xref: /openbmc/linux/net/xfrm/xfrm_state.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xfrm_state.c
4  *
5  * Changes:
6  *	Mitsuru KANDA @USAGI
7  * 	Kazunori MIYAZAWA @USAGI
8  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9  * 		IPv6 support
10  * 	YOSHIFUJI Hideaki @USAGI
11  * 		Split up af-specific functions
12  *	Derek Atkins <derek@ihtfp.com>
13  *		Add UDP Encapsulation
14  *
15  */
16 
17 #include <linux/compat.h>
18 #include <linux/workqueue.h>
19 #include <net/xfrm.h>
20 #include <linux/pfkeyv2.h>
21 #include <linux/ipsec.h>
22 #include <linux/module.h>
23 #include <linux/cache.h>
24 #include <linux/audit.h>
25 #include <linux/uaccess.h>
26 #include <linux/ktime.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel.h>
30 
31 #include <crypto/aead.h>
32 
33 #include "xfrm_hash.h"
34 
35 #define xfrm_state_deref_prot(table, net) \
36 	rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
37 
38 static void xfrm_state_gc_task(struct work_struct *work);
39 
40 /* Each xfrm_state may be linked to two tables:
41 
42    1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
43    2. Hash table by (daddr,family,reqid) to find what SAs exist for given
44       destination/tunnel endpoint. (output)
45  */
46 
47 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
48 static struct kmem_cache *xfrm_state_cache __ro_after_init;
49 
50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
51 static HLIST_HEAD(xfrm_state_gc_list);
52 static HLIST_HEAD(xfrm_state_dev_gc_list);
53 
54 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
55 {
56 	return refcount_inc_not_zero(&x->refcnt);
57 }
58 
59 static inline unsigned int xfrm_dst_hash(struct net *net,
60 					 const xfrm_address_t *daddr,
61 					 const xfrm_address_t *saddr,
62 					 u32 reqid,
63 					 unsigned short family)
64 {
65 	return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
66 }
67 
68 static inline unsigned int xfrm_src_hash(struct net *net,
69 					 const xfrm_address_t *daddr,
70 					 const xfrm_address_t *saddr,
71 					 unsigned short family)
72 {
73 	return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
74 }
75 
76 static inline unsigned int
77 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
78 	      __be32 spi, u8 proto, unsigned short family)
79 {
80 	return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
81 }
82 
83 static unsigned int xfrm_seq_hash(struct net *net, u32 seq)
84 {
85 	return __xfrm_seq_hash(seq, net->xfrm.state_hmask);
86 }
87 
88 #define XFRM_STATE_INSERT(by, _n, _h, _type)                               \
89 	{                                                                  \
90 		struct xfrm_state *_x = NULL;                              \
91 									   \
92 		if (_type != XFRM_DEV_OFFLOAD_PACKET) {                    \
93 			hlist_for_each_entry_rcu(_x, _h, by) {             \
94 				if (_x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \
95 					continue;                          \
96 				break;                                     \
97 			}                                                  \
98 		}                                                          \
99 									   \
100 		if (!_x || _x->xso.type == XFRM_DEV_OFFLOAD_PACKET)        \
101 			/* SAD is empty or consist from HW SAs only */     \
102 			hlist_add_head_rcu(_n, _h);                        \
103 		else                                                       \
104 			hlist_add_before_rcu(_n, &_x->by);                 \
105 	}
106 
107 static void xfrm_hash_transfer(struct hlist_head *list,
108 			       struct hlist_head *ndsttable,
109 			       struct hlist_head *nsrctable,
110 			       struct hlist_head *nspitable,
111 			       struct hlist_head *nseqtable,
112 			       unsigned int nhashmask)
113 {
114 	struct hlist_node *tmp;
115 	struct xfrm_state *x;
116 
117 	hlist_for_each_entry_safe(x, tmp, list, bydst) {
118 		unsigned int h;
119 
120 		h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
121 				    x->props.reqid, x->props.family,
122 				    nhashmask);
123 		XFRM_STATE_INSERT(bydst, &x->bydst, ndsttable + h, x->xso.type);
124 
125 		h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
126 				    x->props.family,
127 				    nhashmask);
128 		XFRM_STATE_INSERT(bysrc, &x->bysrc, nsrctable + h, x->xso.type);
129 
130 		if (x->id.spi) {
131 			h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
132 					    x->id.proto, x->props.family,
133 					    nhashmask);
134 			XFRM_STATE_INSERT(byspi, &x->byspi, nspitable + h,
135 					  x->xso.type);
136 		}
137 
138 		if (x->km.seq) {
139 			h = __xfrm_seq_hash(x->km.seq, nhashmask);
140 			XFRM_STATE_INSERT(byseq, &x->byseq, nseqtable + h,
141 					  x->xso.type);
142 		}
143 	}
144 }
145 
146 static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
147 {
148 	return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
149 }
150 
151 static void xfrm_hash_resize(struct work_struct *work)
152 {
153 	struct net *net = container_of(work, struct net, xfrm.state_hash_work);
154 	struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq;
155 	unsigned long nsize, osize;
156 	unsigned int nhashmask, ohashmask;
157 	int i;
158 
159 	nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
160 	ndst = xfrm_hash_alloc(nsize);
161 	if (!ndst)
162 		return;
163 	nsrc = xfrm_hash_alloc(nsize);
164 	if (!nsrc) {
165 		xfrm_hash_free(ndst, nsize);
166 		return;
167 	}
168 	nspi = xfrm_hash_alloc(nsize);
169 	if (!nspi) {
170 		xfrm_hash_free(ndst, nsize);
171 		xfrm_hash_free(nsrc, nsize);
172 		return;
173 	}
174 	nseq = xfrm_hash_alloc(nsize);
175 	if (!nseq) {
176 		xfrm_hash_free(ndst, nsize);
177 		xfrm_hash_free(nsrc, nsize);
178 		xfrm_hash_free(nspi, nsize);
179 		return;
180 	}
181 
182 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
183 	write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
184 
185 	nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
186 	odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
187 	for (i = net->xfrm.state_hmask; i >= 0; i--)
188 		xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask);
189 
190 	osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
191 	ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
192 	oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net);
193 	ohashmask = net->xfrm.state_hmask;
194 
195 	rcu_assign_pointer(net->xfrm.state_bydst, ndst);
196 	rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
197 	rcu_assign_pointer(net->xfrm.state_byspi, nspi);
198 	rcu_assign_pointer(net->xfrm.state_byseq, nseq);
199 	net->xfrm.state_hmask = nhashmask;
200 
201 	write_seqcount_end(&net->xfrm.xfrm_state_hash_generation);
202 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
203 
204 	osize = (ohashmask + 1) * sizeof(struct hlist_head);
205 
206 	synchronize_rcu();
207 
208 	xfrm_hash_free(odst, osize);
209 	xfrm_hash_free(osrc, osize);
210 	xfrm_hash_free(ospi, osize);
211 	xfrm_hash_free(oseq, osize);
212 }
213 
214 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
215 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
216 
217 static DEFINE_SPINLOCK(xfrm_state_gc_lock);
218 static DEFINE_SPINLOCK(xfrm_state_dev_gc_lock);
219 
220 int __xfrm_state_delete(struct xfrm_state *x);
221 
222 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
223 static bool km_is_alive(const struct km_event *c);
224 void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
225 
226 int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
227 {
228 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
229 	int err = 0;
230 
231 	if (!afinfo)
232 		return -EAFNOSUPPORT;
233 
234 #define X(afi, T, name) do {			\
235 		WARN_ON((afi)->type_ ## name);	\
236 		(afi)->type_ ## name = (T);	\
237 	} while (0)
238 
239 	switch (type->proto) {
240 	case IPPROTO_COMP:
241 		X(afinfo, type, comp);
242 		break;
243 	case IPPROTO_AH:
244 		X(afinfo, type, ah);
245 		break;
246 	case IPPROTO_ESP:
247 		X(afinfo, type, esp);
248 		break;
249 	case IPPROTO_IPIP:
250 		X(afinfo, type, ipip);
251 		break;
252 	case IPPROTO_DSTOPTS:
253 		X(afinfo, type, dstopts);
254 		break;
255 	case IPPROTO_ROUTING:
256 		X(afinfo, type, routing);
257 		break;
258 	case IPPROTO_IPV6:
259 		X(afinfo, type, ipip6);
260 		break;
261 	default:
262 		WARN_ON(1);
263 		err = -EPROTONOSUPPORT;
264 		break;
265 	}
266 #undef X
267 	rcu_read_unlock();
268 	return err;
269 }
270 EXPORT_SYMBOL(xfrm_register_type);
271 
272 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
273 {
274 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
275 
276 	if (unlikely(afinfo == NULL))
277 		return;
278 
279 #define X(afi, T, name) do {				\
280 		WARN_ON((afi)->type_ ## name != (T));	\
281 		(afi)->type_ ## name = NULL;		\
282 	} while (0)
283 
284 	switch (type->proto) {
285 	case IPPROTO_COMP:
286 		X(afinfo, type, comp);
287 		break;
288 	case IPPROTO_AH:
289 		X(afinfo, type, ah);
290 		break;
291 	case IPPROTO_ESP:
292 		X(afinfo, type, esp);
293 		break;
294 	case IPPROTO_IPIP:
295 		X(afinfo, type, ipip);
296 		break;
297 	case IPPROTO_DSTOPTS:
298 		X(afinfo, type, dstopts);
299 		break;
300 	case IPPROTO_ROUTING:
301 		X(afinfo, type, routing);
302 		break;
303 	case IPPROTO_IPV6:
304 		X(afinfo, type, ipip6);
305 		break;
306 	default:
307 		WARN_ON(1);
308 		break;
309 	}
310 #undef X
311 	rcu_read_unlock();
312 }
313 EXPORT_SYMBOL(xfrm_unregister_type);
314 
315 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
316 {
317 	const struct xfrm_type *type = NULL;
318 	struct xfrm_state_afinfo *afinfo;
319 	int modload_attempted = 0;
320 
321 retry:
322 	afinfo = xfrm_state_get_afinfo(family);
323 	if (unlikely(afinfo == NULL))
324 		return NULL;
325 
326 	switch (proto) {
327 	case IPPROTO_COMP:
328 		type = afinfo->type_comp;
329 		break;
330 	case IPPROTO_AH:
331 		type = afinfo->type_ah;
332 		break;
333 	case IPPROTO_ESP:
334 		type = afinfo->type_esp;
335 		break;
336 	case IPPROTO_IPIP:
337 		type = afinfo->type_ipip;
338 		break;
339 	case IPPROTO_DSTOPTS:
340 		type = afinfo->type_dstopts;
341 		break;
342 	case IPPROTO_ROUTING:
343 		type = afinfo->type_routing;
344 		break;
345 	case IPPROTO_IPV6:
346 		type = afinfo->type_ipip6;
347 		break;
348 	default:
349 		break;
350 	}
351 
352 	if (unlikely(type && !try_module_get(type->owner)))
353 		type = NULL;
354 
355 	rcu_read_unlock();
356 
357 	if (!type && !modload_attempted) {
358 		request_module("xfrm-type-%d-%d", family, proto);
359 		modload_attempted = 1;
360 		goto retry;
361 	}
362 
363 	return type;
364 }
365 
