in(Global)
274     }
275 
276     /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
277     /// `x` will be pinned in memory and unable to be moved.
278     ///
279     /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
280     /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
281     /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
282     /// construct a (pinned) `Box` in a different way than with [`Box::new`].
283     #[cfg(not(no_global_oom_handling))]
284     #[stable(feature = "pin", since = "1.33.0")]
285     #[must_use]
286     #[inline(always)]
pin(x: T) -> Pin<Box<T>>287     pub fn pin(x: T) -> Pin<Box<T>> {
288         Box::new(x).into()
289     }
290 
291     /// Allocates memory on the heap then places `x` into it,
292     /// returning an error if the allocation fails
293     ///
294     /// This doesn't actually allocate if `T` is zero-sized.
295     ///
296     /// # Examples
297     ///
298     /// ```
299     /// #![feature(allocator_api)]
300     ///
301     /// let five = Box::try_new(5)?;
302     /// # Ok::<(), std::alloc::AllocError>(())
303     /// ```
304     #[unstable(feature = "allocator_api", issue = "32838")]
305     #[inline]
try_new(x: T) -> Result<Self, AllocError>306     pub fn try_new(x: T) -> Result<Self, AllocError> {
307         Self::try_new_in(x, Global)
308     }
309 
310     /// Constructs a new box with uninitialized contents on the heap,
311     /// returning an error if the allocation fails
312     ///
313     /// # Examples
314     ///
315     /// ```
316     /// #![feature(allocator_api, new_uninit)]
317     ///
318     /// let mut five = Box::<u32>::try_new_uninit()?;
319     ///
320     /// let five = unsafe {
321     ///     // Deferred initialization:
322     ///     five.as_mut_ptr().write(5);
323     ///
324     ///     five.assume_init()
325     /// };
326     ///
327     /// assert_eq!(*five, 5);
328     /// # Ok::<(), std::alloc::AllocError>(())
329     /// ```
330     #[unstable(feature = "allocator_api", issue = "32838")]
331     // #[unstable(feature = "new_uninit", issue = "63291")]
332     #[inline]
try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError>333     pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
334         Box::try_new_uninit_in(Global)
335     }
336 
337     /// Constructs a new `Box` with uninitialized contents, with the memory
338     /// being filled with `0` bytes on the heap
339     ///
340     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
341     /// of this method.
342     ///
343     /// # Examples
344     ///
345     /// ```
346     /// #![feature(allocator_api, new_uninit)]
347     ///
348     /// let zero = Box::<u32>::try_new_zeroed()?;
349     /// let zero = unsafe { zero.assume_init() };
350     ///
351     /// assert_eq!(*zero, 0);
352     /// # Ok::<(), std::alloc::AllocError>(())
353     /// ```
354     ///
355     /// [zeroed]: mem::MaybeUninit::zeroed
356     #[unstable(feature = "allocator_api", issue = "32838")]
357     // #[unstable(feature = "new_uninit", issue = "63291")]
358     #[inline]
try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError>359     pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
360         Box::try_new_zeroed_in(Global)
361     }
362 }
363 
364 impl<T, A: Allocator> Box<T, A> {
365     /// Allocates memory in the given allocator then places `x` into it.
366     ///
367     /// This doesn't actually allocate if `T` is zero-sized.
368     ///
369     /// # Examples
370     ///
371     /// ```
372     /// #![feature(allocator_api)]
373     ///
374     /// use std::alloc::System;
375     ///
376     /// let five = Box::new_in(5, System);
377     /// ```
378     #[cfg(not(no_global_oom_handling))]
379     #[unstable(feature = "allocator_api", issue = "32838")]
380     #[must_use]
381     #[inline]
new_in(x: T, alloc: A) -> Self where A: Allocator,382     pub fn new_in(x: T, alloc: A) -> Self
383     where
384         A: Allocator,
385     {
386         let mut boxed = Self::new_uninit_in(alloc);
387         unsafe {
388             boxed.as_mut_ptr().write(x);
389             boxed.assume_init()
390         }
391     }
392 
393     /// Allocates memory in the given allocator then places `x` into it,
394     /// returning an error if the allocation fails
395     ///
396     /// This doesn't actually allocate if `T` is zero-sized.
397     ///
398     /// # Examples
399     ///
400     /// ```
401     /// #![feature(allocator_api)]
402     ///
403     /// use std::alloc::System;
404     ///
405     /// let five = Box::try_new_in(5, System)?;
406     /// # Ok::<(), std::alloc::AllocError>(())
407     /// ```
408     #[unstable(feature = "allocator_api", issue = "32838")]
409     #[inline]
try_new_in(x: T, alloc: A) -> Result<Self, AllocError> where A: Allocator,410     pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
411     where
412         A: Allocator,
413     {
414         let mut boxed = Self::try_new_uninit_in(alloc)?;
415         unsafe {
416             boxed.as_mut_ptr().write(x);
417             Ok(boxed.assume_init())
418         }
419     }
420 
421     /// Constructs a new box with uninitialized contents in the provided allocator.
422     ///
423     /// # Examples
424     ///
425     /// ```
426     /// #![feature(allocator_api, new_uninit)]
427     ///
428     /// use std::alloc::System;
429     ///
430     /// let mut five = Box::<u32, _>::new_uninit_in(System);
431     ///
432     /// let five = unsafe {
433     ///     // Deferred initialization:
434     ///     five.as_mut_ptr().write(5);
435     ///
436     ///     five.assume_init()
437     /// };
438     ///
439     /// assert_eq!(*five, 5)
440     /// ```
441     #[unstable(feature = "allocator_api", issue = "32838")]
442     #[cfg(not(no_global_oom_handling))]
443     #[must_use]
444     // #[unstable(feature = "new_uninit", issue = "63291")]
new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> where A: Allocator,445     pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
446     where
447         A: Allocator,
448     {
449         let layout = Layout::new::<mem::MaybeUninit<T>>();
450         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
451         // That would make code size bigger.
452         match Box::try_new_uninit_in(alloc) {
453             Ok(m) => m,
454             Err(_) => handle_alloc_error(layout),
455         }
456     }
457 
458     /// Constructs a new box with uninitialized contents in the provided allocator,
459     /// returning an error if the allocation fails
460     ///
461     /// # Examples
462     ///
463     /// ```
464     /// #![feature(allocator_api, new_uninit)]
465     ///
466     /// use std::alloc::System;
467     ///
468     /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
469     ///
470     /// let five = unsafe {
471     ///     // Deferred initialization:
472     ///     five.as_mut_ptr().write(5);
473     ///
474     ///     five.assume_init()
475     /// };
476     ///
477     /// assert_eq!(*five, 5);
478     /// # Ok::<(), std::alloc::AllocError>(())
479     /// ```
480     #[unstable(feature = "allocator_api", issue = "32838")]
481     // #[unstable(feature = "new_uninit", issue = "63291")]
try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> where A: Allocator,482     pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
483     where
484         A: Allocator,
485     {
486         let ptr = if T::IS_ZST {
487             NonNull::dangling()
488         } else {
489             let layout = Layout::new::<mem::MaybeUninit<T>>();
490             alloc.allocate(layout)?.cast()
491         };
492         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
493     }
494 
495     /// Constructs a new `Box` with uninitialized contents, with the memory
496     /// being filled with `0` bytes in the provided allocator.
497     ///
498     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
499     /// of this method.
500     ///
501     /// # Examples
502     ///
503     /// ```
504     /// #![feature(allocator_api, new_uninit)]
505     ///
506     /// use std::alloc::System;
507     ///
508     /// let zero = Box::<u32, _>::new_zeroed_in(System);
509     /// let zero = unsafe { zero.assume_init() };
510     ///
511     /// assert_eq!(*zero, 0)
512     /// ```
513     ///
514     /// [zeroed]: mem::MaybeUninit::zeroed
515     #[unstable(feature = "allocator_api", issue = "32838")]
516     #[cfg(not(no_global_oom_handling))]
517     // #[unstable(feature = "new_uninit", issue = "63291")]
518     #[must_use]
new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> where A: Allocator,519     pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
520     where
521         A: Allocator,
522     {
523         let layout = Layout::new::<mem::MaybeUninit<T>>();
524         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
525         // That would make code size bigger.
526         match Box::try_new_zeroed_in(alloc) {
527             Ok(m) => m,
528             Err(_) => handle_alloc_error(layout),
529         }
530     }
531 
532     /// Constructs a new `Box` with uninitialized contents, with the memory
533     /// being filled with `0` bytes in the provided allocator,
534     /// returning an error if the allocation fails,
535     ///
536     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
537     /// of this method.
538     ///
539     /// # Examples
540     ///
541     /// ```
542     /// #![feature(allocator_api, new_uninit)]
543     ///
544     /// use std::alloc::System;
545     ///
546     /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
547     /// let zero = unsafe { zero.assume_init() };
548     ///
549     /// assert_eq!(*zero, 0);
550     /// # Ok::<(), std::alloc::AllocError>(())
551     /// ```
552     ///
553     /// [zeroed]: mem::MaybeUninit::zeroed
554     #[unstable(feature = "allocator_api", issue = "32838")]
555     // #[unstable(feature = "new_uninit", issue = "63291")]
try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> where A: Allocator,556     pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
557     where
558         A: Allocator,
559     {
560         let ptr = if T::IS_ZST {
561             NonNull::dangling()
562         } else {
563             let layout = Layout::new::<mem::MaybeUninit<T>>();
564             alloc.allocate_zeroed(layout)?.cast()
565         };
566         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
567     }
568 
569     /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
570     /// `x` will be pinned in memory and unable to be moved.
571     ///
572     /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
573     /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
574     /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
575     /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
576     #[cfg(not(no_global_oom_handling))]
577     #[unstable(feature = "allocator_api", issue = "32838")]
578     #[must_use]
579     #[inline(always)]
pin_in(x: T, alloc: A) -> Pin<Self> where A: 'static + Allocator,580     pub fn pin_in(x: T, alloc: A) -> Pin<Self>
581     where
582         A: 'static + Allocator,
583     {
584         Self::into_pin(Self::new_in(x, alloc))
585     }
586 
587     /// Converts a `Box<T>` into a `Box<[T]>`
588     ///
589     /// This conversion does not allocate on the heap and happens in place.
590     #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
into_boxed_slice(boxed: Self) -> Box<[T], A>591     pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
592         let (raw, alloc) = Box::into_raw_with_allocator(boxed);
593         unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
594     }
595 
596     /// Consumes the `Box`, returning the wrapped value.
597     ///
598     /// # Examples
599     ///
600     /// ```
601     /// #![feature(box_into_inner)]
602     ///
603     /// let c = Box::new(5);
604     ///
605     /// assert_eq!(Box::into_inner(c), 5);
606     /// ```
607     #[unstable(feature = "box_into_inner", issue = "80437")]
608     #[inline]
into_inner(boxed: Self) -> T609     pub fn into_inner(boxed: Self) -> T {
610         *boxed
611     }
612 }
613 
614 impl<T> Box<[T]> {
615     /// Constructs a new boxed slice with uninitialized contents.
616     ///
617     /// # Examples
618     ///
619     /// ```
620     /// #![feature(new_uninit)]
621     ///
622     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
623     ///
624     /// let values = unsafe {
625     ///     // Deferred initialization:
626     ///     values[0].as_mut_ptr().write(1);
627     ///     values[1].as_mut_ptr().write(2);
628     ///     values[2].as_mut_ptr().write(3);
629     ///
630     ///     values.assume_init()
631     /// };
632     ///
633     /// assert_eq!(*values, [1, 2, 3])
634     /// ```
635     #[cfg(not(no_global_oom_handling))]
636     #[unstable(feature = "new_uninit", issue = "63291")]
637     #[must_use]
new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]>638     pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
639         unsafe { RawVec::with_capacity(len).into_box(len) }
640     }
641 
642     /// Constructs a new boxed slice with uninitialized contents, with the memory
643     /// being filled with `0` bytes.
644     ///
645     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
646     /// of this method.
647     ///
648     /// # Examples
649     ///
650     /// ```
651     /// #![feature(new_uninit)]
652     ///
653     /// let values = Box::<[u32]>::new_zeroed_slice(3);
654     /// let values = unsafe { values.assume_init() };
655     ///
656     /// assert_eq!(*values, [0, 0, 0])
657     /// ```
658     ///
659     /// [zeroed]: mem::MaybeUninit::zeroed
660     #[cfg(not(no_global_oom_handling))]
661     #[unstable(feature = "new_uninit", issue = "63291")]
662     #[must_use]
new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]>663     pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
664         unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
665     }
666 
667     /// Constructs a new boxed slice with uninitialized contents. Returns an error if
668     /// the allocation fails
669     ///
670     /// # Examples
671     ///
672     /// ```
673     /// #![feature(allocator_api, new_uninit)]
674     ///
675     /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
676     /// let values = unsafe {
677     ///     // Deferred initialization:
678     ///     values[0].as_mut_ptr().write(1);
679     ///     values[1].as_mut_ptr().write(2);
680     ///     values[2].as_mut_ptr().write(3);
681     ///     values.assume_init()
682     /// };
683     ///
684     /// assert_eq!(*values, [1, 2, 3]);
685     /// # Ok::<(), std::alloc::AllocError>(())
686     /// ```
687     #[unstable(feature = "allocator_api", issue = "32838")]
688     #[inline]
try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError>689     pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
690         let ptr = if T::IS_ZST || len == 0 {
691             NonNull::dangling()
692         } else {
693             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
694                 Ok(l) => l,
695                 Err(_) => return Err(AllocError),
696             };
697             Global.allocate(layout)?.cast()
698         };
699         unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
700     }
701 
702     /// Constructs a new boxed slice with uninitialized contents, with the memory
703     /// being filled with `0` bytes. Returns an error if the allocation fails
704     ///
705     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
706     /// of this method.
707     ///
708     /// # Examples
709     ///
710     /// ```
711     /// #![feature(allocator_api, new_uninit)]
712     ///
713     /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
714     /// let values = unsafe { values.assume_init() };
715     ///
716     /// assert_eq!(*values, [0, 0, 0]);
717     /// # Ok::<(), std::alloc::AllocError>(())
718     /// ```
719     ///
720     /// [zeroed]: mem::MaybeUninit::zeroed
721     #[unstable(feature = "allocator_api", issue = "32838")]
722     #[inline]
try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError>723     pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
724         let ptr = if T::IS_ZST || len == 0 {
725             NonNull::dangling()
726         } else {
727             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
728                 Ok(l) => l,
729                 Err(_) => return Err(AllocError),
730             };
731             Global.allocate_zeroed(layout)?.cast()
732         };
733         unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
734     }
735 }
736 
737 impl<T, A: Allocator> Box<[T], A> {
738     /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
739     ///
740     /// # Examples
741     ///
742     /// ```
743     /// #![feature(allocator_api, new_uninit)]
744     ///
745     /// use std::alloc::System;
746     ///
747     /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
748     ///
749     /// let values = unsafe {
750     ///     // Deferred initialization:
751     ///     values[0].as_mut_ptr().write(1);
752     ///     values[1].as_mut_ptr().write(2);
753     ///     values[2].as_mut_ptr().write(3);
754     ///
755     ///     values.assume_init()
756     /// };
757     ///
758     /// assert_eq!(*values, [1, 2, 3])
759     /// ```
760     #[cfg(not(no_global_oom_handling))]
761     #[unstable(feature = "allocator_api", issue = "32838")]
762     // #[unstable(feature = "new_uninit", issue = "63291")]
763     #[must_use]
new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A>764     pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
765         unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
766     }
767 
768     /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
769     /// with the memory being filled with `0` bytes.
770     ///
771     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
772     /// of this method.
773     ///
774     /// # Examples
775     ///
776     /// ```
777     /// #![feature(allocator_api, new_uninit)]
778     ///
779     /// use std::alloc::System;
780     ///
781     /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
782     /// let values = unsafe { values.assume_init() };
783     ///
784     /// assert_eq!(*values, [0, 0, 0])
785     /// ```
786     ///
787     /// [zeroed]: mem::MaybeUninit::zeroed
788     #[cfg(not(no_global_oom_handling))]
789     #[unstable(feature = "allocator_api", issue = "32838")]
790     // #[unstable(feature = "new_uninit", issue = "63291")]
791     #[must_use]
new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A>792     pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
793         unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
794     }
795 }
796 
797 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
798     /// Converts to `Box<T, A>`.
799     ///
800     /// # Safety
801     ///
802     /// As with [`MaybeUninit::assume_init`],
803     /// it is up to the caller to guarantee that the value
804     /// really is in an initialized state.
805     /// Calling this when the content is not yet fully initialized
806     /// causes immediate undefined behavior.
807     ///
808     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
809     ///
810     /// # Examples
811     ///
812     /// ```
813     /// #![feature(new_uninit)]
814     ///
815     /// let mut five = Box::<u32>::new_uninit();
816     ///
817     /// let five: Box<u32> = unsafe {
818     ///     // Deferred initialization:
819     ///     five.as_mut_ptr().write(5);
820     ///
821     ///     five.assume_init()
822     /// };
823     ///
824     /// assert_eq!(*five, 5)
825     /// ```
826     #[unstable(feature = "new_uninit", issue = "63291")]
827     #[inline]
assume_init(self) -> Box<T, A>828     pub unsafe fn assume_init(self) -> Box<T, A> {
829         let (raw, alloc) = Box::into_raw_with_allocator(self);
830         unsafe { Box::from_raw_in(raw as *mut T, alloc) }
831     }
832 
833     /// Writes the value and converts to `Box<T, A>`.
834     ///
835     /// This method converts the box similarly to [`Box::assume_init`] but
836     /// writes `value` into it before conversion thus guaranteeing safety.
837     /// In some scenarios use of this method may improve performance because
838     /// the compiler may be able to optimize copying from stack.