366 static void xfrm_put_type(const struct xfrm_type *type)
367 {
368 	module_put(type->owner);
369 }
370 
371 int xfrm_register_type_offload(const struct xfrm_type_offload *type,
372 			       unsigned short family)
373 {
374 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
375 	int err = 0;
376 
377 	if (unlikely(afinfo == NULL))
378 		return -EAFNOSUPPORT;
379 
380 	switch (type->proto) {
381 	case IPPROTO_ESP:
382 		WARN_ON(afinfo->type_offload_esp);
383 		afinfo->type_offload_esp = type;
384 		break;
385 	default:
386 		WARN_ON(1);
387 		err = -EPROTONOSUPPORT;
388 		break;
389 	}
390 
391 	rcu_read_unlock();
392 	return err;
393 }
394 EXPORT_SYMBOL(xfrm_register_type_offload);
395 
396 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
397 				  unsigned short family)
398 {
399 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
400 
401 	if (unlikely(afinfo == NULL))
402 		return;
403 
404 	switch (type->proto) {
405 	case IPPROTO_ESP:
406 		WARN_ON(afinfo->type_offload_esp != type);
407 		afinfo->type_offload_esp = NULL;
408 		break;
409 	default:
410 		WARN_ON(1);
411 		break;
412 	}
413 	rcu_read_unlock();
414 }
415 EXPORT_SYMBOL(xfrm_unregister_type_offload);
416 
417 static const struct xfrm_type_offload *
418 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
419 {
420 	const struct xfrm_type_offload *type = NULL;
421 	struct xfrm_state_afinfo *afinfo;
422 
423 retry:
424 	afinfo = xfrm_state_get_afinfo(family);
425 	if (unlikely(afinfo == NULL))
426 		return NULL;
427 
428 	switch (proto) {
429 	case IPPROTO_ESP:
430 		type = afinfo->type_offload_esp;
431 		break;
432 	default:
433 		break;
434 	}
435 
436 	if ((type && !try_module_get(type->owner)))
437 		type = NULL;
438 
439 	rcu_read_unlock();
440 
441 	if (!type && try_load) {
442 		request_module("xfrm-offload-%d-%d", family, proto);
443 		try_load = false;
444 		goto retry;
445 	}
446 
447 	return type;
448 }
449 
450 static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
451 {
452 	module_put(type->owner);
453 }
454 
455 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
456 	[XFRM_MODE_BEET] = {
457 		.encap = XFRM_MODE_BEET,
458 		.flags = XFRM_MODE_FLAG_TUNNEL,
459 		.family = AF_INET,
460 	},
461 	[XFRM_MODE_TRANSPORT] = {
462 		.encap = XFRM_MODE_TRANSPORT,
463 		.family = AF_INET,
464 	},
465 	[XFRM_MODE_TUNNEL] = {
466 		.encap = XFRM_MODE_TUNNEL,
467 		.flags = XFRM_MODE_FLAG_TUNNEL,
468 		.family = AF_INET,
469 	},
470 };
471 
472 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
473 	[XFRM_MODE_BEET] = {
474 		.encap = XFRM_MODE_BEET,
475 		.flags = XFRM_MODE_FLAG_TUNNEL,
476 		.family = AF_INET6,
477 	},
478 	[XFRM_MODE_ROUTEOPTIMIZATION] = {
479 		.encap = XFRM_MODE_ROUTEOPTIMIZATION,
480 		.family = AF_INET6,
481 	},
482 	[XFRM_MODE_TRANSPORT] = {
483 		.encap = XFRM_MODE_TRANSPORT,
484 		.family = AF_INET6,
485 	},
486 	[XFRM_MODE_TUNNEL] = {
487 		.encap = XFRM_MODE_TUNNEL,
488 		.flags = XFRM_MODE_FLAG_TUNNEL,
489 		.family = AF_INET6,
490 	},
491 };
492 
493 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
494 {
495 	const struct xfrm_mode *mode;
496 
497 	if (unlikely(encap >= XFRM_MODE_MAX))
498 		return NULL;
499 
500 	switch (family) {
501 	case AF_INET:
502 		mode = &xfrm4_mode_map[encap];
503 		if (mode->family == family)
504 			return mode;
505 		break;
506 	case AF_INET6:
507 		mode = &xfrm6_mode_map[encap];
508 		if (mode->family == family)
509 			return mode;
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	return NULL;
516 }
517 
518 void xfrm_state_free(struct xfrm_state *x)
519 {
520 	kmem_cache_free(xfrm_state_cache, x);
521 }
522 EXPORT_SYMBOL(xfrm_state_free);
523 
524 static void ___xfrm_state_destroy(struct xfrm_state *x)
525 {
526 	hrtimer_cancel(&x->mtimer);
527 	del_timer_sync(&x->rtimer);
528 	kfree(x->aead);
529 	kfree(x->aalg);
530 	kfree(x->ealg);
531 	kfree(x->calg);
532 	kfree(x->encap);
533 	kfree(x->coaddr);
534 	kfree(x->replay_esn);
535 	kfree(x->preplay_esn);
536 	if (x->type_offload)
537 		xfrm_put_type_offload(x->type_offload);
538 	if (x->type) {
539 		x->type->destructor(x);
540 		xfrm_put_type(x->type);
541 	}
542 	if (x->xfrag.page)
543 		put_page(x->xfrag.page);
544 	xfrm_dev_state_free(x);
545 	security_xfrm_state_free(x);
546 	xfrm_state_free(x);
547 }
548 
549 static void xfrm_state_gc_task(struct work_struct *work)
550 {
551 	struct xfrm_state *x;
552 	struct hlist_node *tmp;
553 	struct hlist_head gc_list;
554 
555 	spin_lock_bh(&xfrm_state_gc_lock);
556 	hlist_move_list(&xfrm_state_gc_list, &gc_list);
557 	spin_unlock_bh(&xfrm_state_gc_lock);
558 
559 	synchronize_rcu();
560 
561 	hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
562 		___xfrm_state_destroy(x);
563 }
564 
565 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
566 {
567 	struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
568 	enum hrtimer_restart ret = HRTIMER_NORESTART;
569 	time64_t now = ktime_get_real_seconds();
570 	time64_t next = TIME64_MAX;
571 	int warn = 0;
572 	int err = 0;
573 
574 	spin_lock(&x->lock);
575 	xfrm_dev_state_update_curlft(x);
576 
577 	if (x->km.state == XFRM_STATE_DEAD)
578 		goto out;
579 	if (x->km.state == XFRM_STATE_EXPIRED)
580 		goto expired;
581 	if (x->lft.hard_add_expires_seconds) {
582 		time64_t tmo = x->lft.hard_add_expires_seconds +
583 			x->curlft.add_time - now;
584 		if (tmo <= 0) {
585 			if (x->xflags & XFRM_SOFT_EXPIRE) {
586 				/* enter hard expire without soft expire first?!
587 				 * setting a new date could trigger this.
588 				 * workaround: fix x->curflt.add_time by below:
589 				 */
590 				x->curlft.add_time = now - x->saved_tmo - 1;
591 				tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
592 			} else
593 				goto expired;
594 		}
595 		if (tmo < next)
596 			next = tmo;
597 	}
598 	if (x->lft.hard_use_expires_seconds) {
599 		time64_t tmo = x->lft.hard_use_expires_seconds +
600 			(READ_ONCE(x->curlft.use_time) ? : now) - now;
601 		if (tmo <= 0)
602 			goto expired;
603 		if (tmo < next)
604 			next = tmo;
605 	}
606 	if (x->km.dying)
607 		goto resched;
608 	if (x->lft.soft_add_expires_seconds) {
609 		time64_t tmo = x->lft.soft_add_expires_seconds +
610 			x->curlft.add_time - now;
611 		if (tmo <= 0) {
612 			warn = 1;
613 			x->xflags &= ~XFRM_SOFT_EXPIRE;
614 		} else if (tmo < next) {
615 			next = tmo;
616 			x->xflags |= XFRM_SOFT_EXPIRE;
617 			x->saved_tmo = tmo;
618 		}
619 	}
620 	if (x->lft.soft_use_expires_seconds) {
621 		time64_t tmo = x->lft.soft_use_expires_seconds +
622 			(READ_ONCE(x->curlft.use_time) ? : now) - now;
623 		if (tmo <= 0)
624 			warn = 1;
625 		else if (tmo < next)
626 			next = tmo;
627 	}
628 
629 	x->km.dying = warn;
630 	if (warn)
631 		km_state_expired(x, 0, 0);
632 resched:
633 	if (next != TIME64_MAX) {
634 		hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
635 		ret = HRTIMER_RESTART;
636 	}
637 
638 	goto out;
639 
640 expired:
641 	if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
642 		x->km.state = XFRM_STATE_EXPIRED;
643 
644 	err = __xfrm_state_delete(x);
645 	if (!err)
646 		km_state_expired(x, 1, 0);
647 
648 	xfrm_audit_state_delete(x, err ? 0 : 1, true);
649 
650 out:
651 	spin_unlock(&x->lock);
652 	return ret;
653 }
654 
655 static void xfrm_replay_timer_handler(struct timer_list *t);
656 
657 struct xfrm_state *xfrm_state_alloc(struct net *net)
658 {
659 	struct xfrm_state *x;
660 
661 	x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);
662 
663 	if (x) {
664 		write_pnet(&x->xs_net, net);
665 		refcount_set(&x->refcnt, 1);
666 		atomic_set(&x->tunnel_users, 0);
667 		INIT_LIST_HEAD(&x->km.all);
668 		INIT_HLIST_NODE(&x->bydst);
669 		INIT_HLIST_NODE(&x->bysrc);
670 		INIT_HLIST_NODE(&x->byspi);
671 		INIT_HLIST_NODE(&x->byseq);
672 		hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
673 		x->mtimer.function = xfrm_timer_handler;
674 		timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
675 		x->curlft.add_time = ktime_get_real_seconds();
676 		x->lft.soft_byte_limit = XFRM_INF;
677 		x->lft.soft_packet_limit = XFRM_INF;
678 		x->lft.hard_byte_limit = XFRM_INF;
679 		x->lft.hard_packet_limit = XFRM_INF;
680 		x->replay_maxage = 0;
681 		x->replay_maxdiff = 0;
682 		spin_lock_init(&x->lock);
683 	}
684 	return x;
685 }
686 EXPORT_SYMBOL(xfrm_state_alloc);
687 
688 #ifdef CONFIG_XFRM_OFFLOAD
689 void xfrm_dev_state_delete(struct xfrm_state *x)
690 {
691 	struct xfrm_dev_offload *xso = &x->xso;
692 	struct net_device *dev = READ_ONCE(xso->dev);
693 
694 	if (dev) {
695 		dev->xfrmdev_ops->xdo_dev_state_delete(x);
696 		spin_lock_bh(&xfrm_state_dev_gc_lock);
697 		hlist_add_head(&x->dev_gclist, &xfrm_state_dev_gc_list);
698 		spin_unlock_bh(&xfrm_state_dev_gc_lock);
699 	}
700 }
701 EXPORT_SYMBOL_GPL(xfrm_dev_state_delete);
702 
703 void xfrm_dev_state_free(struct xfrm_state *x)
704 {
705 	struct xfrm_dev_offload *xso = &x->xso;
706 	struct net_device *dev = READ_ONCE(xso->dev);
707 
708 	if (dev && dev->xfrmdev_ops) {
709 		spin_lock_bh(&xfrm_state_dev_gc_lock);
710 		if (!hlist_unhashed(&x->dev_gclist))
711 			hlist_del(&x->dev_gclist);
712 		spin_unlock_bh(&xfrm_state_dev_gc_lock);
713 
714 		if (dev->xfrmdev_ops->xdo_dev_state_free)
715 			dev->xfrmdev_ops->xdo_dev_state_free(x);
716 		WRITE_ONCE(xso->dev, NULL);
717 		xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED;
718 		netdev_put(dev, &xso->dev_tracker);
719 	}
720 }
721 #endif
722 
723 void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
724 {
725 	WARN_ON(x->km.state != XFRM_STATE_DEAD);
726 
727 	if (sync) {
728 		synchronize_rcu();
729 		___xfrm_state_destroy(x);
730 	} else {
731 		spin_lock_bh(&xfrm_state_gc_lock);
732 		hlist_add_head(&x->gclist, &xfrm_state_gc_list);
733 		spin_unlock_bh(&xfrm_state_gc_lock);
734 		schedule_work(&xfrm_state_gc_work);
735 	}
736 }
737 EXPORT_SYMBOL(__xfrm_state_destroy);
738 
739 int __xfrm_state_delete(struct xfrm_state *x)
740 {
741 	struct net *net = xs_net(x);
742 	int err = -ESRCH;
743 
744 	if (x->km.state != XFRM_STATE_DEAD) {
745 		x->km.state = XFRM_STATE_DEAD;
746 		spin_lock(&net->xfrm.xfrm_state_lock);
747 		list_del(&x->km.all);
748 		hlist_del_rcu(&x->bydst);
749 		hlist_del_rcu(&x->bysrc);
750 		if (x->km.seq)
751 			hlist_del_rcu(&x->byseq);
752 		if (x->id.spi)
753 			hlist_del_rcu(&x->byspi);
754 		net->xfrm.state_num--;
755 		spin_unlock(&net->xfrm.xfrm_state_lock);
756 
757 		if (x->encap_sk)
758 			sock_put(rcu_dereference_raw(x->encap_sk));
759 
760 		xfrm_dev_state_delete(x);
761 
762 		/* All xfrm_state objects are created by xfrm_state_alloc.
763 		 * The xfrm_state_alloc call gives a reference, and that
764 		 * is what we are dropping here.
765 		 */
766 		xfrm_state_put(x);
767 		err = 0;
768 	}
769 
770 	return err;
771 }
772 EXPORT_SYMBOL(__xfrm_state_delete);
773 
774 int xfrm_state_delete(struct xfrm_state *x)
775 {
776 	int err;
777 
778 	spin_lock_bh(&x->lock);
779 	err = __xfrm_state_delete(x);
780 	spin_unlock_bh(&x->lock);
781 
782 	return err;
783 }
784 EXPORT_SYMBOL(xfrm_state_delete);
785 
786 #ifdef CONFIG_SECURITY_NETWORK_XFRM
787 static inline int
788 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
789 {
790 	int i, err = 0;
791 
792 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
793 		struct xfrm_state *x;
794 
795 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
796 			if (xfrm_id_proto_match(x->id.proto, proto) &&
797 			   (err = security_xfrm_state_delete(x)) != 0) {
798 				xfrm_audit_state_delete(x, 0, task_valid);
799 				return err;
800 			}
801 		}
802 	}
803 
804 	return err;
805 }
806 
807 static inline int
808 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
809 {
810 	int i, err = 0;
811 
812 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
813 		struct xfrm_state *x;
814 		struct xfrm_dev_offload *xso;
815 
816 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
817 			xso = &x->xso;
818 
819 			if (xso->dev == dev &&
820 			   (err = security_xfrm_state_delete(x)) != 0) {
821 				xfrm_audit_state_delete(x, 0, task_valid);
822 				return err;
823 			}
824 		}
825 	}
826 
827 	return err;
828 }
829 #else
830 static inline int
831 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
832 {
833 	return 0;
834 }
835 
836 static inline int
837 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
838 {
839 	return 0;
840 }
841 #endif
842 
843 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
844 {
845 	int i, err = 0, cnt = 0;
846 
847 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
848 	err = xfrm_state_flush_secctx_check(net, proto, task_valid);
849 	if (err)
850 		goto out;
851 
852 	err = -ESRCH;
853 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
854 		struct xfrm_state *x;
855 restart:
856 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
857 			if (!xfrm_state_kern(x) &&
858 			    xfrm_id_proto_match(x->id.proto, proto)) {
859 				xfrm_state_hold(x);
860 				spin_unlock_bh(&net->xfrm.xfrm_state_lock);
861 
862 				err = xfrm_state_delete(x);
863 				xfrm_audit_state_delete(x, err ? 0 : 1,
864 							task_valid);
865 				if (sync)
866 					xfrm_state_put_sync(x);
867 				else
868 					xfrm_state_put(x);
869 				if (!err)
870 					cnt++;
871 
872 				spin_lock_bh(&net->xfrm.xfrm_state_lock);
873 				goto restart;
874 			}
875 		}
876 	}
877 out:
878 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
879 	if (cnt)
880 		err = 0;
881 
882 	return err;
883 }
884 EXPORT_SYMBOL(xfrm_state_flush);
885 
886 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
887 {
888 	struct xfrm_state *x;
889 	struct hlist_node *tmp;
890 	struct xfrm_dev_offload *xso;
891 	int i, err = 0, cnt = 0;
892 
893 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
894 	err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
895 	if (err)
896 		goto out;
897 
898 	err = -ESRCH;
899 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
900 restart:
901 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
902 			xso = &x->xso;
903 
904 			if (!xfrm_state_kern(x) && xso->dev == dev) {
905 				xfrm_state_hold(x);
906 				spin_unlock_bh(&net->xfrm.xfrm_state_lock);
907 
908 				err = xfrm_state_delete(x);
909 				xfrm_dev_state_free(x);
910 
911 				xfrm_audit_state_delete(x, err ? 0 : 1,
912 							task_valid);
913 				xfrm_state_put(x);
914 				if (!err)
915 					cnt++;
916 
917 				spin_lock_bh(&net->xfrm.xfrm_state_lock);
918 				goto restart;
919 			}
920 		}
921 	}
922 	if (cnt)
923 		err = 0;
924 
925 out:
926 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
927 
928 	spin_lock_bh(&xfrm_state_dev_gc_lock);
929 restart_gc:
930 	hlist_for_each_entry_safe(x, tmp, &xfrm_state_dev_gc_list, dev_gclist) {
931 		xso = &x->xso;
932 
933 		if (xso->dev == dev) {
934 			spin_unlock_bh(&xfrm_state_dev_gc_lock);
935 			xfrm_dev_state_free(x);
936 			spin_lock_bh(&xfrm_state_dev_gc_lock);
937 			goto restart_gc;
938 		}
939 
940 	}
941 	spin_unlock_bh(&xfrm_state_dev_gc_lock);
942 
943 	xfrm_flush_gc();
944 
945 	return err;
946 }
947 EXPORT_SYMBOL(xfrm_dev_state_flush);
948 
949 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
950 {
951 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
952 	si->sadcnt = net->xfrm.state_num;
953 	si->sadhcnt = net->xfrm.state_hmask + 1;
954 	si->sadhmcnt = xfrm_state_hashmax;
955 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
956 }
957 EXPORT_SYMBOL(xfrm_sad_getinfo);
958 
959 static void
960 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
961 {
962 	const struct flowi4 *fl4 = &fl->u.ip4;
963 
964 	sel->daddr.a4 = fl4->daddr;
965 	sel->saddr.a4 = fl4->saddr;
966 	sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
967 	sel->dport_mask = htons(0xffff);
968 	sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
969 	sel->sport_mask = htons(0xffff);
970 	sel->family = AF_INET;
971 	sel->prefixlen_d = 32;
972 	sel->prefixlen_s = 32;
973 	sel->proto = fl4->flowi4_proto;
974 	sel->ifindex = fl4->flowi4_oif;
975 }
976 
977 static void
978 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
979 {
980 	const struct flowi6 *fl6 = &fl->u.ip6;
981 
982 	/* Initialize temporary selector matching only to current session. */
983 	*(struct in6_addr *)&sel->daddr = fl6->daddr;
984 	*(struct in6_addr *)&sel->saddr = fl6->saddr;
985 	sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
986 	sel->dport_mask = htons(0xffff);
987 	sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
988 	sel->sport_mask = htons(0xffff);
989 	sel->family = AF_INET6;
990 	sel->prefixlen_d = 128;
991 	sel->prefixlen_s = 128;
992 	sel->proto = fl6->flowi6_proto;
993 	sel->ifindex = fl6->flowi6_oif;
994 }
995 
996 static void
997 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
998 		    const struct xfrm_tmpl *tmpl,
999 		    const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1000 		    unsigned short family)
1001 {
1002 	switch (family) {
1003 	case AF_INET:
1004 		__xfrm4_init_tempsel(&x->sel, fl);
1005 		break;
1006 	case AF_INET6:
1007 		__xfrm6_init_tempsel(&x->sel, fl);
1008 		break;
1009 	}
1010 
1011 	x->id = tmpl->id;
1012 
1013 	switch (tmpl->encap_family) {
1014 	case AF_INET:
1015 		if (x->id.daddr.a4 == 0)
1016 			x->id.daddr.a4 = daddr->a4;
1017 		x->props.saddr = tmpl->saddr;
1018 		if (x->props.saddr.a4 == 0)
1019 			x->props.saddr.a4 = saddr->a4;
1020 		break;
1021 	case AF_INET6:
1022 		if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
1023 			memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
1024 		memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
1025 		if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
1026 			memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
1027 		break;
1028 	}
1029 
1030 	x->props.mode = tmpl->mode;
1031 	x->props.reqid = tmpl->reqid;
1032 	x->props.family = tmpl->encap_family;
1033 }
1034 
1035 static struct xfrm_state *__xfrm_state_lookup_all(struct net *net, u32 mark,
1036 						  const xfrm_address_t *daddr,
1037 						  __be32 spi, u8 proto,
1038 						  unsigned short family,
1039 						  struct xfrm_dev_offload *xdo)
1040 {
1041 	unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
1042 	struct xfrm_state *x;
1043 
1044 	hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
1045 #ifdef CONFIG_XFRM_OFFLOAD
1046 		if (xdo->type == XFRM_DEV_OFFLOAD_PACKET) {
1047 			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
1048 				/* HW states are in the head of list, there is
1049 				 * no need to iterate further.
1050 				 */
1051 				break;
1052 
1053 			/* Packet offload: both policy and SA should
1054 			 * have same device.
1055 			 */
1056 			if (xdo->dev != x->xso.dev)
1057 				continue;
1058 		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
1059 			/* Skip HW policy for SW lookups */
1060 			continue;
1061 #endif
1062 		if (x->props.family != family ||
1063 		    x->id.spi       != spi ||
1064 		    x->id.proto     != proto ||
1065 		    !xfrm_addr_equal(&x->id.daddr, daddr, family))
1066 			continue;
1067 
1068 		if ((mark & x->mark.m) != x->mark.v)
1069 			continue;
1070 		if (!xfrm_state_hold_rcu(x))
1071 			continue;
1072 		return x;
1073 	}
1074 
1075 	return NULL;
1076 }
1077 
1078 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
1079 					      const xfrm_address_t *daddr,
1080 					      __be32 spi, u8 proto,
1081 					      unsigned short family)
1082 {
1083 	unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
1084 	struct xfrm_state *x;
1085 
1086 	hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
1087 		if (x->props.family != family ||
1088 		    x->id.spi       != spi ||
1089 		    x->id.proto     != proto ||
1090 		    !xfrm_addr_equal(&x->id.daddr, daddr, family))
1091 			continue;
1092 
1093 		if ((mark & x->mark.m) != x->mark.v)
1094 			continue;
1095 		if (!xfrm_state_hold_rcu(x))
1096 			continue;
1097 		return x;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
1104 						     const xfrm_address_t *daddr,
1105 						     const xfrm_address_t *saddr,
1106 						     u8 proto, unsigned short family)
1107 {
1108 	unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
1109 	struct xfrm_state *x;
1110 
1111 	hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
1112 		if (x->props.family != family ||
1113 		    x->id.proto     != proto ||
1114 		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
1115 		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
1116 			continue;
1117 
1118 		if ((mark & x->mark.m) != x->mark.v)
1119 			continue;
1120 		if (!xfrm_state_hold_rcu(x))
1121 			continue;
1122 		return x;
1123 	}
1124 
1125 	return NULL;
1126 }
1127 
1128 static inline struct xfrm_state *
1129 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
1130 {
1131 	struct net *net = xs_net(x);
1132 	u32 mark = x->mark.v & x->mark.m;
1133 
1134 	if (use_spi)
1135 		return __xfrm_state_lookup(net, mark, &x->id.daddr,
1136 					   x->id.spi, x->id.proto, family);
1137 	else
1138 		return __xfrm_state_lookup_byaddr(net, mark,
1139 						  &x->id.daddr,
1140 						  &x->props.saddr,
1141 						  x->id.proto, family);
1142 }
1143 
1144 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
1145 {
1146 	if (have_hash_collision &&
1147 	    (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
1148 	    net->xfrm.state_num > net->xfrm.state_hmask)
1149 		schedule_work(&net->xfrm.state_hash_work);
1150 }
1151 
1152 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
1153 			       const struct flowi *fl, unsigned short family,
1154 			       struct xfrm_state **best, int *acq_in_progress,
1155 			       int *error)
1156 {
1157 	/* Resolution logic:
1158 	 * 1. There is a valid state with matching selector. Done.
1159 	 * 2. Valid state with inappropriate selector. Skip.
1160 	 *
1161 	 * Entering area of "sysdeps".
1162 	 *
1163 	 * 3. If state is not valid, selector is temporary, it selects
1164 	 *    only session which triggered previous resolution. Key
1165 	 *    manager will do something to install a state with proper
1166 	 *    selector.