839     ///
840     /// # Examples
841     ///
842     /// ```
843     /// #![feature(new_uninit)]
844     ///
845     /// let big_box = Box::<[usize; 1024]>::new_uninit();
846     ///
847     /// let mut array = [0; 1024];
848     /// for (i, place) in array.iter_mut().enumerate() {
849     ///     *place = i;
850     /// }
851     ///
852     /// // The optimizer may be able to elide this copy, so previous code writes
853     /// // to heap directly.
854     /// let big_box = Box::write(big_box, array);
855     ///
856     /// for (i, x) in big_box.iter().enumerate() {
857     ///     assert_eq!(*x, i);
858     /// }
859     /// ```
860     #[unstable(feature = "new_uninit", issue = "63291")]
861     #[inline]
write(mut boxed: Self, value: T) -> Box<T, A>862     pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
863         unsafe {
864             (*boxed).write(value);
865             boxed.assume_init()
866         }
867     }
868 }
869 
870 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
871     /// Converts to `Box<[T], A>`.
872     ///
873     /// # Safety
874     ///
875     /// As with [`MaybeUninit::assume_init`],
876     /// it is up to the caller to guarantee that the values
877     /// really are in an initialized state.
878     /// Calling this when the content is not yet fully initialized
879     /// causes immediate undefined behavior.
880     ///
881     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
882     ///
883     /// # Examples
884     ///
885     /// ```
886     /// #![feature(new_uninit)]
887     ///
888     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
889     ///
890     /// let values = unsafe {
891     ///     // Deferred initialization:
892     ///     values[0].as_mut_ptr().write(1);
893     ///     values[1].as_mut_ptr().write(2);
894     ///     values[2].as_mut_ptr().write(3);
895     ///
896     ///     values.assume_init()
897     /// };
898     ///
899     /// assert_eq!(*values, [1, 2, 3])
900     /// ```
901     #[unstable(feature = "new_uninit", issue = "63291")]
902     #[inline]
assume_init(self) -> Box<[T], A>903     pub unsafe fn assume_init(self) -> Box<[T], A> {
904         let (raw, alloc) = Box::into_raw_with_allocator(self);
905         unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
906     }
907 }
908 
909 impl<T: ?Sized> Box<T> {
910     /// Constructs a box from a raw pointer.
911     ///
912     /// After calling this function, the raw pointer is owned by the
913     /// resulting `Box`. Specifically, the `Box` destructor will call
914     /// the destructor of `T` and free the allocated memory. For this
915     /// to be safe, the memory must have been allocated in accordance
916     /// with the [memory layout] used by `Box` .
917     ///
918     /// # Safety
919     ///
920     /// This function is unsafe because improper use may lead to
921     /// memory problems. For example, a double-free may occur if the
922     /// function is called twice on the same raw pointer.
923     ///
924     /// The safety conditions are described in the [memory layout] section.
925     ///
926     /// # Examples
927     ///
928     /// Recreate a `Box` which was previously converted to a raw pointer
929     /// using [`Box::into_raw`]:
930     /// ```
931     /// let x = Box::new(5);
932     /// let ptr = Box::into_raw(x);
933     /// let x = unsafe { Box::from_raw(ptr) };
934     /// ```
935     /// Manually create a `Box` from scratch by using the global allocator:
936     /// ```
937     /// use std::alloc::{alloc, Layout};
938     ///
939     /// unsafe {
940     ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
941     ///     // In general .write is required to avoid attempting to destruct
942     ///     // the (uninitialized) previous contents of `ptr`, though for this
943     ///     // simple example `*ptr = 5` would have worked as well.
944     ///     ptr.write(5);
945     ///     let x = Box::from_raw(ptr);
946     /// }
947     /// ```
948     ///
949     /// [memory layout]: self#memory-layout
950     /// [`Layout`]: crate::Layout
951     #[stable(feature = "box_raw", since = "1.4.0")]
952     #[inline]
953     #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
from_raw(raw: *mut T) -> Self954     pub unsafe fn from_raw(raw: *mut T) -> Self {
955         unsafe { Self::from_raw_in(raw, Global) }
956     }
957 }
958 
959 impl<T: ?Sized, A: Allocator> Box<T, A> {
960     /// Constructs a box from a raw pointer in the given allocator.
961     ///
962     /// After calling this function, the raw pointer is owned by the
963     /// resulting `Box`. Specifically, the `Box` destructor will call
964     /// the destructor of `T` and free the allocated memory. For this
965     /// to be safe, the memory must have been allocated in accordance
966     /// with the [memory layout] used by `Box` .
967     ///
968     /// # Safety
969     ///
970     /// This function is unsafe because improper use may lead to
971     /// memory problems. For example, a double-free may occur if the
972     /// function is called twice on the same raw pointer.
973     ///
974     ///
975     /// # Examples
976     ///
977     /// Recreate a `Box` which was previously converted to a raw pointer
978     /// using [`Box::into_raw_with_allocator`]:
979     /// ```
980     /// #![feature(allocator_api)]
981     ///
982     /// use std::alloc::System;
983     ///
984     /// let x = Box::new_in(5, System);
985     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
986     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
987     /// ```
988     /// Manually create a `Box` from scratch by using the system allocator:
989     /// ```
990     /// #![feature(allocator_api, slice_ptr_get)]
991     ///
992     /// use std::alloc::{Allocator, Layout, System};
993     ///
994     /// unsafe {
995     ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
996     ///     // In general .write is required to avoid attempting to destruct
997     ///     // the (uninitialized) previous contents of `ptr`, though for this
998     ///     // simple example `*ptr = 5` would have worked as well.
999     ///     ptr.write(5);
1000     ///     let x = Box::from_raw_in(ptr, System);
1001     /// }
1002     /// # Ok::<(), std::alloc::AllocError>(())
1003     /// ```
1004     ///
1005     /// [memory layout]: self#memory-layout
1006     /// [`Layout`]: crate::Layout
1007     #[unstable(feature = "allocator_api", issue = "32838")]
1008     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1009     #[inline]
from_raw_in(raw: *mut T, alloc: A) -> Self1010     pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1011         Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1012     }
1013 
1014     /// Consumes the `Box`, returning a wrapped raw pointer.
1015     ///
1016     /// The pointer will be properly aligned and non-null.
1017     ///
1018     /// After calling this function, the caller is responsible for the
1019     /// memory previously managed by the `Box`. In particular, the
1020     /// caller should properly destroy `T` and release the memory, taking
1021     /// into account the [memory layout] used by `Box`. The easiest way to
1022     /// do this is to convert the raw pointer back into a `Box` with the
1023     /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1024     /// the cleanup.
1025     ///
1026     /// Note: this is an associated function, which means that you have
1027     /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1028     /// is so that there is no conflict with a method on the inner type.
1029     ///
1030     /// # Examples
1031     /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1032     /// for automatic cleanup:
1033     /// ```
1034     /// let x = Box::new(String::from("Hello"));
1035     /// let ptr = Box::into_raw(x);
1036     /// let x = unsafe { Box::from_raw(ptr) };
1037     /// ```
1038     /// Manual cleanup by explicitly running the destructor and deallocating
1039     /// the memory:
1040     /// ```
1041     /// use std::alloc::{dealloc, Layout};
1042     /// use std::ptr;
1043     ///
1044     /// let x = Box::new(String::from("Hello"));
1045     /// let p = Box::into_raw(x);
1046     /// unsafe {
1047     ///     ptr::drop_in_place(p);
1048     ///     dealloc(p as *mut u8, Layout::new::<String>());
1049     /// }
1050     /// ```
1051     ///
1052     /// [memory layout]: self#memory-layout
1053     #[stable(feature = "box_raw", since = "1.4.0")]
1054     #[inline]
into_raw(b: Self) -> *mut T1055     pub fn into_raw(b: Self) -> *mut T {
1056         Self::into_raw_with_allocator(b).0
1057     }
1058 
1059     /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1060     ///
1061     /// The pointer will be properly aligned and non-null.
1062     ///
1063     /// After calling this function, the caller is responsible for the
1064     /// memory previously managed by the `Box`. In particular, the
1065     /// caller should properly destroy `T` and release the memory, taking
1066     /// into account the [memory layout] used by `Box`. The easiest way to
1067     /// do this is to convert the raw pointer back into a `Box` with the
1068     /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1069     /// the cleanup.
1070     ///
1071     /// Note: this is an associated function, which means that you have
1072     /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1073     /// is so that there is no conflict with a method on the inner type.
1074     ///
1075     /// # Examples
1076     /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1077     /// for automatic cleanup:
1078     /// ```
1079     /// #![feature(allocator_api)]
1080     ///
1081     /// use std::alloc::System;
1082     ///
1083     /// let x = Box::new_in(String::from("Hello"), System);
1084     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1085     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1086     /// ```
1087     /// Manual cleanup by explicitly running the destructor and deallocating
1088     /// the memory:
1089     /// ```
1090     /// #![feature(allocator_api)]
1091     ///
1092     /// use std::alloc::{Allocator, Layout, System};
1093     /// use std::ptr::{self, NonNull};
1094     ///
1095     /// let x = Box::new_in(String::from("Hello"), System);
1096     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1097     /// unsafe {
1098     ///     ptr::drop_in_place(ptr);
1099     ///     let non_null = NonNull::new_unchecked(ptr);
1100     ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1101     /// }
1102     /// ```
1103     ///
1104     /// [memory layout]: self#memory-layout
1105     #[unstable(feature = "allocator_api", issue = "32838")]
1106     #[inline]
into_raw_with_allocator(b: Self) -> (*mut T, A)1107     pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1108         let (leaked, alloc) = Box::into_unique(b);
1109         (leaked.as_ptr(), alloc)
1110     }
1111 
1112     #[unstable(
1113         feature = "ptr_internals",
1114         issue = "none",
1115         reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1116     )]
1117     #[inline]
1118     #[doc(hidden)]
into_unique(b: Self) -> (Unique<T>, A)1119     pub fn into_unique(b: Self) -> (Unique<T>, A) {
1120         // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1121         // raw pointer for the type system. Turning it directly into a raw pointer would not be
1122         // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1123         // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1124         // behaves correctly.
1125         let alloc = unsafe { ptr::read(&b.1) };
1126         (Unique::from(Box::leak(b)), alloc)
1127     }
1128 
1129     /// Returns a reference to the underlying allocator.
1130     ///
1131     /// Note: this is an associated function, which means that you have
1132     /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1133     /// is so that there is no conflict with a method on the inner type.
1134     #[unstable(feature = "allocator_api", issue = "32838")]
1135     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1136     #[inline]
allocator(b: &Self) -> &A1137     pub const fn allocator(b: &Self) -> &A {
1138         &b.1
1139     }
1140 
1141     /// Consumes and leaks the `Box`, returning a mutable reference,
1142     /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1143     /// `'a`. If the type has only static references, or none at all, then this
1144     /// may be chosen to be `'static`.
1145     ///
1146     /// This function is mainly useful for data that lives for the remainder of
1147     /// the program's life. Dropping the returned reference will cause a memory
1148     /// leak. If this is not acceptable, the reference should first be wrapped
1149     /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1150     /// then be dropped which will properly destroy `T` and release the
1151     /// allocated memory.
1152     ///
1153     /// Note: this is an associated function, which means that you have
1154     /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1155     /// is so that there is no conflict with a method on the inner type.
1156     ///
1157     /// # Examples
1158     ///
1159     /// Simple usage:
1160     ///
1161     /// ```
1162     /// let x = Box::new(41);
1163     /// let static_ref: &'static mut usize = Box::leak(x);
1164     /// *static_ref += 1;
1165     /// assert_eq!(*static_ref, 42);
1166     /// ```
1167     ///
1168     /// Unsized data:
1169     ///
1170     /// ```
1171     /// let x = vec![1, 2, 3].into_boxed_slice();
1172     /// let static_ref = Box::leak(x);
1173     /// static_ref[0] = 4;
1174     /// assert_eq!(*static_ref, [4, 2, 3]);
1175     /// ```
1176     #[stable(feature = "box_leak", since = "1.26.0")]
1177     #[inline]
leak<'a>(b: Self) -> &'a mut T where A: 'a,1178     pub fn leak<'a>(b: Self) -> &'a mut T
1179     where
1180         A: 'a,
1181     {
1182         unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1183     }
1184 
1185     /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1186     /// `*boxed` will be pinned in memory and unable to be moved.
1187     ///
1188     /// This conversion does not allocate on the heap and happens in place.
1189     ///
1190     /// This is also available via [`From`].
1191     ///
1192     /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1193     /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1194     /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1195     /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1196     ///
1197     /// # Notes
1198     ///
1199     /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1200     /// as it'll introduce an ambiguity when calling `Pin::from`.
1201     /// A demonstration of such a poor impl is shown below.
1202     ///
1203     /// ```compile_fail
1204     /// # use std::pin::Pin;
1205     /// struct Foo; // A type defined in this crate.
1206     /// impl From<Box<()>> for Pin<Foo> {
1207     ///     fn from(_: Box<()>) -> Pin<Foo> {
1208     ///         Pin::new(Foo)
1209     ///     }
1210     /// }
1211     ///
1212     /// let foo = Box::new(());
1213     /// let bar = Pin::from(foo);
1214     /// ```
1215     #[stable(feature = "box_into_pin", since = "1.63.0")]
1216     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
into_pin(boxed: Self) -> Pin<Self> where A: 'static,1217     pub const fn into_pin(boxed: Self) -> Pin<Self>
1218     where
1219         A: 'static,
1220     {
1221         // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1222         // when `T: !Unpin`, so it's safe to pin it directly without any
1223         // additional requirements.
1224         unsafe { Pin::new_unchecked(boxed) }
1225     }
1226 }
1227 
1228 #[stable(feature = "rust1", since = "1.0.0")]
1229 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1230     #[inline]
drop(&mut self)1231     fn drop(&mut self) {
1232         // the T in the Box is dropped by the compiler before the destructor is run
1233 
1234         let ptr = self.0;
1235 
1236         unsafe {
1237             let layout = Layout::for_value_raw(ptr.as_ptr());
1238             if layout.size() != 0 {
1239                 self.1.deallocate(From::from(ptr.cast()), layout);
1240             }
1241         }
1242     }
1243 }
1244 
1245 #[cfg(not(no_global_oom_handling))]
1246 #[stable(feature = "rust1", since = "1.0.0")]
1247 impl<T: Default> Default for Box<T> {
1248     /// Creates a `Box<T>`, with the `Default` value for T.
1249     #[inline]
default() -> Self1250     fn default() -> Self {
1251         Box::new(T::default())
1252     }
1253 }
1254 
1255 #[cfg(not(no_global_oom_handling))]
1256 #[stable(feature = "rust1", since = "1.0.0")]
1257 impl<T> Default for Box<[T]> {
1258     #[inline]
default() -> Self1259     fn default() -> Self {
1260         let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1261         Box(ptr, Global)
1262     }
1263 }
1264 
1265 #[cfg(not(no_global_oom_handling))]
1266 #[stable(feature = "default_box_extra", since = "1.17.0")]
1267 impl Default for Box<str> {
1268     #[inline]
default() -> Self1269     fn default() -> Self {
1270         // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1271         let ptr: Unique<str> = unsafe {
1272             let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1273             Unique::new_unchecked(bytes.as_ptr() as *mut str)
1274         };
1275         Box(ptr, Global)
1276     }
1277 }
1278 
1279 #[cfg(not(no_global_oom_handling))]
1280 #[stable(feature = "rust1", since = "1.0.0")]
1281 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1282     /// Returns a new box with a `clone()` of this box's contents.
1283     ///
1284     /// # Examples
1285     ///
1286     /// ```
1287     /// let x = Box::new(5);
1288     /// let y = x.clone();
1289     ///
1290     /// // The value is the same
1291     /// assert_eq!(x, y);
1292     ///
1293     /// // But they are unique objects
1294     /// assert_ne!(&*x as *const i32, &*y as *const i32);
1295     /// ```
1296     #[inline]
clone(&self) -> Self1297     fn clone(&self) -> Self {
1298         // Pre-allocate memory to allow writing the cloned value directly.
1299         let mut boxed = Self::new_uninit_in(self.1.clone());
1300         unsafe {
1301             (**self).write_clone_into_raw(boxed.as_mut_ptr());
1302             boxed.assume_init()
1303         }
1304     }
1305 
1306     /// Copies `source`'s contents into `self` without creating a new allocation.