1167 	 */
1168 	if (x->km.state == XFRM_STATE_VALID) {
1169 		if ((x->sel.family &&
1170 		     (x->sel.family != family ||
1171 		      !xfrm_selector_match(&x->sel, fl, family))) ||
1172 		    !security_xfrm_state_pol_flow_match(x, pol,
1173 							&fl->u.__fl_common))
1174 			return;
1175 
1176 		if (!*best ||
1177 		    (*best)->km.dying > x->km.dying ||
1178 		    ((*best)->km.dying == x->km.dying &&
1179 		     (*best)->curlft.add_time < x->curlft.add_time))
1180 			*best = x;
1181 	} else if (x->km.state == XFRM_STATE_ACQ) {
1182 		*acq_in_progress = 1;
1183 	} else if (x->km.state == XFRM_STATE_ERROR ||
1184 		   x->km.state == XFRM_STATE_EXPIRED) {
1185 		if ((!x->sel.family ||
1186 		     (x->sel.family == family &&
1187 		      xfrm_selector_match(&x->sel, fl, family))) &&
1188 		    security_xfrm_state_pol_flow_match(x, pol,
1189 						       &fl->u.__fl_common))
1190 			*error = -ESRCH;
1191 	}
1192 }
1193 
1194 struct xfrm_state *
1195 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1196 		const struct flowi *fl, struct xfrm_tmpl *tmpl,
1197 		struct xfrm_policy *pol, int *err,
1198 		unsigned short family, u32 if_id)
1199 {
1200 	static xfrm_address_t saddr_wildcard = { };
1201 	struct net *net = xp_net(pol);
1202 	unsigned int h, h_wildcard;
1203 	struct xfrm_state *x, *x0, *to_put;
1204 	int acquire_in_progress = 0;
1205 	int error = 0;
1206 	struct xfrm_state *best = NULL;
1207 	u32 mark = pol->mark.v & pol->mark.m;
1208 	unsigned short encap_family = tmpl->encap_family;
1209 	unsigned int sequence;
1210 	struct km_event c;
1211 
1212 	to_put = NULL;
1213 
1214 	sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
1215 
1216 	rcu_read_lock();
1217 	h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
1218 	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
1219 #ifdef CONFIG_XFRM_OFFLOAD
1220 		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
1221 			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
1222 				/* HW states are in the head of list, there is
1223 				 * no need to iterate further.
1224 				 */
1225 				break;
1226 
1227 			/* Packet offload: both policy and SA should
1228 			 * have same device.
1229 			 */
1230 			if (pol->xdo.dev != x->xso.dev)
1231 				continue;
1232 		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
1233 			/* Skip HW policy for SW lookups */
1234 			continue;
1235 #endif
1236 		if (x->props.family == encap_family &&
1237 		    x->props.reqid == tmpl->reqid &&
1238 		    (mark & x->mark.m) == x->mark.v &&
1239 		    x->if_id == if_id &&
1240 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1241 		    xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
1242 		    tmpl->mode == x->props.mode &&
1243 		    tmpl->id.proto == x->id.proto &&
1244 		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1245 			xfrm_state_look_at(pol, x, fl, family,
1246 					   &best, &acquire_in_progress, &error);
1247 	}
1248 	if (best || acquire_in_progress)
1249 		goto found;
1250 
1251 	h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
1252 	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
1253 #ifdef CONFIG_XFRM_OFFLOAD
1254 		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
1255 			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
1256 				/* HW states are in the head of list, there is
1257 				 * no need to iterate further.
1258 				 */
1259 				break;
1260 
1261 			/* Packet offload: both policy and SA should
1262 			 * have same device.
1263 			 */
1264 			if (pol->xdo.dev != x->xso.dev)
1265 				continue;
1266 		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
1267 			/* Skip HW policy for SW lookups */
1268 			continue;
1269 #endif
1270 		if (x->props.family == encap_family &&
1271 		    x->props.reqid == tmpl->reqid &&
1272 		    (mark & x->mark.m) == x->mark.v &&
1273 		    x->if_id == if_id &&
1274 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1275 		    xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
1276 		    tmpl->mode == x->props.mode &&
1277 		    tmpl->id.proto == x->id.proto &&
1278 		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1279 			xfrm_state_look_at(pol, x, fl, family,
1280 					   &best, &acquire_in_progress, &error);
1281 	}
1282 
1283 found:
1284 	x = best;
1285 	if (!x && !error && !acquire_in_progress) {
1286 		if (tmpl->id.spi &&
1287 		    (x0 = __xfrm_state_lookup_all(net, mark, daddr,
1288 						  tmpl->id.spi, tmpl->id.proto,
1289 						  encap_family,
1290 						  &pol->xdo)) != NULL) {
1291 			to_put = x0;
1292 			error = -EEXIST;
1293 			goto out;
1294 		}
1295 
1296 		c.net = net;
1297 		/* If the KMs have no listeners (yet...), avoid allocating an SA
1298 		 * for each and every packet - garbage collection might not
1299 		 * handle the flood.
1300 		 */
1301 		if (!km_is_alive(&c)) {
1302 			error = -ESRCH;
1303 			goto out;
1304 		}
1305 
1306 		x = xfrm_state_alloc(net);
1307 		if (x == NULL) {
1308 			error = -ENOMEM;
1309 			goto out;
1310 		}
1311 		/* Initialize temporary state matching only
1312 		 * to current session. */
1313 		xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
1314 		memcpy(&x->mark, &pol->mark, sizeof(x->mark));
1315 		x->if_id = if_id;
1316 
1317 		error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
1318 		if (error) {
1319 			x->km.state = XFRM_STATE_DEAD;
1320 			to_put = x;
1321 			x = NULL;
1322 			goto out;
1323 		}
1324 #ifdef CONFIG_XFRM_OFFLOAD
1325 		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
1326 			struct xfrm_dev_offload *xdo = &pol->xdo;
1327 			struct xfrm_dev_offload *xso = &x->xso;
1328 
1329 			xso->type = XFRM_DEV_OFFLOAD_PACKET;
1330 			xso->dir = xdo->dir;
1331 			xso->dev = xdo->dev;
1332 			xso->real_dev = xdo->real_dev;
1333 			xso->flags = XFRM_DEV_OFFLOAD_FLAG_ACQ;
1334 			netdev_hold(xso->dev, &xso->dev_tracker, GFP_ATOMIC);
1335 			error = xso->dev->xfrmdev_ops->xdo_dev_state_add(x, NULL);
1336 			if (error) {
1337 				xso->dir = 0;
1338 				netdev_put(xso->dev, &xso->dev_tracker);
1339 				xso->dev = NULL;
1340 				xso->real_dev = NULL;
1341 				xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED;
1342 				x->km.state = XFRM_STATE_DEAD;
1343 				to_put = x;
1344 				x = NULL;
1345 				goto out;
1346 			}
1347 		}
1348 #endif
1349 		if (km_query(x, tmpl, pol) == 0) {
1350 			spin_lock_bh(&net->xfrm.xfrm_state_lock);
1351 			x->km.state = XFRM_STATE_ACQ;
1352 			list_add(&x->km.all, &net->xfrm.state_all);
1353 			XFRM_STATE_INSERT(bydst, &x->bydst,
1354 					  net->xfrm.state_bydst + h,
1355 					  x->xso.type);
1356 			h = xfrm_src_hash(net, daddr, saddr, encap_family);
1357 			XFRM_STATE_INSERT(bysrc, &x->bysrc,
1358 					  net->xfrm.state_bysrc + h,
1359 					  x->xso.type);
1360 			if (x->id.spi) {
1361 				h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
1362 				XFRM_STATE_INSERT(byspi, &x->byspi,
1363 						  net->xfrm.state_byspi + h,
1364 						  x->xso.type);
1365 			}
1366 			if (x->km.seq) {
1367 				h = xfrm_seq_hash(net, x->km.seq);
1368 				XFRM_STATE_INSERT(byseq, &x->byseq,
1369 						  net->xfrm.state_byseq + h,
1370 						  x->xso.type);
1371 			}
1372 			x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1373 			hrtimer_start(&x->mtimer,
1374 				      ktime_set(net->xfrm.sysctl_acq_expires, 0),
1375 				      HRTIMER_MODE_REL_SOFT);
1376 			net->xfrm.state_num++;
1377 			xfrm_hash_grow_check(net, x->bydst.next != NULL);
1378 			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1379 		} else {
1380 #ifdef CONFIG_XFRM_OFFLOAD
1381 			struct xfrm_dev_offload *xso = &x->xso;
1382 
1383 			if (xso->type == XFRM_DEV_OFFLOAD_PACKET) {
1384 				xfrm_dev_state_delete(x);
1385 				xfrm_dev_state_free(x);
1386 			}
1387 #endif
1388 			x->km.state = XFRM_STATE_DEAD;
1389 			to_put = x;
1390 			x = NULL;
1391 			error = -ESRCH;
1392 		}
1393 	}
1394 out:
1395 	if (x) {
1396 		if (!xfrm_state_hold_rcu(x)) {
1397 			*err = -EAGAIN;
1398 			x = NULL;
1399 		}
1400 	} else {
1401 		*err = acquire_in_progress ? -EAGAIN : error;
1402 	}
1403 	rcu_read_unlock();
1404 	if (to_put)
1405 		xfrm_state_put(to_put);
1406 
1407 	if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) {
1408 		*err = -EAGAIN;
1409 		if (x) {
1410 			xfrm_state_put(x);
1411 			x = NULL;
1412 		}
1413 	}
1414 
1415 	return x;
1416 }
1417 
1418 struct xfrm_state *
1419 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
1420 		    xfrm_address_t *daddr, xfrm_address_t *saddr,
1421 		    unsigned short family, u8 mode, u8 proto, u32 reqid)
1422 {
1423 	unsigned int h;
1424 	struct xfrm_state *rx = NULL, *x = NULL;
1425 
1426 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1427 	h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1428 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1429 		if (x->props.family == family &&
1430 		    x->props.reqid == reqid &&
1431 		    (mark & x->mark.m) == x->mark.v &&
1432 		    x->if_id == if_id &&
1433 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1434 		    xfrm_state_addr_check(x, daddr, saddr, family) &&
1435 		    mode == x->props.mode &&
1436 		    proto == x->id.proto &&
1437 		    x->km.state == XFRM_STATE_VALID) {
1438 			rx = x;
1439 			break;
1440 		}
1441 	}
1442 
1443 	if (rx)
1444 		xfrm_state_hold(rx);
1445 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1446 
1447 
1448 	return rx;
1449 }
1450 EXPORT_SYMBOL(xfrm_stateonly_find);
1451 
1452 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
1453 					      unsigned short family)
1454 {
1455 	struct xfrm_state *x;
1456 	struct xfrm_state_walk *w;
1457 
1458 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1459 	list_for_each_entry(w, &net->xfrm.state_all, all) {
1460 		x = container_of(w, struct xfrm_state, km);
1461 		if (x->props.family != family ||
1462 			x->id.spi != spi)
1463 			continue;
1464 
1465 		xfrm_state_hold(x);
1466 		spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1467 		return x;
1468 	}
1469 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1470 	return NULL;
1471 }
1472 EXPORT_SYMBOL(xfrm_state_lookup_byspi);
1473 
1474 static void __xfrm_state_insert(struct xfrm_state *x)
1475 {
1476 	struct net *net = xs_net(x);
1477 	unsigned int h;
1478 
1479 	list_add(&x->km.all, &net->xfrm.state_all);
1480 
1481 	h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
1482 			  x->props.reqid, x->props.family);
1483 	XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h,
1484 			  x->xso.type);
1485 
1486 	h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
1487 	XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h,
1488 			  x->xso.type);
1489 