1307     ///
1308     /// # Examples
1309     ///
1310     /// ```
1311     /// let x = Box::new(5);
1312     /// let mut y = Box::new(10);
1313     /// let yp: *const i32 = &*y;
1314     ///
1315     /// y.clone_from(&x);
1316     ///
1317     /// // The value is the same
1318     /// assert_eq!(x, y);
1319     ///
1320     /// // And no allocation occurred
1321     /// assert_eq!(yp, &*y);
1322     /// ```
1323     #[inline]
clone_from(&mut self, source: &Self)1324     fn clone_from(&mut self, source: &Self) {
1325         (**self).clone_from(&(**source));
1326     }
1327 }
1328 
1329 #[cfg(not(no_global_oom_handling))]
1330 #[stable(feature = "box_slice_clone", since = "1.3.0")]
1331 impl Clone for Box<str> {
clone(&self) -> Self1332     fn clone(&self) -> Self {
1333         // this makes a copy of the data
1334         let buf: Box<[u8]> = self.as_bytes().into();
1335         unsafe { from_boxed_utf8_unchecked(buf) }
1336     }
1337 }
1338 
1339 #[stable(feature = "rust1", since = "1.0.0")]
1340 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1341     #[inline]
eq(&self, other: &Self) -> bool1342     fn eq(&self, other: &Self) -> bool {
1343         PartialEq::eq(&**self, &**other)
1344     }
1345     #[inline]
ne(&self, other: &Self) -> bool1346     fn ne(&self, other: &Self) -> bool {
1347         PartialEq::ne(&**self, &**other)
1348     }
1349 }
1350 #[stable(feature = "rust1", since = "1.0.0")]
1351 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1352     #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>1353     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1354         PartialOrd::partial_cmp(&**self, &**other)
1355     }
1356     #[inline]
lt(&self, other: &Self) -> bool1357     fn lt(&self, other: &Self) -> bool {
1358         PartialOrd::lt(&**self, &**other)
1359     }
1360     #[inline]
le(&self, other: &Self) -> bool1361     fn le(&self, other: &Self) -> bool {
1362         PartialOrd::le(&**self, &**other)
1363     }
1364     #[inline]
ge(&self, other: &Self) -> bool1365     fn ge(&self, other: &Self) -> bool {
1366         PartialOrd::ge(&**self, &**other)
1367     }
1368     #[inline]
gt(&self, other: &Self) -> bool1369     fn gt(&self, other: &Self) -> bool {
1370         PartialOrd::gt(&**self, &**other)
1371     }
1372 }
1373 #[stable(feature = "rust1", since = "1.0.0")]
1374 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1375     #[inline]
cmp(&self, other: &Self) -> Ordering1376     fn cmp(&self, other: &Self) -> Ordering {
1377         Ord::cmp(&**self, &**other)
1378     }
1379 }
1380 #[stable(feature = "rust1", since = "1.0.0")]
1381 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1382 
1383 #[stable(feature = "rust1", since = "1.0.0")]
1384 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
hash<H: Hasher>(&self, state: &mut H)1385     fn hash<H: Hasher>(&self, state: &mut H) {
1386         (**self).hash(state);
1387     }
1388 }
1389 
1390 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1391 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
finish(&self) -> u641392     fn finish(&self) -> u64 {
1393         (**self).finish()
1394     }
write(&mut self, bytes: &[u8])1395     fn write(&mut self, bytes: &[u8]) {
1396         (**self).write(bytes)
1397     }
write_u8(&mut self, i: u8)1398     fn write_u8(&mut self, i: u8) {
1399         (**self).write_u8(i)
1400     }
write_u16(&mut self, i: u16)1401     fn write_u16(&mut self, i: u16) {
1402         (**self).write_u16(i)
1403     }
write_u32(&mut self, i: u32)1404     fn write_u32(&mut self, i: u32) {
1405         (**self).write_u32(i)
1406     }
write_u64(&mut self, i: u64)1407     fn write_u64(&mut self, i: u64) {
1408         (**self).write_u64(i)
1409     }
write_u128(&mut self, i: u128)1410     fn write_u128(&mut self, i: u128) {
1411         (**self).write_u128(i)
1412     }
write_usize(&mut self, i: usize)1413     fn write_usize(&mut self, i: usize) {
1414         (**self).write_usize(i)
1415     }
write_i8(&mut self, i: i8)1416     fn write_i8(&mut self, i: i8) {
1417         (**self).write_i8(i)
1418     }
write_i16(&mut self, i: i16)1419     fn write_i16(&mut self, i: i16) {
1420         (**self).write_i16(i)
1421     }
write_i32(&mut self, i: i32)1422     fn write_i32(&mut self, i: i32) {
1423         (**self).write_i32(i)
1424     }
write_i64(&mut self, i: i64)1425     fn write_i64(&mut self, i: i64) {
1426         (**self).write_i64(i)
1427     }
write_i128(&mut self, i: i128)1428     fn write_i128(&mut self, i: i128) {
1429         (**self).write_i128(i)
1430     }
write_isize(&mut self, i: isize)1431     fn write_isize(&mut self, i: isize) {
1432         (**self).write_isize(i)
1433     }
write_length_prefix(&mut self, len: usize)1434     fn write_length_prefix(&mut self, len: usize) {
1435         (**self).write_length_prefix(len)
1436     }
write_str(&mut self, s: &str)1437     fn write_str(&mut self, s: &str) {
1438         (**self).write_str(s)
1439     }
1440 }
1441 
1442 #[cfg(not(no_global_oom_handling))]
1443 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1444 impl<T> From<T> for Box<T> {
1445     /// Converts a `T` into a `Box<T>`
1446     ///
1447     /// The conversion allocates on the heap and moves `t`
1448     /// from the stack into it.
1449     ///
1450     /// # Examples
1451     ///
1452     /// ```rust
1453     /// let x = 5;
1454     /// let boxed = Box::new(5);
1455     ///
1456     /// assert_eq!(Box::from(x), boxed);
1457     /// ```
from(t: T) -> Self1458     fn from(t: T) -> Self {
1459         Box::new(t)
1460     }
1461 }
1462 
1463 #[stable(feature = "pin", since = "1.33.0")]
1464 impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1465 where
1466     A: 'static,
1467 {
1468     /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1469     /// `*boxed` will be pinned in memory and unable to be moved.
1470     ///
1471     /// This conversion does not allocate on the heap and happens in place.
1472     ///
1473     /// This is also available via [`Box::into_pin`].
1474     ///
1475     /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1476     /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1477     /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1478     /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
from(boxed: Box<T, A>) -> Self1479     fn from(boxed: Box<T, A>) -> Self {
1480         Box::into_pin(boxed)
1481     }
1482 }
1483 
1484 /// Specialization trait used for `From<&[T]>`.
1485 #[cfg(not(no_global_oom_handling))]
1486 trait BoxFromSlice<T> {
from_slice(slice: &[T]) -> Self1487     fn from_slice(slice: &[T]) -> Self;
1488 }
1489 
1490 #[cfg(not(no_global_oom_handling))]
1491 impl<T: Clone> BoxFromSlice<T> for Box<[T]> {
1492     #[inline]
from_slice(slice: &[T]) -> Self1493     default fn from_slice(slice: &[T]) -> Self {
1494         slice.to_vec().into_boxed_slice()
1495     }
1496 }
1497 
1498 #[cfg(not(no_global_oom_handling))]
1499 impl<T: Copy> BoxFromSlice<T> for Box<[T]> {
1500     #[inline]
from_slice(slice: &[T]) -> Self1501     fn from_slice(slice: &[T]) -> Self {
1502         let len = slice.len();
1503         let buf = RawVec::with_capacity(len);
1504         unsafe {
1505             ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1506             buf.into_box(slice.len()).assume_init()
1507         }
1508     }
1509 }
1510 
1511 #[cfg(not(no_global_oom_handling))]
1512 #[stable(feature = "box_from_slice", since = "1.17.0")]
1513 impl<T: Clone> From<&[T]> for Box<[T]> {
1514     /// Converts a `&[T]` into a `Box<[T]>`
1515     ///
1516     /// This conversion allocates on the heap
1517     /// and performs a copy of `slice` and its contents.
1518     ///
1519     /// # Examples
1520     /// ```rust
1521     /// // create a &[u8] which will be used to create a Box<[u8]>
1522     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1523     /// let boxed_slice: Box<[u8]> = Box::from(slice);
1524     ///
1525     /// println!("{boxed_slice:?}");
1526     /// ```
1527     #[inline]
from(slice: &[T]) -> Box<[T]>1528     fn from(slice: &[T]) -> Box<[T]> {
1529         <Self as BoxFromSlice<T>>::from_slice(slice)
1530     }
1531 }
1532 
1533 #[cfg(not(no_global_oom_handling))]
1534 #[stable(feature = "box_from_cow", since = "1.45.0")]
1535 impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> {
1536     /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
1537     ///
1538     /// When `cow` is the `Cow::Borrowed` variant, this
1539     /// conversion allocates on the heap and copies the
1540     /// underlying slice. Otherwise, it will try to reuse the owned
1541     /// `Vec`'s allocation.
1542     #[inline]
from(cow: Cow<'_, [T]>) -> Box<[T]>1543     fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
1544         match cow {
1545             Cow::Borrowed(slice) => Box::from(slice),
1546             Cow::Owned(slice) => Box::from(slice),
1547         }
1548     }
1549 }
1550 
1551 #[cfg(not(no_global_oom_handling))]
1552 #[stable(feature = "box_from_slice", since = "1.17.0")]
1553 impl From<&str> for Box<str> {
1554     /// Converts a `&str` into a `Box<str>`
1555     ///
1556     /// This conversion allocates on the heap
1557     /// and performs a copy of `s`.
1558     ///
1559     /// # Examples
1560     ///
1561     /// ```rust
1562     /// let boxed: Box<str> = Box::from("hello");
1563     /// println!("{boxed}");
1564     /// ```
1565     #[inline]
from(s: &str) -> Box<str>1566     fn from(s: &str) -> Box<str> {
1567         unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
1568     }
1569 }
1570 
1571 #[cfg(not(no_global_oom_handling))]
1572 #[stable(feature = "box_from_cow", since = "1.45.0")]
1573 impl From<Cow<'_, str>> for Box<str> {
1574     /// Converts a `Cow<'_, str>` into a `Box<str>`
1575     ///
1576     /// When `cow` is the `Cow::Borrowed` variant, this
1577     /// conversion allocates on the heap and copies the
1578     /// underlying `str`. Otherwise, it will try to reuse the owned
1579     /// `String`'s allocation.
1580     ///
1581     /// # Examples
1582     ///
1583     /// ```rust
1584     /// use std::borrow::Cow;
1585     ///
1586     /// let unboxed = Cow::Borrowed("hello");
1587     /// let boxed: Box<str> = Box::from(unboxed);
1588     /// println!("{boxed}");
1589     /// ```
1590     ///
1591     /// ```rust
1592     /// # use std::borrow::Cow;
1593     /// let unboxed = Cow::Owned("hello".to_string());
1594     /// let boxed: Box<str> = Box::from(unboxed);
1595     /// println!("{boxed}");
1596     /// ```
1597     #[inline]
from(cow: Cow<'_, str>) -> Box<str>1598     fn from(cow: Cow<'_, str>) -> Box<str> {
1599         match cow {
1600             Cow::Borrowed(s) => Box::from(s),
1601             Cow::Owned(s) => Box::from(s),
1602         }
1603     }
1604 }
1605 
1606 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
1607 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1608     /// Converts a `Box<str>` into a `Box<[u8]>`
1609     ///
1610     /// This conversion does not allocate on the heap and happens in place.
1611     ///
1612     /// # Examples
1613     /// ```rust
1614     /// // create a Box<str> which will be used to create a Box<[u8]>
1615     /// let boxed: Box<str> = Box::from("hello");
1616     /// let boxed_str: Box<[u8]> = Box::from(boxed);
1617     ///
1618     /// // create a &[u8] which will be used to create a Box<[u8]>
1619     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1620     /// let boxed_slice = Box::from(slice);
1621     ///
1622     /// assert_eq!(boxed_slice, boxed_str);
1623     /// ```
1624     #[inline]
from(s: Box<str, A>) -> Self1625     fn from(s: Box<str, A>) -> Self {
1626         let (raw, alloc) = Box::into_raw_with_allocator(s);
1627         unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1628     }
1629 }
1630 
1631 #[cfg(not(no_global_oom_handling))]
1632 #[stable(feature = "box_from_array", since = "1.45.0")]
1633 impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1634     /// Converts a `[T; N]` into a `Box<[T]>`
1635     ///
1636     /// This conversion moves the array to newly heap-allocated memory.
1637     ///
1638     /// # Examples
1639     ///
1640     /// ```rust
1641     /// let boxed: Box<[u8]> = Box::from([4, 2]);
1642     /// println!("{boxed:?}");
1643     /// ```
from(array: [T; N]) -> Box<[T]>1644     fn from(array: [T; N]) -> Box<[T]> {
1645         Box::new(array)
1646     }
1647 }
1648 
1649 /// Casts a boxed slice to a boxed array.
1650 ///
1651 /// # Safety
1652 ///
1653 /// `boxed_slice.len()` must be exactly `N`.
boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( boxed_slice: Box<[T], A>, ) -> Box<[T; N], A>1654 unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
1655     boxed_slice: Box<[T], A>,
1656 ) -> Box<[T; N], A> {
1657     debug_assert_eq!(boxed_slice.len(), N);
1658 
1659     let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1660     // SAFETY: Pointer and allocator came from an existing box,
1661     // and our safety condition requires that the length is exactly `N`
1662     unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) }
1663 }
1664 
1665 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
1666 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
1667     type Error = Box<[T]>;
1668 
1669     /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1670     ///
1671     /// The conversion occurs in-place and does not require a
1672     /// new memory allocation.
1673     ///
1674     /// # Errors
1675     ///
1676     /// Returns the old `Box<[T]>` in the `Err` variant if
1677     /// `boxed_slice.len()` does not equal `N`.
try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error>1678     fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
1679         if boxed_slice.len() == N {
1680             Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1681         } else {
1682             Err(boxed_slice)
1683         }
1684     }
1685 }
1686 
1687 #[cfg(not(no_global_oom_handling))]
1688 #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")]
1689 impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> {
1690     type Error = Vec<T>;
1691 
1692     /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`.
1693     ///
1694     /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`,
1695     /// but will require a reallocation otherwise.
1696     ///
1697     /// # Errors
1698     ///
1699     /// Returns the original `Vec<T>` in the `Err` variant if
1700     /// `boxed_slice.len()` does not equal `N`.
1701     ///
1702     /// # Examples
1703     ///
1704     /// This can be used with [`vec!`] to create an array on the heap:
1705     ///
1706     /// ```
1707     /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
1708     /// assert_eq!(state.len(), 100);
1709     /// ```
try_from(vec: Vec<T>) -> Result<Self, Self::Error>1710     fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
1711         if vec.len() == N {
1712             let boxed_slice = vec.into_boxed_slice();
1713             Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1714         } else {
1715             Err(vec)
1716         }
1717     }
1718 }
1719 
1720 impl<A: Allocator> Box<dyn Any, A> {
1721     /// Attempt to downcast the box to a concrete type.
1722     ///
1723     /// # Examples
1724     ///
1725     /// ```
1726     /// use std::any::Any;
1727     ///
1728     /// fn print_if_string(value: Box<dyn Any>) {
1729     ///     if let Ok(string) = value.downcast::<String>() {
1730     ///         println!("String ({}): {}", string.len(), string);
1731     ///     }
1732     /// }
1733     ///
1734     /// let my_string = "Hello World".to_string();
1735     /// print_if_string(Box::new(my_string));
1736     /// print_if_string(Box::new(0i8));
1737     /// ```
1738     #[inline]
1739     #[stable(feature = "rust1", since = "1.0.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1740     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1741         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1742     }
1743 
1744     /// Downcasts the box to a concrete type.
1745     ///
1746     /// For a safe alternative see [`downcast`].
1747     ///
1748     /// # Examples
1749     ///
1750     /// ```
1751     /// #![feature(downcast_unchecked)]
1752     ///
1753     /// use std::any::Any;
1754     ///
1755     /// let x: Box<dyn Any> = Box::new(1_usize);
1756     ///
1757     /// unsafe {
1758     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1759     /// }
1760     /// ```
1761     ///
1762     /// # Safety
1763     ///
1764     /// The contained value must be of type `T`. Calling this method
1765     /// with the incorrect type is *undefined behavior*.
1766     ///
1767     /// [`downcast`]: Self::downcast
1768     #[inline]
1769     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1770     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1771         debug_assert!(self.is::<T>());
1772         unsafe {
1773             let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1774             Box::from_raw_in(raw as *mut T, alloc)
1775         }
1776     }
1777 }
1778 
1779 impl<A: Allocator> Box<dyn Any + Send, A> {
1780     /// Attempt to downcast the box to a concrete type.
1781     ///
1782     /// # Examples
1783     ///
1784     /// ```
1785     /// use std::any::Any;
1786     ///
1787     /// fn print_if_string(value: Box<dyn Any + Send>) {
1788     ///     if let Ok(string) = value.downcast::<String>() {
1789     ///         println!("String ({}): {}", string.len(), string);
1790     ///     }
1791     /// }
1792     ///
1793     /// let my_string = "Hello World".to_string();
1794     /// print_if_string(Box::new(my_string));
1795     /// print_if_string(Box::new(0i8));
1796     /// ```
1797     #[inline]
1798     #[stable(feature = "rust1", since = "1.0.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1799     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1800         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1801     }
1802 
1803     /// Downcasts the box to a concrete type.
1804     ///
1805     /// For a safe alternative see [`downcast`].
1806     ///
1807     /// # Examples
1808     ///
1809     /// ```
1810     /// #![feature(downcast_unchecked)]
1811     ///
1812     /// use std::any::Any;
1813     ///
1814     /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1815     ///
1816     /// unsafe {
1817     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1818     /// }
1819     /// ```
1820     ///
1821     /// # Safety
1822     ///
1823     /// The contained value must be of type `T`. Calling this method
1824     /// with the incorrect type is *undefined behavior*.
1825     ///
1826     /// [`downcast`]: Self::downcast
1827     #[inline]
1828     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1829     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1830         debug_assert!(self.is::<T>());
1831         unsafe {
1832             let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1833             Box::from_raw_in(raw as *mut T, alloc)
1834         }
1835     }
1836 }
1837 
1838 impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1839     /// Attempt to downcast the box to a concrete type.
1840     ///
1841     /// # Examples
1842     ///
1843     /// ```
1844     /// use std::any::Any;
1845     ///
1846     /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1847     ///     if let Ok(string) = value.downcast::<String>() {
1848     ///         println!("String ({}): {}", string.len(), string);
1849     ///     }
1850     /// }
1851     ///
1852     /// let my_string = "Hello World".to_string();
1853     /// print_if_string(Box::new(my_string));
1854     /// print_if_string(Box::new(0i8));
1855     /// ```
1856     #[inline]
1857     #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1858     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1859         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1860     }
1861 
1862     /// Downcasts the box to a concrete type.
1863     ///
1864     /// For a safe alternative see [`downcast`].
1865     ///
1866     /// # Examples
1867     ///
1868     /// ```
1869     /// #![feature(downcast_unchecked)]
1870     ///
1871     /// use std::any::Any;
1872     ///
1873     /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1874     ///
1875     /// unsafe {
1876     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1877     /// }
1878     /// ```
1879     ///
1880     /// # Safety
1881     ///
1882     /// The contained value must be of type `T`. Calling this method
1883     /// with the incorrect type is *undefined behavior*.