1490 	if (x->id.spi) {
1491 		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
1492 				  x->props.family);
1493 
1494 		XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h,
1495 				  x->xso.type);
1496 	}
1497 
1498 	if (x->km.seq) {
1499 		h = xfrm_seq_hash(net, x->km.seq);
1500 
1501 		XFRM_STATE_INSERT(byseq, &x->byseq, net->xfrm.state_byseq + h,
1502 				  x->xso.type);
1503 	}
1504 
1505 	hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
1506 	if (x->replay_maxage)
1507 		mod_timer(&x->rtimer, jiffies + x->replay_maxage);
1508 
1509 	net->xfrm.state_num++;
1510 
1511 	xfrm_hash_grow_check(net, x->bydst.next != NULL);
1512 }
1513 
1514 /* net->xfrm.xfrm_state_lock is held */
1515 static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
1516 {
1517 	struct net *net = xs_net(xnew);
1518 	unsigned short family = xnew->props.family;
1519 	u32 reqid = xnew->props.reqid;
1520 	struct xfrm_state *x;
1521 	unsigned int h;
1522 	u32 mark = xnew->mark.v & xnew->mark.m;
1523 	u32 if_id = xnew->if_id;
1524 
1525 	h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
1526 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1527 		if (x->props.family	== family &&
1528 		    x->props.reqid	== reqid &&
1529 		    x->if_id		== if_id &&
1530 		    (mark & x->mark.m) == x->mark.v &&
1531 		    xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
1532 		    xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
1533 			x->genid++;
1534 	}
1535 }
1536 
1537 void xfrm_state_insert(struct xfrm_state *x)
1538 {
1539 	struct net *net = xs_net(x);
1540 
1541 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1542 	__xfrm_state_bump_genids(x);
1543 	__xfrm_state_insert(x);
1544 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1545 }
1546 EXPORT_SYMBOL(xfrm_state_insert);
1547 
1548 /* net->xfrm.xfrm_state_lock is held */
1549 static struct xfrm_state *__find_acq_core(struct net *net,
1550 					  const struct xfrm_mark *m,
1551 					  unsigned short family, u8 mode,
1552 					  u32 reqid, u32 if_id, u8 proto,
1553 					  const xfrm_address_t *daddr,
1554 					  const xfrm_address_t *saddr,
1555 					  int create)
1556 {
1557 	unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1558 	struct xfrm_state *x;
1559 	u32 mark = m->v & m->m;
1560 
1561 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1562 		if (x->props.reqid  != reqid ||
1563 		    x->props.mode   != mode ||
1564 		    x->props.family != family ||
1565 		    x->km.state     != XFRM_STATE_ACQ ||
1566 		    x->id.spi       != 0 ||
1567 		    x->id.proto	    != proto ||
1568 		    (mark & x->mark.m) != x->mark.v ||
1569 		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
1570 		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
1571 			continue;
1572 
1573 		xfrm_state_hold(x);
1574 		return x;
1575 	}
1576 
1577 	if (!create)
1578 		return NULL;
1579 
1580 	x = xfrm_state_alloc(net);
1581 	if (likely(x)) {
1582 		switch (family) {
1583 		case AF_INET:
1584 			x->sel.daddr.a4 = daddr->a4;
1585 			x->sel.saddr.a4 = saddr->a4;
1586 			x->sel.prefixlen_d = 32;
1587 			x->sel.prefixlen_s = 32;
1588 			x->props.saddr.a4 = saddr->a4;
1589 			x->id.daddr.a4 = daddr->a4;
1590 			break;
1591 
1592 		case AF_INET6:
1593 			x->sel.daddr.in6 = daddr->in6;
1594 			x->sel.saddr.in6 = saddr->in6;
1595 			x->sel.prefixlen_d = 128;
1596 			x->sel.prefixlen_s = 128;
1597 			x->props.saddr.in6 = saddr->in6;
1598 			x->id.daddr.in6 = daddr->in6;
1599 			break;
1600 		}
1601 
1602 		x->km.state = XFRM_STATE_ACQ;
1603 		x->id.proto = proto;
1604 		x->props.family = family;
1605 		x->props.mode = mode;
1606 		x->props.reqid = reqid;
1607 		x->if_id = if_id;
1608 		x->mark.v = m->v;
1609 		x->mark.m = m->m;
1610 		x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1611 		xfrm_state_hold(x);
1612 		hrtimer_start(&x->mtimer,
1613 			      ktime_set(net->xfrm.sysctl_acq_expires, 0),
1614 			      HRTIMER_MODE_REL_SOFT);
1615 		list_add(&x->km.all, &net->xfrm.state_all);
1616 		XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h,
1617 				  x->xso.type);
1618 		h = xfrm_src_hash(net, daddr, saddr, family);
1619 		XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h,
1620 				  x->xso.type);
1621 
1622 		net->xfrm.state_num++;
1623 
1624 		xfrm_hash_grow_check(net, x->bydst.next != NULL);
1625 	}
1626 
1627 	return x;
1628 }
1629 
1630 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
1631 
1632 int xfrm_state_add(struct xfrm_state *x)
1633 {
1634 	struct net *net = xs_net(x);
1635 	struct xfrm_state *x1, *to_put;
1636 	int family;
1637 	int err;
1638 	u32 mark = x->mark.v & x->mark.m;
1639 	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1640 
1641 	family = x->props.family;
1642 
1643 	to_put = NULL;
1644 
1645 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1646 
1647 	x1 = __xfrm_state_locate(x, use_spi, family);
1648 	if (x1) {
1649 		to_put = x1;
1650 		x1 = NULL;
1651 		err = -EEXIST;
1652 		goto out;
1653 	}
1654 
1655 	if (use_spi && x->km.seq) {
1656 		x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
1657 		if (x1 && ((x1->id.proto != x->id.proto) ||
1658 		    !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
1659 			to_put = x1;
1660 			x1 = NULL;
1661 		}
1662 	}
1663 
1664 	if (use_spi && !x1)
1665 		x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
1666 				     x->props.reqid, x->if_id, x->id.proto,
1667 				     &x->id.daddr, &x->props.saddr, 0);
1668 
1669 	__xfrm_state_bump_genids(x);
1670 	__xfrm_state_insert(x);
1671 	err = 0;
1672 
1673 out:
1674 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1675 
1676 	if (x1) {
1677 		xfrm_state_delete(x1);
1678 		xfrm_state_put(x1);
1679 	}
1680 
1681 	if (to_put)
1682 		xfrm_state_put(to_put);
1683 
1684 	return err;
1685 }
1686 EXPORT_SYMBOL(xfrm_state_add);
1687 
1688 #ifdef CONFIG_XFRM_MIGRATE
1689 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
1690 {
1691 	struct xfrm_user_sec_ctx *uctx;
1692 	int size = sizeof(*uctx) + security->ctx_len;
1693 	int err;
1694 
1695 	uctx = kmalloc(size, GFP_KERNEL);
1696 	if (!uctx)
1697 		return -ENOMEM;
1698 
1699 	uctx->exttype = XFRMA_SEC_CTX;
1700 	uctx->len = size;
1701 	uctx->ctx_doi = security->ctx_doi;
1702 	uctx->ctx_alg = security->ctx_alg;
1703 	uctx->ctx_len = security->ctx_len;
1704 	memcpy(uctx + 1, security->ctx_str, security->ctx_len);
1705 	err = security_xfrm_state_alloc(x, uctx);
1706 	kfree(uctx);
1707 	if (err)
1708 		return err;
1709 
1710 	return 0;
1711 }
1712 
1713 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
1714 					   struct xfrm_encap_tmpl *encap)
1715 {
1716 	struct net *net = xs_net(orig);
1717 	struct xfrm_state *x = xfrm_state_alloc(net);
1718 	if (!x)
1719 		goto out;
1720 
1721 	memcpy(&x->id, &orig->id, sizeof(x->id));
1722 	memcpy(&x->sel, &orig->sel, sizeof(x->sel));
1723 	memcpy(&x->lft, &orig->lft, sizeof(x->lft));
1724 	x->props.mode = orig->props.mode;
1725 	x->props.replay_window = orig->props.replay_window;
1726 	x->props.reqid = orig->props.reqid;
1727 	x->props.family = orig->props.family;
1728 	x->props.saddr = orig->props.saddr;
1729 
1730 	if (orig->aalg) {
1731 		x->aalg = xfrm_algo_auth_clone(orig->aalg);
1732 		if (!x->aalg)
1733 			goto error;
1734 	}
1735 	x->props.aalgo = orig->props.aalgo;
1736 
1737 	if (orig->aead) {
1738 		x->aead = xfrm_algo_aead_clone(orig->aead);
1739 		x->geniv = orig->geniv;
1740 		if (!x->aead)
1741 			goto error;
1742 	}
1743 	if (orig->ealg) {
1744 		x->ealg = xfrm_algo_clone(orig->ealg);
1745 		if (!x->ealg)
1746 			goto error;
1747 	}
1748 	x->props.ealgo = orig->props.ealgo;
1749 
1750 	if (orig->calg) {
1751 		x->calg = xfrm_algo_clone(orig->calg);
1752 		if (!x->calg)
1753 			goto error;
1754 	}
1755 	x->props.calgo = orig->props.calgo;
1756 
1757 	if (encap || orig->encap) {
1758 		if (encap)
1759 			x->encap = kmemdup(encap, sizeof(*x->encap),
1760 					GFP_KERNEL);
1761 		else
1762 			x->encap = kmemdup(orig->encap, sizeof(*x->encap),
1763 					GFP_KERNEL);
1764 
1765 		if (!x->encap)
1766 			goto error;
1767 	}
1768 
1769 	if (orig->security)
1770 		if (clone_security(x, orig->security))
1771 			goto error;
1772 
1773 	if (orig->coaddr) {
1774 		x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
1775 				    GFP_KERNEL);
1776 		if (!x->coaddr)
1777 			goto error;
1778 	}
1779 
1780 	if (orig->replay_esn) {
1781 		if (xfrm_replay_clone(x, orig))
1782 			goto error;
1783 	}
1784 
1785 	memcpy(&x->mark, &orig->mark, sizeof(x->mark));
1786 	memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));
1787 
1788 	x->props.flags = orig->props.flags;
1789 	x->props.extra_flags = orig->props.extra_flags;
1790 
1791 	x->if_id = orig->if_id;
1792 	x->tfcpad = orig->tfcpad;
1793 	x->replay_maxdiff = orig->replay_maxdiff;
1794 	x->replay_maxage = orig->replay_maxage;
1795 	memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
1796 	x->km.state = orig->km.state;
1797 	x->km.seq = orig->km.seq;
1798 	x->replay = orig->replay;
1799 	x->preplay = orig->preplay;
1800 	x->mapping_maxage = orig->mapping_maxage;
1801 	x->lastused = orig->lastused;
1802 	x->new_mapping = 0;
1803 	x->new_mapping_sport = 0;
1804 
1805 	return x;
1806 
1807  error:
1808 	xfrm_state_put(x);
1809 out:
1810 	return NULL;
1811 }
1812 
1813 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net,
1814 						u32 if_id)
1815 {
1816 	unsigned int h;
1817 	struct xfrm_state *x = NULL;
1818 
1819 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1820 
1821 	if (m->reqid) {
1822 		h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
1823 				  m->reqid, m->old_family);
1824 		hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1825 			if (x->props.mode != m->mode ||
1826 			    x->id.proto != m->proto)
1827 				continue;
1828 			if (m->reqid && x->props.reqid != m->reqid)
1829 				continue;
1830 			if (if_id != 0 && x->if_id != if_id)
1831 				continue;
1832 			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1833 					     m->old_family) ||
1834 			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1835 					     m->old_family))
1836 				continue;
1837 			xfrm_state_hold(x);
1838 			break;
1839 		}
1840 	} else {
1841 		h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
1842 				  m->old_family);
1843 		hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
1844 			if (x->props.mode != m->mode ||
1845 			    x->id.proto != m->proto)
1846 				continue;
1847 			if (if_id != 0 && x->if_id != if_id)
1848 				continue;
1849 			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1850 					     m->old_family) ||
1851 			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1852 					     m->old_family))
1853 				continue;
1854 			xfrm_state_hold(x);
1855 			break;
1856 		}
1857 	}
1858 
1859 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1860 
1861 	return x;
1862 }
1863 EXPORT_SYMBOL(xfrm_migrate_state_find);
1864 
1865 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
1866 				      struct xfrm_migrate *m,
1867 				      struct xfrm_encap_tmpl *encap)
1868 {
1869 	struct xfrm_state *xc;
1870 
1871 	xc = xfrm_state_clone(x, encap);
1872 	if (!xc)
1873 		return NULL;
1874 
1875 	xc->props.family = m->new_family;
1876 
1877 	if (xfrm_init_state(xc) < 0)
1878 		goto error;
1879 
1880 	memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
1881 	memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
1882 
1883 	/* add state */
1884 	if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
1885 		/* a care is needed when the destination address of the
1886 		   state is to be updated as it is a part of triplet */
1887 		xfrm_state_insert(xc);
1888 	} else {
1889 		if (xfrm_state_add(xc) < 0)
1890 			goto error;
1891 	}
1892 
1893 	return xc;
1894 error:
1895 	xfrm_state_put(xc);
1896 	return NULL;
1897 }
1898 EXPORT_SYMBOL(xfrm_state_migrate);
1899 #endif
1900 
1901 int xfrm_state_update(struct xfrm_state *x)
1902 {
1903 	struct xfrm_state *x1, *to_put;
1904 	int err;
1905 	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1906 	struct net *net = xs_net(x);
1907 
1908 	to_put = NULL;
1909 
1910 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1911 	x1 = __xfrm_state_locate(x, use_spi, x->props.family);
1912 
1913 	err = -ESRCH;
1914 	if (!x1)
1915 		goto out;
1916 
1917 	if (xfrm_state_kern(x1)) {
1918 		to_put = x1;
1919 		err = -EEXIST;
1920 		goto out;
1921 	}
1922 
1923 	if (x1->km.state == XFRM_STATE_ACQ) {
1924 		__xfrm_state_insert(x);
1925 		x = NULL;
1926 	}
1927 	err = 0;
1928 
1929 out:
1930 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1931 
1932 	if (to_put)
1933 		xfrm_state_put(to_put);
1934 
1935 	if (err)
1936 		return err;
1937 
1938 	if (!x) {
1939 		xfrm_state_delete(x1);
1940 		xfrm_state_put(x1);
1941 		return 0;
1942 	}
1943 
1944 	err = -EINVAL;
1945 	spin_lock_bh(&x1->lock);
1946 	if (likely(x1->km.state == XFRM_STATE_VALID)) {
1947 		if (x->encap && x1->encap &&
1948 		    x->encap->encap_type == x1->encap->encap_type)
1949 			memcpy(x1->encap, x->encap, sizeof(*x1->encap));
1950 		else if (x->encap || x1->encap)
1951 			goto fail;
1952 
1953 		if (x->coaddr && x1->coaddr) {
1954 			memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
1955 		}
1956 		if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
1957 			memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
1958 		memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
1959 		x1->km.dying = 0;
1960 
1961 		hrtimer_start(&x1->mtimer, ktime_set(1, 0),
1962 			      HRTIMER_MODE_REL_SOFT);
1963 		if (READ_ONCE(x1->curlft.use_time))
1964 			xfrm_state_check_expire(x1);
1965 
1966 		if (x->props.smark.m || x->props.smark.v || x->if_id) {
1967 			spin_lock_bh(&net->xfrm.xfrm_state_lock);
1968 
1969 			if (x->props.smark.m || x->props.smark.v)
1970 				x1->props.smark = x->props.smark;
1971 
1972 			if (x->if_id)
1973 				x1->if_id = x->if_id;
1974 
1975 			__xfrm_state_bump_genids(x1);
1976 			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1977 		}
1978 
1979 		err = 0;
1980 		x->km.state = XFRM_STATE_DEAD;
1981 		__xfrm_state_put(x);
1982 	}
1983 
1984 fail:
1985 	spin_unlock_bh(&x1->lock);
1986 
1987 	xfrm_state_put(x1);
1988 
1989 	return err;
1990 }
1991 EXPORT_SYMBOL(xfrm_state_update);
1992 
1993 int xfrm_state_check_expire(struct xfrm_state *x)
1994 {
1995 	xfrm_dev_state_update_curlft(x);
1996 
1997 	if (!READ_ONCE(x->curlft.use_time))
1998 		WRITE_ONCE(x->curlft.use_time, ktime_get_real_seconds());
1999 
2000 	if (x->curlft.bytes >= x->lft.hard_byte_limit ||
2001 	    x->curlft.packets >= x->lft.hard_packet_limit) {
2002 		x->km.state = XFRM_STATE_EXPIRED;
2003 		hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
2004 		return -EINVAL;
2005 	}
2006 
2007 	if (!x->km.dying &&
2008 	    (x->curlft.bytes >= x->lft.soft_byte_limit ||
2009 	     x->curlft.packets >= x->lft.soft_packet_limit)) {
2010 		x->km.dying = 1;
2011 		km_state_expired(x, 0, 0);
2012 	}
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL(xfrm_state_check_expire);
2016 
2017 struct xfrm_state *
2018 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
2019 		  u8 proto, unsigned short family)
2020 {
2021 	struct xfrm_state *x;
2022 
2023 	rcu_read_lock();
2024 	x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
2025 	rcu_read_unlock();
2026 	return x;
2027 }
2028 EXPORT_SYMBOL(xfrm_state_lookup);
2029 
2030 struct xfrm_state *
2031 xfrm_state_lookup_byaddr(struct net *net, u32 mark,
2032 			 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
2033 			 u8 proto, unsigned short family)
2034 {
2035 	struct xfrm_state *x;
2036 
2037 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2038 	x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
2039 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2040 	return x;
2041 }
2042 EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
2043 
2044 struct xfrm_state *
2045 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
2046 	      u32 if_id, u8 proto, const xfrm_address_t *daddr,
2047 	      const xfrm_address_t *saddr, int create, unsigned short family)
2048 {
2049 	struct xfrm_state *x;
2050 
2051 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2052 	x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
2053 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2054 
2055 	return x;
2056 }
2057 EXPORT_SYMBOL(xfrm_find_acq);
2058 
2059 #ifdef CONFIG_XFRM_SUB_POLICY
2060 #if IS_ENABLED(CONFIG_IPV6)
2061 /* distribution counting sort function for xfrm_state and xfrm_tmpl */
2062 static void
2063 __xfrm6_sort(void **dst, void **src, int n,
2064 	     int (*cmp)(const void *p), int maxclass)
2065 {
2066 	int count[XFRM_MAX_DEPTH] = { };
2067 	int class[XFRM_MAX_DEPTH];
2068 	int i;
2069 
2070 	for (i = 0; i < n; i++) {
2071 		int c = cmp(src[i]);
2072 
2073 		class[i] = c;
2074 		count[c]++;
2075 	}
2076 
2077 	for (i = 2; i < maxclass; i++)
2078 		count[i] += count[i - 1];
2079 
2080 	for (i = 0; i < n; i++) {
2081 		dst[count[class[i] - 1]++] = src[i];
2082 		src[i] = NULL;
2083 	}
2084 }
2085 
2086 /* Rule for xfrm_state:
2087  *
2088  * rule 1: select IPsec transport except AH
2089  * rule 2: select MIPv6 RO or inbound trigger
2090  * rule 3: select IPsec transport AH
2091  * rule 4: select IPsec tunnel
2092  * rule 5: others
2093  */
2094 static int __xfrm6_state_sort_cmp(const void *p)
2095 {
2096 	const struct xfrm_state *v = p;
2097 
2098 	switch (v->props.mode) {
2099 	case XFRM_MODE_TRANSPORT:
2100 		if (v->id.proto != IPPROTO_AH)
2101 			return 1;
2102 		else
2103 			return 3;
2104 #if IS_ENABLED(CONFIG_IPV6_MIP6)
2105 	case XFRM_MODE_ROUTEOPTIMIZATION:
2106 	case XFRM_MODE_IN_TRIGGER:
2107 		return 2;
2108 #endif
2109 	case XFRM_MODE_TUNNEL:
2110 	case XFRM_MODE_BEET:
2111 		return 4;
2112 	}
2113 	return 5;
2114 }
2115 
2116 /* Rule for xfrm_tmpl:
2117  *
2118  * rule 1: select IPsec transport
2119  * rule 2: select MIPv6 RO or inbound trigger
2120  * rule 3: select IPsec tunnel
2121  * rule 4: others
2122  */
2123 static int __xfrm6_tmpl_sort_cmp(const void *p)
2124 {
2125 	const struct xfrm_tmpl *v = p;
2126 
2127 	switch (v->mode) {
2128 	case XFRM_MODE_TRANSPORT:
2129 		return 1;
2130 #if IS_ENABLED(CONFIG_IPV6_MIP6)
2131 	case XFRM_MODE_ROUTEOPTIMIZATION:
2132 	case XFRM_MODE_IN_TRIGGER:
2133 		return 2;
2134 #endif
2135 	case XFRM_MODE_TUNNEL:
2136 	case XFRM_MODE_BEET:
2137 		return 3;
2138 	}
2139 	return 4;
2140 }
2141 #else
2142 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
2143 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }
2144 
2145 static inline void
2146 __xfrm6_sort(void **dst, void **src, int n,
2147 	     int (*cmp)(const void *p), int maxclass)
2148 {
2149 	int i;
2150 
2151 	for (i = 0; i < n; i++)
2152 		dst[i] = src[i];
2153 }
2154 #endif /* CONFIG_IPV6 */
2155 
2156 void
2157 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
2158 	       unsigned short family)
2159 {
2160 	int i;
2161 
2162 	if (family == AF_INET6)
2163 		__xfrm6_sort((void **)dst, (void **)src, n,
2164 			     __xfrm6_tmpl_sort_cmp, 5);
2165 	else
2166 		for (i = 0; i < n; i++)
2167 			dst[i] = src[i];
2168 }
2169 
2170 void
2171 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
2172 		unsigned short family)
2173 {
2174 	int i;
2175 
2176 	if (family == AF_INET6)
2177 		__xfrm6_sort((void **)dst, (void **)src, n,
2178 			     __xfrm6_state_sort_cmp, 6);
2179 	else
2180 		for (i = 0; i < n; i++)
2181 			dst[i] = src[i];
2182 }
2183 #endif
2184 
2185 /* Silly enough, but I'm lazy to build resolution list */
2186 
2187 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
2188 {
2189 	unsigned int h = xfrm_seq_hash(net, seq);
2190 	struct xfrm_state *x;
2191 
2192 	hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) {
2193 		if (x->km.seq == seq &&
2194 		    (mark & x->mark.m) == x->mark.v &&
2195 		    x->km.state == XFRM_STATE_ACQ) {
2196 			xfrm_state_hold(x);
2197 			return x;
2198 		}
2199 	}
2200 
2201 	return NULL;
2202 }
2203 
2204 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
2205 {
2206 	struct xfrm_state *x;
2207 
2208 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2209 	x = __xfrm_find_acq_byseq(net, mark, seq);
2210 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2211 	return x;
2212 }
2213 EXPORT_SYMBOL(xfrm_find_acq_byseq);
2214 
2215 u32 xfrm_get_acqseq(void)
2216 {
2217 	u32 res;
2218 	static atomic_t acqseq;
2219 
2220 	do {
2221 		res = atomic_inc_return(&acqseq);
2222 	} while (!res);
2223 
2224 	return res;
2225 }
2226 EXPORT_SYMBOL(xfrm_get_acqseq);
2227 
2228 int verify_spi_info(u8 proto, u32 min, u32 max, struct netlink_ext_ack *extack)
2229 {
2230 	switch (proto) {
2231 	case IPPROTO_AH:
2232 	case IPPROTO_ESP:
2233 		break;
2234 
2235 	case IPPROTO_COMP:
2236 		/* IPCOMP spi is 16-bits. */
2237 		if (max >= 0x10000) {
2238 			NL_SET_ERR_MSG(extack, "IPCOMP SPI must be <= 65535");
2239 			return -EINVAL;
2240 		}
2241 		break;
2242 
2243 	default:
2244 		NL_SET_ERR_MSG(extack, "Invalid protocol, must be one of AH, ESP, IPCOMP");
2245 		return -EINVAL;
2246 	}
2247 
2248 	if (min > max) {
2249 		NL_SET_ERR_MSG(extack, "Invalid SPI range: min > max");
2250 		return -EINVAL;
2251 	}
2252 
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL(verify_spi_info);