1884     ///
1885     /// [`downcast`]: Self::downcast
1886     #[inline]
1887     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1888     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1889         debug_assert!(self.is::<T>());
1890         unsafe {
1891             let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1892                 Box::into_raw_with_allocator(self);
1893             Box::from_raw_in(raw as *mut T, alloc)
1894         }
1895     }
1896 }
1897 
1898 #[stable(feature = "rust1", since = "1.0.0")]
1899 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1900     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1901         fmt::Display::fmt(&**self, f)
1902     }
1903 }
1904 
1905 #[stable(feature = "rust1", since = "1.0.0")]
1906 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1907     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1908         fmt::Debug::fmt(&**self, f)
1909     }
1910 }
1911 
1912 #[stable(feature = "rust1", since = "1.0.0")]
1913 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1914     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1915         // It's not possible to extract the inner Uniq directly from the Box,
1916         // instead we cast it to a *const which aliases the Unique
1917         let ptr: *const T = &**self;
1918         fmt::Pointer::fmt(&ptr, f)
1919     }
1920 }
1921 
1922 #[stable(feature = "rust1", since = "1.0.0")]
1923 impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1924     type Target = T;
1925 
deref(&self) -> &T1926     fn deref(&self) -> &T {
1927         &**self
1928     }
1929 }
1930 
1931 #[stable(feature = "rust1", since = "1.0.0")]
1932 impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
deref_mut(&mut self) -> &mut T1933     fn deref_mut(&mut self) -> &mut T {
1934         &mut **self
1935     }
1936 }
1937 
1938 #[unstable(feature = "receiver_trait", issue = "none")]
1939 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
1940 
1941 #[stable(feature = "rust1", since = "1.0.0")]
1942 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1943     type Item = I::Item;
next(&mut self) -> Option<I::Item>1944     fn next(&mut self) -> Option<I::Item> {
1945         (**self).next()
1946     }
size_hint(&self) -> (usize, Option<usize>)1947     fn size_hint(&self) -> (usize, Option<usize>) {
1948         (**self).size_hint()
1949     }
nth(&mut self, n: usize) -> Option<I::Item>1950     fn nth(&mut self, n: usize) -> Option<I::Item> {
1951         (**self).nth(n)
1952     }
last(self) -> Option<I::Item>1953     fn last(self) -> Option<I::Item> {
1954         BoxIter::last(self)
1955     }
1956 }
1957 
1958 trait BoxIter {
1959     type Item;
last(self) -> Option<Self::Item>1960     fn last(self) -> Option<Self::Item>;
1961 }
1962 
1963 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1964     type Item = I::Item;
last(self) -> Option<I::Item>1965     default fn last(self) -> Option<I::Item> {
1966         #[inline]
1967         fn some<T>(_: Option<T>, x: T) -> Option<T> {
1968             Some(x)
1969         }
1970 
1971         self.fold(None, some)
1972     }
1973 }
1974 
1975 /// Specialization for sized `I`s that uses `I`s implementation of `last()`
1976 /// instead of the default.
1977 #[stable(feature = "rust1", since = "1.0.0")]
1978 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
last(self) -> Option<I::Item>1979     fn last(self) -> Option<I::Item> {
1980         (*self).last()
1981     }
1982 }
1983 
1984 #[stable(feature = "rust1", since = "1.0.0")]
1985 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
next_back(&mut self) -> Option<I::Item>1986     fn next_back(&mut self) -> Option<I::Item> {
1987         (**self).next_back()
1988     }
nth_back(&mut self, n: usize) -> Option<I::Item>1989     fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1990         (**self).nth_back(n)
1991     }
1992 }
1993 #[stable(feature = "rust1", since = "1.0.0")]
1994 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
len(&self) -> usize1995     fn len(&self) -> usize {
1996         (**self).len()
1997     }
is_empty(&self) -> bool1998     fn is_empty(&self) -> bool {
1999         (**self).is_empty()
2000     }
2001 }
2002 
2003 #[stable(feature = "fused", since = "1.26.0")]
2004 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
2005 
2006 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2007 impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
2008     type Output = <F as FnOnce<Args>>::Output;
2009 
call_once(self, args: Args) -> Self::Output2010     extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
2011         <F as FnOnce<Args>>::call_once(*self, args)
2012     }
2013 }
2014 
2015 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2016 impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
call_mut(&mut self, args: Args) -> Self::Output2017     extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
2018         <F as FnMut<Args>>::call_mut(self, args)
2019     }
2020 }
2021 
2022 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2023 impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
call(&self, args: Args) -> Self::Output2024     extern "rust-call" fn call(&self, args: Args) -> Self::Output {
2025         <F as Fn<Args>>::call(self, args)
2026     }
2027 }
2028 
2029 #[unstable(feature = "coerce_unsized", issue = "18598")]
2030 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
2031 
2032 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
2033 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
2034 
2035 #[cfg(not(no_global_oom_handling))]
2036 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
2037 impl<I> FromIterator<I> for Box<[I]> {
from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self2038     fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2039         iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2040     }
2041 }
2042 
2043 #[cfg(not(no_global_oom_handling))]
2044 #[stable(feature = "box_slice_clone", since = "1.3.0")]
2045 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
clone(&self) -> Self2046     fn clone(&self) -> Self {
2047         let alloc = Box::allocator(self).clone();
2048         self.to_vec_in(alloc).into_boxed_slice()
2049     }
2050 
clone_from(&mut self, other: &Self)2051     fn clone_from(&mut self, other: &Self) {
2052         if self.len() == other.len() {
2053             self.clone_from_slice(&other);
2054         } else {
2055             *self = other.clone();
2056         }
2057     }
2058 }
2059 
2060 #[stable(feature = "box_borrow", since = "1.1.0")]
2061 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
borrow(&self) -> &T2062     fn borrow(&self) -> &T {
2063         &**self
2064     }
2065 }
2066 
2067 #[stable(feature = "box_borrow", since = "1.1.0")]
2068 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
borrow_mut(&mut self) -> &mut T2069     fn borrow_mut(&mut self) -> &mut T {
2070         &mut **self
2071     }
2072 }
2073 
2074 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2075 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
as_ref(&self) -> &T2076     fn as_ref(&self) -> &T {
2077         &**self
2078     }
2079 }
2080 
2081 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2082 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
as_mut(&mut self) -> &mut T2083     fn as_mut(&mut self) -> &mut T {
2084         &mut **self
2085     }
2086 }
2087 
2088 /* Nota bene
2089  *
2090  *  We could have chosen not to add this impl, and instead have written a
2091  *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2092  *  because Box<T> implements Unpin even when T does not, as a result of
2093  *  this impl.
2094  *
2095  *  We chose this API instead of the alternative for a few reasons:
2096  *      - Logically, it is helpful to understand pinning in regard to the
2097  *        memory region being pointed to. For this reason none of the
2098  *        standard library pointer types support projecting through a pin
2099  *        (Box<T> is the only pointer type in std for which this would be
2100  *        safe.)
2101  *      - It is in practice very useful to have Box<T> be unconditionally
2102  *        Unpin because of trait objects, for which the structural auto
2103  *        trait functionality does not apply (e.g., Box<dyn Foo> would
2104  *        otherwise not be Unpin).
2105  *
2106  *  Another type with the same semantics as Box but only a conditional
2107  *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2108  *  could have a method to project a Pin<T> from it.
2109  */
2110 #[stable(feature = "pin", since = "1.33.0")]
2111 impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2112 
2113 #[unstable(feature = "generator_trait", issue = "43122")]
2114 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
2115 where
2116     A: 'static,
2117 {
2118     type Yield = G::Yield;
2119     type Return = G::Return;
2120 
resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return>2121     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
2122         G::resume(Pin::new(&mut *self), arg)
2123     }
2124 }
2125 
2126 #[unstable(feature = "generator_trait", issue = "43122")]
2127 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
2128 where
2129     A: 'static,
2130 {
2131     type Yield = G::Yield;
2132     type Return = G::Return;
2133 
resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return>2134     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
2135         G::resume((*self).as_mut(), arg)
2136     }
2137 }
2138 
2139 #[stable(feature = "futures_api", since = "1.36.0")]
2140 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2141 where
2142     A: 'static,
2143 {
2144     type Output = F::Output;
2145 
poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>2146     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2147         F::poll(Pin::new(&mut *self), cx)
2148     }
2149 }
2150 
2151 #[unstable(feature = "async_iterator", issue = "79024")]
2152 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
2153     type Item = S::Item;
2154 
poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>2155     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2156         Pin::new(&mut **self).poll_next(cx)
2157     }
2158 
size_hint(&self) -> (usize, Option<usize>)2159     fn size_hint(&self) -> (usize, Option<usize>) {
2160         (**self).size_hint()
2161     }
2162 }
2163 
2164 impl dyn Error {
2165     #[inline]
2166     #[stable(feature = "error_downcast", since = "1.3.0")]
2167     #[rustc_allow_incoherent_impl]
2168     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>>2169     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
2170         if self.is::<T>() {
2171             unsafe {
2172                 let raw: *mut dyn Error = Box::into_raw(self);
2173                 Ok(Box::from_raw(raw as *mut T))
2174             }
2175         } else {
2176             Err(self)
2177         }
2178     }
2179 }
2180 
2181 impl dyn Error + Send {
2182     #[inline]
2183     #[stable(feature = "error_downcast", since = "1.3.0")]
2184     #[rustc_allow_incoherent_impl]
2185     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>>2186     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
2187         let err: Box<dyn Error> = self;
2188         <dyn Error>::downcast(err).map_err(|s| unsafe {
2189             // Reapply the `Send` marker.