2256 
2257 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high,
2258 		   struct netlink_ext_ack *extack)
2259 {
2260 	struct net *net = xs_net(x);
2261 	unsigned int h;
2262 	struct xfrm_state *x0;
2263 	int err = -ENOENT;
2264 	__be32 minspi = htonl(low);
2265 	__be32 maxspi = htonl(high);
2266 	__be32 newspi = 0;
2267 	u32 mark = x->mark.v & x->mark.m;
2268 
2269 	spin_lock_bh(&x->lock);
2270 	if (x->km.state == XFRM_STATE_DEAD) {
2271 		NL_SET_ERR_MSG(extack, "Target ACQUIRE is in DEAD state");
2272 		goto unlock;
2273 	}
2274 
2275 	err = 0;
2276 	if (x->id.spi)
2277 		goto unlock;
2278 
2279 	err = -ENOENT;
2280 
2281 	if (minspi == maxspi) {
2282 		x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
2283 		if (x0) {
2284 			NL_SET_ERR_MSG(extack, "Requested SPI is already in use");
2285 			xfrm_state_put(x0);
2286 			goto unlock;
2287 		}
2288 		newspi = minspi;
2289 	} else {
2290 		u32 spi = 0;
2291 		for (h = 0; h < high-low+1; h++) {
2292 			spi = get_random_u32_inclusive(low, high);
2293 			x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
2294 			if (x0 == NULL) {
2295 				newspi = htonl(spi);
2296 				break;
2297 			}
2298 			xfrm_state_put(x0);
2299 		}
2300 	}
2301 	if (newspi) {
2302 		spin_lock_bh(&net->xfrm.xfrm_state_lock);
2303 		x->id.spi = newspi;
2304 		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
2305 		XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h,
2306 				  x->xso.type);
2307 		spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2308 
2309 		err = 0;
2310 	} else {
2311 		NL_SET_ERR_MSG(extack, "No SPI available in the requested range");
2312 	}
2313 
2314 unlock:
2315 	spin_unlock_bh(&x->lock);
2316 
2317 	return err;
2318 }
2319 EXPORT_SYMBOL(xfrm_alloc_spi);
2320 
2321 static bool __xfrm_state_filter_match(struct xfrm_state *x,
2322 				      struct xfrm_address_filter *filter)
2323 {
2324 	if (filter) {
2325 		if ((filter->family == AF_INET ||
2326 		     filter->family == AF_INET6) &&
2327 		    x->props.family != filter->family)
2328 			return false;
2329 
2330 		return addr_match(&x->props.saddr, &filter->saddr,
2331 				  filter->splen) &&
2332 		       addr_match(&x->id.daddr, &filter->daddr,
2333 				  filter->dplen);
2334 	}
2335 	return true;
2336 }
2337 
2338 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
2339 		    int (*func)(struct xfrm_state *, int, void*),
2340 		    void *data)
2341 {
2342 	struct xfrm_state *state;
2343 	struct xfrm_state_walk *x;
2344 	int err = 0;
2345 
2346 	if (walk->seq != 0 && list_empty(&walk->all))
2347 		return 0;
2348 
2349 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2350 	if (list_empty(&walk->all))
2351 		x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
2352 	else
2353 		x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
2354 	list_for_each_entry_from(x, &net->xfrm.state_all, all) {
2355 		if (x->state == XFRM_STATE_DEAD)
2356 			continue;
2357 		state = container_of(x, struct xfrm_state, km);
2358 		if (!xfrm_id_proto_match(state->id.proto, walk->proto))
2359 			continue;
2360 		if (!__xfrm_state_filter_match(state, walk->filter))
2361 			continue;
2362 		err = func(state, walk->seq, data);
2363 		if (err) {
2364 			list_move_tail(&walk->all, &x->all);
2365 			goto out;
2366 		}
2367 		walk->seq++;
2368 	}
2369 	if (walk->seq == 0) {
2370 		err = -ENOENT;
2371 		goto out;
2372 	}
2373 	list_del_init(&walk->all);
2374 out:
2375 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2376 	return err;
2377 }
2378 EXPORT_SYMBOL(xfrm_state_walk);
2379 
2380 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
2381 			  struct xfrm_address_filter *filter)
2382 {
2383 	INIT_LIST_HEAD(&walk->all);
2384 	walk->proto = proto;
2385 	walk->state = XFRM_STATE_DEAD;
2386 	walk->seq = 0;
2387 	walk->filter = filter;
2388 }
2389 EXPORT_SYMBOL(xfrm_state_walk_init);
2390 
2391 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
2392 {
2393 	kfree(walk->filter);
2394 
2395 	if (list_empty(&walk->all))
2396 		return;
2397 
2398 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2399 	list_del(&walk->all);
2400 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2401 }
2402 EXPORT_SYMBOL(xfrm_state_walk_done);
2403 
2404 static void xfrm_replay_timer_handler(struct timer_list *t)
2405 {
2406 	struct xfrm_state *x = from_timer(x, t, rtimer);
2407 
2408 	spin_lock(&x->lock);
2409 
2410 	if (x->km.state == XFRM_STATE_VALID) {
2411 		if (xfrm_aevent_is_on(xs_net(x)))
2412 			xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
2413 		else
2414 			x->xflags |= XFRM_TIME_DEFER;
2415 	}
2416 
2417 	spin_unlock(&x->lock);
2418 }
2419 
2420 static LIST_HEAD(xfrm_km_list);
2421 
2422 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
2423 {
2424 	struct xfrm_mgr *km;
2425 
2426 	rcu_read_lock();
2427 	list_for_each_entry_rcu(km, &xfrm_km_list, list)
2428 		if (km->notify_policy)
2429 			km->notify_policy(xp, dir, c);
2430 	rcu_read_unlock();
2431 }
2432 
2433 void km_state_notify(struct xfrm_state *x, const struct km_event *c)
2434 {
2435 	struct xfrm_mgr *km;
2436 	rcu_read_lock();
2437 	list_for_each_entry_rcu(km, &xfrm_km_list, list)
2438 		if (km->notify)
2439 			km->notify(x, c);
2440 	rcu_read_unlock();
2441 }
2442 
2443 EXPORT_SYMBOL(km_policy_notify);
2444 EXPORT_SYMBOL(km_state_notify);
2445 
2446 void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
2447 {
2448 	struct km_event c;
2449 
2450 	c.data.hard = hard;
2451 	c.portid = portid;
2452 	c.event = XFRM_MSG_EXPIRE;
2453 	km_state_notify(x, &c);
2454 }
2455 
2456 EXPORT_SYMBOL(km_state_expired);
2457 /*
2458  * We send to all registered managers regardless of failure
2459  * We are happy with one success
2460 */
2461 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
2462 {
2463 	int err = -EINVAL, acqret;
2464 	struct xfrm_mgr *km;
2465 
2466 	rcu_read_lock();
2467 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2468 		acqret = km->acquire(x, t, pol);
2469 		if (!acqret)
2470 			err = acqret;
2471 	}
2472 	rcu_read_unlock();
2473 	return err;
2474 }
2475 EXPORT_SYMBOL(km_query);
2476 
2477 static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2478 {
2479 	int err = -EINVAL;
2480 	struct xfrm_mgr *km;
2481 
2482 	rcu_read_lock();
2483 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2484 		if (km->new_mapping)
2485 			err = km->new_mapping(x, ipaddr, sport);
2486 		if (!err)
2487 			break;
2488 	}
2489 	rcu_read_unlock();
2490 	return err;
2491 }
2492 
2493 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2494 {
2495 	int ret = 0;
2496 
2497 	if (x->mapping_maxage) {
2498 		if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage ||
2499 		    x->new_mapping_sport != sport) {
2500 			x->new_mapping_sport = sport;
2501 			x->new_mapping = jiffies / HZ;
2502 			ret = __km_new_mapping(x, ipaddr, sport);
2503 		}
2504 	} else {
2505 		ret = __km_new_mapping(x, ipaddr, sport);
2506 	}
2507 
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL(km_new_mapping);
2511 
2512 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
2513 {
2514 	struct km_event c;
2515 
2516 	c.data.hard = hard;
2517 	c.portid = portid;
2518 	c.event = XFRM_MSG_POLEXPIRE;
2519 	km_policy_notify(pol, dir, &c);
2520 }
2521 EXPORT_SYMBOL(km_policy_expired);
2522 
2523 #ifdef CONFIG_XFRM_MIGRATE
2524 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
2525 	       const struct xfrm_migrate *m, int num_migrate,
2526 	       const struct xfrm_kmaddress *k,
2527 	       const struct xfrm_encap_tmpl *encap)
2528 {
2529 	int err = -EINVAL;
2530 	int ret;
2531 	struct xfrm_mgr *km;
2532 
2533 	rcu_read_lock();
2534 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2535 		if (km->migrate) {
2536 			ret = km->migrate(sel, dir, type, m, num_migrate, k,
2537 					  encap);
2538 			if (!ret)
2539 				err = ret;
2540 		}
2541 	}
2542 	rcu_read_unlock();
2543 	return err;
2544 }
2545 EXPORT_SYMBOL(km_migrate);
2546 #endif
2547 
2548 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
2549 {
2550 	int err = -EINVAL;
2551 	int ret;
2552 	struct xfrm_mgr *km;
2553 
2554 	rcu_read_lock();
2555 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2556 		if (km->report) {
2557 			ret = km->report(net, proto, sel, addr);
2558 			if (!ret)
2559 				err = ret;
2560 		}
2561 	}
2562 	rcu_read_unlock();
2563 	return err;
2564 }
2565 EXPORT_SYMBOL(km_report);
2566 
2567 static bool km_is_alive(const struct km_event *c)
2568 {
2569 	struct xfrm_mgr *km;
2570 	bool is_alive = false;
2571 
2572 	rcu_read_lock();
2573 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2574 		if (km->is_alive && km->is_alive(c)) {
2575 			is_alive = true;
2576 			break;
2577 		}
2578 	}
2579 	rcu_read_unlock();
2580 
2581 	return is_alive;
2582 }
2583 
2584 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
2585 static DEFINE_SPINLOCK(xfrm_translator_lock);
2586 static struct xfrm_translator __rcu *xfrm_translator;
2587 
2588 struct xfrm_translator *xfrm_get_translator(void)
2589 {
2590 	struct xfrm_translator *xtr;
2591 
2592 	rcu_read_lock();
2593 	xtr = rcu_dereference(xfrm_translator);
2594 	if (unlikely(!xtr))
2595 		goto out;
2596 	if (!try_module_get(xtr->owner))
2597 		xtr = NULL;
2598 out:
2599 	rcu_read_unlock();
2600 	return xtr;
2601 }
2602 EXPORT_SYMBOL_GPL(xfrm_get_translator);
2603 
2604 void xfrm_put_translator(struct xfrm_translator *xtr)
2605 {
2606 	module_put(xtr->owner);
2607 }
2608 EXPORT_SYMBOL_GPL(xfrm_put_translator);
2609 
2610 int xfrm_register_translator(struct xfrm_translator *xtr)
2611 {
2612 	int err = 0;
2613 
2614 	spin_lock_bh(&xfrm_translator_lock);
2615 	if (unlikely(xfrm_translator != NULL))
2616 		err = -EEXIST;
2617 	else
2618 		rcu_assign_pointer(xfrm_translator, xtr);
2619 	spin_unlock_bh(&xfrm_translator_lock);
2620 
2621 	return err;
2622 }
2623 EXPORT_SYMBOL_GPL(xfrm_register_translator);
2624 
2625 int xfrm_unregister_translator(struct xfrm_translator *xtr)
2626 {
2627 	int err = 0;
2628 
2629 	spin_lock_bh(&xfrm_translator_lock);
2630 	if (likely(xfrm_translator != NULL)) {
2631 		if (rcu_access_pointer(xfrm_translator) != xtr)
2632 			err = -EINVAL;
2633 		else
2634 			RCU_INIT_POINTER(xfrm_translator, NULL);
2635 	}
2636 	spin_unlock_bh(&xfrm_translator_lock);
2637 	synchronize_rcu();
2638 
2639 	return err;
2640 }
2641 EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
2642 #endif
2643 
2644 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
2645 {
2646 	int err;
2647 	u8 *data;
2648 	struct xfrm_mgr *km;
2649 	struct xfrm_policy *pol = NULL;
2650 
2651 	if (sockptr_is_null(optval) && !optlen) {