2190             Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send))
2191         })
2192     }
2193 }
2194 
2195 impl dyn Error + Send + Sync {
2196     #[inline]
2197     #[stable(feature = "error_downcast", since = "1.3.0")]
2198     #[rustc_allow_incoherent_impl]
2199     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>>2200     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
2201         let err: Box<dyn Error> = self;
2202         <dyn Error>::downcast(err).map_err(|s| unsafe {
2203             // Reapply the `Send + Sync` marker.
2204             Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync))
2205         })
2206     }
2207 }
2208 
2209 #[cfg(not(no_global_oom_handling))]
2210 #[stable(feature = "rust1", since = "1.0.0")]
2211 impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2212     /// Converts a type of [`Error`] into a box of dyn [`Error`].
2213     ///
2214     /// # Examples
2215     ///
2216     /// ```
2217     /// use std::error::Error;
2218     /// use std::fmt;
2219     /// use std::mem;
2220     ///
2221     /// #[derive(Debug)]
2222     /// struct AnError;
2223     ///
2224     /// impl fmt::Display for AnError {
2225     ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2226     ///         write!(f, "An error")
2227     ///     }
2228     /// }
2229     ///
2230     /// impl Error for AnError {}
2231     ///
2232     /// let an_error = AnError;
2233     /// assert!(0 == mem::size_of_val(&an_error));
2234     /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2235     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2236     /// ```
from(err: E) -> Box<dyn Error + 'a>2237     fn from(err: E) -> Box<dyn Error + 'a> {
2238         Box::new(err)
2239     }
2240 }
2241 
2242 #[cfg(not(no_global_oom_handling))]
2243 #[stable(feature = "rust1", since = "1.0.0")]
2244 impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2245     /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2246     /// dyn [`Error`] + [`Send`] + [`Sync`].
2247     ///
2248     /// # Examples
2249     ///
2250     /// ```
2251     /// use std::error::Error;
2252     /// use std::fmt;
2253     /// use std::mem;
2254     ///
2255     /// #[derive(Debug)]
2256     /// struct AnError;
2257     ///
2258     /// impl fmt::Display for AnError {
2259     ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2260     ///         write!(f, "An error")
2261     ///     }
2262     /// }
2263     ///
2264     /// impl Error for AnError {}
2265     ///
2266     /// unsafe impl Send for AnError {}
2267     ///
2268     /// unsafe impl Sync for AnError {}
2269     ///
2270     /// let an_error = AnError;
2271     /// assert!(0 == mem::size_of_val(&an_error));
2272     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2273     /// assert!(
2274     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2275     /// ```
from(err: E) -> Box<dyn Error + Send + Sync + 'a>2276     fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2277         Box::new(err)
2278     }
2279 }
2280 
2281 #[cfg(not(no_global_oom_handling))]
2282 #[stable(feature = "rust1", since = "1.0.0")]
2283 impl From<String> for Box<dyn Error + Send + Sync> {
2284     /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2285     ///
2286     /// # Examples
2287     ///
2288     /// ```
2289     /// use std::error::Error;
2290     /// use std::mem;
2291     ///
2292     /// let a_string_error = "a string error".to_string();
2293     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
2294     /// assert!(
2295     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2296     /// ```
2297     #[inline]
from(err: String) -> Box<dyn Error + Send + Sync>2298     fn from(err: String) -> Box<dyn Error + Send + Sync> {
2299         struct StringError(String);
2300 
2301         impl Error for StringError {
2302             #[allow(deprecated)]
2303             fn description(&self) -> &str {
2304                 &self.0
2305             }
2306         }
2307 
2308         impl fmt::Display for StringError {
2309             fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2310                 fmt::Display::fmt(&self.0, f)
2311             }
2312         }
2313 
2314         // Purposefully skip printing "StringError(..)"
2315         impl fmt::Debug for StringError {
2316             fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2317                 fmt::Debug::fmt(&self.0, f)
2318             }
2319         }
2320 
2321         Box::new(StringError(err))
2322     }
2323 }
2324 
2325 #[cfg(not(no_global_oom_handling))]
2326 #[stable(feature = "string_box_error", since = "1.6.0")]
2327 impl From<String> for Box<dyn Error> {
2328     /// Converts a [`String`] into a box of dyn [`Error`].
2329     ///
2330     /// # Examples
2331     ///
2332     /// ```
2333     /// use std::error::Error;
2334     /// use std::mem;
2335     ///
2336     /// let a_string_error = "a string error".to_string();
2337     /// let a_boxed_error = Box::<dyn Error>::from(a_string_error);
2338     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2339     /// ```
from(str_err: String) -> Box<dyn Error>2340     fn from(str_err: String) -> Box<dyn Error> {
2341         let err1: Box<dyn Error + Send + Sync> = From::from(str_err);
2342         let err2: Box<dyn Error> = err1;
2343         err2
2344     }
2345 }
2346 
2347 #[cfg(not(no_global_oom_handling))]
2348 #[stable(feature = "rust1", since = "1.0.0")]
2349 impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> {
2350     /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2351     ///
2352     /// [`str`]: prim@str
2353     ///
2354     /// # Examples
2355     ///
2356     /// ```
2357     /// use std::error::Error;
2358     /// use std::mem;
2359     ///
2360     /// let a_str_error = "a str error";
2361     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
2362     /// assert!(
2363     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2364     /// ```
2365     #[inline]
from(err: &str) -> Box<dyn Error + Send + Sync + 'a>2366     fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> {
2367         From::from(String::from(err))
2368     }
2369 }
2370 
2371 #[cfg(not(no_global_oom_handling))]
2372 #[stable(feature = "string_box_error", since = "1.6.0")]
2373 impl From<&str> for Box<dyn Error> {
2374     /// Converts a [`str`] into a box of dyn [`Error`].
2375     ///
2376     /// [`str`]: prim@str
2377     ///
2378     /// # Examples
2379     ///
2380     /// ```
2381     /// use std::error::Error;
2382     /// use std::mem;
2383     ///
2384     /// let a_str_error = "a str error";
2385     /// let a_boxed_error = Box::<dyn Error>::from(a_str_error);
2386     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2387     /// ```
from(err: &str) -> Box<dyn Error>2388     fn from(err: &str) -> Box<dyn Error> {
2389         From::from(String::from(err))
2390     }
2391 }
2392 
2393 #[cfg(not(no_global_oom_handling))]
2394 #[stable(feature = "cow_box_error", since = "1.22.0")]
2395 impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> {
2396     /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2397     ///
2398     /// # Examples
2399     ///
2400     /// ```
2401     /// use std::error::Error;
2402     /// use std::mem;
2403     /// use std::borrow::Cow;
2404     ///
2405     /// let a_cow_str_error = Cow::from("a str error");
2406     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
2407     /// assert!(
2408     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2409     /// ```
from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a>2410     fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> {
2411         From::from(String::from(err))
2412     }
2413 }
2414 
2415 #[cfg(not(no_global_oom_handling))]
2416 #[stable(feature = "cow_box_error", since = "1.22.0")]
2417 impl<'a> From<Cow<'a, str>> for Box<dyn Error> {
2418     /// Converts a [`Cow`] into a box of dyn [`Error`].
2419     ///
2420     /// # Examples
2421     ///
2422     /// ```
2423     /// use std::error::Error;
2424     /// use std::mem;
2425     /// use std::borrow::Cow;
2426     ///
2427     /// let a_cow_str_error = Cow::from("a str error");
2428     /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
2429     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2430     /// ```
from(err: Cow<'a, str>) -> Box<dyn Error>2431     fn from(err: Cow<'a, str>) -> Box<dyn Error> {
2432         From::from(String::from(err))
2433     }
2434 }
2435 
2436 #[stable(feature = "box_error", since = "1.8.0")]
2437 impl<T: core::error::Error> core::error::Error for Box<T> {
2438     #[allow(deprecated, deprecated_in_future)]
description(&self) -> &str2439     fn description(&self) -> &str {
2440         core::error::Error::description(&**self)
2441     }
2442 
2443     #[allow(deprecated)]
cause(&self) -> Option<&dyn core::error::Error>2444     fn cause(&self) -> Option<&dyn core::error::Error> {
2445         core::error::Error::cause(&**self)
2446     }
2447 
source(&self) -> Option<&(dyn core::error::Error + 'static)>2448     fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
2449         core::error::Error::source(&**self)
2450     }
2451 }
2452