2652 		xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
2653 		xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
2654 		__sk_dst_reset(sk);
2655 		return 0;
2656 	}
2657 
2658 	if (optlen <= 0 || optlen > PAGE_SIZE)
2659 		return -EMSGSIZE;
2660 
2661 	data = memdup_sockptr(optval, optlen);
2662 	if (IS_ERR(data))
2663 		return PTR_ERR(data);
2664 
2665 	if (in_compat_syscall()) {
2666 		struct xfrm_translator *xtr = xfrm_get_translator();
2667 
2668 		if (!xtr) {
2669 			kfree(data);
2670 			return -EOPNOTSUPP;
2671 		}
2672 
2673 		err = xtr->xlate_user_policy_sockptr(&data, optlen);
2674 		xfrm_put_translator(xtr);
2675 		if (err) {
2676 			kfree(data);
2677 			return err;
2678 		}
2679 	}
2680 
2681 	err = -EINVAL;
2682 	rcu_read_lock();
2683 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2684 		pol = km->compile_policy(sk, optname, data,
2685 					 optlen, &err);
2686 		if (err >= 0)
2687 			break;
2688 	}
2689 	rcu_read_unlock();
2690 
2691 	if (err >= 0) {
2692 		xfrm_sk_policy_insert(sk, err, pol);
2693 		xfrm_pol_put(pol);
2694 		__sk_dst_reset(sk);
2695 		err = 0;
2696 	}
2697 
2698 	kfree(data);
2699 	return err;
2700 }
2701 EXPORT_SYMBOL(xfrm_user_policy);
2702 
2703 static DEFINE_SPINLOCK(xfrm_km_lock);
2704 
2705 void xfrm_register_km(struct xfrm_mgr *km)
2706 {
2707 	spin_lock_bh(&xfrm_km_lock);
2708 	list_add_tail_rcu(&km->list, &xfrm_km_list);
2709 	spin_unlock_bh(&xfrm_km_lock);
2710 }
2711 EXPORT_SYMBOL(xfrm_register_km);
2712 
2713 void xfrm_unregister_km(struct xfrm_mgr *km)
2714 {
2715 	spin_lock_bh(&xfrm_km_lock);
2716 	list_del_rcu(&km->list);
2717 	spin_unlock_bh(&xfrm_km_lock);
2718 	synchronize_rcu();
2719 }
2720 EXPORT_SYMBOL(xfrm_unregister_km);
2721 
2722 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
2723 {
2724 	int err = 0;
2725 
2726 	if (WARN_ON(afinfo->family >= NPROTO))
2727 		return -EAFNOSUPPORT;
2728 
2729 	spin_lock_bh(&xfrm_state_afinfo_lock);
2730 	if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
2731 		err = -EEXIST;
2732 	else
2733 		rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
2734 	spin_unlock_bh(&xfrm_state_afinfo_lock);
2735 	return err;
2736 }
2737 EXPORT_SYMBOL(xfrm_state_register_afinfo);
2738 
2739 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
2740 {
2741 	int err = 0, family = afinfo->family;
2742 
2743 	if (WARN_ON(family >= NPROTO))
2744 		return -EAFNOSUPPORT;
2745 
2746 	spin_lock_bh(&xfrm_state_afinfo_lock);
2747 	if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
2748 		if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
2749 			err = -EINVAL;
2750 		else
2751 			RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
2752 	}
2753 	spin_unlock_bh(&xfrm_state_afinfo_lock);
2754 	synchronize_rcu();
2755 	return err;
2756 }
2757 EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
2758 
2759 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
2760 {
2761 	if (unlikely(family >= NPROTO))
2762 		return NULL;
2763 
2764 	return rcu_dereference(xfrm_state_afinfo[family]);
2765 }
2766 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);
2767 
2768 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
2769 {
2770 	struct xfrm_state_afinfo *afinfo;
2771 	if (unlikely(family >= NPROTO))
2772 		return NULL;
2773 	rcu_read_lock();
2774 	afinfo = rcu_dereference(xfrm_state_afinfo[family]);
2775 	if (unlikely(!afinfo))
2776 		rcu_read_unlock();
2777 	return afinfo;
2778 }
2779 
2780 void xfrm_flush_gc(void)
2781 {
2782 	flush_work(&xfrm_state_gc_work);
2783 }
2784 EXPORT_SYMBOL(xfrm_flush_gc);
2785 
2786 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
2787 void xfrm_state_delete_tunnel(struct xfrm_state *x)
2788 {
2789 	if (x->tunnel) {
2790 		struct xfrm_state *t = x->tunnel;
2791 
2792 		if (atomic_read(&t->tunnel_users) == 2)
2793 			xfrm_state_delete(t);
2794 		atomic_dec(&t->tunnel_users);
2795 		xfrm_state_put_sync(t);
2796 		x->tunnel = NULL;
2797 	}
2798 }
2799 EXPORT_SYMBOL(xfrm_state_delete_tunnel);
2800 
2801 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
2802 {
2803 	const struct xfrm_type *type = READ_ONCE(x->type);
2804 	struct crypto_aead *aead;
2805 	u32 blksize, net_adj = 0;
2806 
2807 	if (x->km.state != XFRM_STATE_VALID ||
2808 	    !type || type->proto != IPPROTO_ESP)
2809 		return mtu - x->props.header_len;
2810 
2811 	aead = x->data;
2812 	blksize = ALIGN(crypto_aead_blocksize(aead), 4);
2813 
2814 	switch (x->props.mode) {
2815 	case XFRM_MODE_TRANSPORT:
2816 	case XFRM_MODE_BEET:
2817 		if (x->props.family == AF_INET)
2818 			net_adj = sizeof(struct iphdr);
2819 		else if (x->props.family == AF_INET6)
2820 			net_adj = sizeof(struct ipv6hdr);
2821 		break;
2822 	case XFRM_MODE_TUNNEL:
2823 		break;
2824 	default:
2825 		WARN_ON_ONCE(1);
2826 		break;
2827 	}
2828 
2829 	return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
2830 		 net_adj) & ~(blksize - 1)) + net_adj - 2;
2831 }
2832 EXPORT_SYMBOL_GPL(xfrm_state_mtu);
2833 
2834 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload,
2835 		      struct netlink_ext_ack *extack)
2836 {
2837 	const struct xfrm_mode *inner_mode;
2838 	const struct xfrm_mode *outer_mode;
2839 	int family = x->props.family;
2840 	int err;
2841 
2842 	if (family == AF_INET &&
2843 	    READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc))
2844 		x->props.flags |= XFRM_STATE_NOPMTUDISC;
2845 
2846 	err = -EPROTONOSUPPORT;
2847 
2848 	if (x->sel.family != AF_UNSPEC) {
2849 		inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
2850 		if (inner_mode == NULL) {
2851 			NL_SET_ERR_MSG(extack, "Requested mode not found");
2852 			goto error;
2853 		}
2854 
2855 		if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
2856 		    family != x->sel.family) {
2857 			NL_SET_ERR_MSG(extack, "Only tunnel modes can accommodate a change of family");
2858 			goto error;
2859 		}
2860 
2861 		x->inner_mode = *inner_mode;
2862 	} else {
2863 		const struct xfrm_mode *inner_mode_iaf;
2864 		int iafamily = AF_INET;
2865 
2866 		inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
2867 		if (inner_mode == NULL) {
2868 			NL_SET_ERR_MSG(extack, "Requested mode not found");
2869 			goto error;
2870 		}
2871 
2872 		x->inner_mode = *inner_mode;
2873 
2874 		if (x->props.family == AF_INET)
2875 			iafamily = AF_INET6;
2876 
2877 		inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
2878 		if (inner_mode_iaf) {
2879 			if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
2880 				x->inner_mode_iaf = *inner_mode_iaf;
2881 		}
2882 	}
2883 
2884 	x->type = xfrm_get_type(x->id.proto, family);
2885 	if (x->type == NULL) {
2886 		NL_SET_ERR_MSG(extack, "Requested type not found");
2887 		goto error;
2888 	}
2889 
2890 	x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
2891 
2892 	err = x->type->init_state(x, extack);
2893 	if (err)
2894 		goto error;
2895 
2896 	outer_mode = xfrm_get_mode(x->props.mode, family);
2897 	if (!outer_mode) {
2898 		NL_SET_ERR_MSG(extack, "Requested mode not found");
2899 		err = -EPROTONOSUPPORT;
2900 		goto error;
2901 	}
2902 
2903 	x->outer_mode = *outer_mode;
2904 	if (init_replay) {
2905 		err = xfrm_init_replay(x, extack);
2906 		if (err)
2907 			goto error;
2908 	}
2909 
2910 error:
2911 	return err;
2912 }
2913 
2914 EXPORT_SYMBOL(__xfrm_init_state);
2915 
2916 int xfrm_init_state(struct xfrm_state *x)
2917 {
2918 	int err;
2919 
2920 	err = __xfrm_init_state(x, true, false, NULL);
2921 	if (!err)
2922 		x->km.state = XFRM_STATE_VALID;
2923 
2924 	return err;
2925 }
2926 
2927 EXPORT_SYMBOL(xfrm_init_state);
2928 
2929 int __net_init xfrm_state_init(struct net *net)
2930 {
2931 	unsigned int sz;
2932 
2933 	if (net_eq(net, &init_net))
2934 		xfrm_state_cache = KMEM_CACHE(xfrm_state,
2935 					      SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2936 
2937 	INIT_LIST_HEAD(&net->xfrm.state_all);
2938 
2939 	sz = sizeof(struct hlist_head) * 8;
2940 
2941 	net->xfrm.state_bydst = xfrm_hash_alloc(sz);
2942 	if (!net->xfrm.state_bydst)
2943 		goto out_bydst;
2944 	net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
2945 	if (!net->xfrm.state_bysrc)
2946 		goto out_bysrc;
2947 	net->xfrm.state_byspi = xfrm_hash_alloc(sz);
2948 	if (!net->xfrm.state_byspi)
2949 		goto out_byspi;
2950 	net->xfrm.state_byseq = xfrm_hash_alloc(sz);
2951 	if (!net->xfrm.state_byseq)
2952 		goto out_byseq;
2953 	net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
2954 
2955 	net->xfrm.state_num = 0;
2956 	INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
2957 	spin_lock_init(&net->xfrm.xfrm_state_lock);
2958 	seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation,
2959 			       &net->xfrm.xfrm_state_lock);
2960 	return 0;
2961 
2962 out_byseq:
2963 	xfrm_hash_free(net->xfrm.state_byspi, sz);
2964 out_byspi:
2965 	xfrm_hash_free(net->xfrm.state_bysrc, sz);
2966 out_bysrc:
2967 	xfrm_hash_free(net->xfrm.state_bydst, sz);
2968 out_bydst:
2969 	return -ENOMEM;
2970 }
2971 
2972 void xfrm_state_fini(struct net *net)
2973 {
2974 	unsigned int sz;
2975 
2976 	flush_work(&net->xfrm.state_hash_work);
2977 	flush_work(&xfrm_state_gc_work);
2978 	xfrm_state_flush(net, 0, false, true);
2979 
2980 	WARN_ON(!list_empty(&net->xfrm.state_all));
2981 
2982 	sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
2983 	WARN_ON(!hlist_empty(net->xfrm.state_byseq));
2984 	xfrm_hash_free(net->xfrm.state_byseq, sz);
2985 	WARN_ON(!hlist_empty(net->xfrm.state_byspi));
2986 	xfrm_hash_free(net->xfrm.state_byspi, sz);
2987 	WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
2988 	xfrm_hash_free(net->xfrm.state_bysrc, sz);
2989 	WARN_ON(!hlist_empty(net->xfrm.state_bydst));
2990 	xfrm_hash_free(net->xfrm.state_bydst, sz);
2991 }
2992 
2993 #ifdef CONFIG_AUDITSYSCALL
2994 static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
2995 				     struct audit_buffer *audit_buf)
2996 {
2997 	struct xfrm_sec_ctx *ctx = x->security;
2998 	u32 spi = ntohl(x->id.spi);
2999 
3000 	if (ctx)
3001 		audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
3002 				 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
3003 
3004 	switch (x->props.family) {
3005 	case AF_INET:
3006 		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
3007 				 &x->props.saddr.a4, &x->id.daddr.a4);
3008 		break;
3009 	case AF_INET6:
3010 		audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
3011 				 x->props.saddr.a6, x->id.daddr.a6);
3012 		break;
3013 	}
3014 
3015 	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
3016 }
3017 
3018 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
3019 				      struct audit_buffer *audit_buf)
3020 {
3021 	const struct iphdr *iph4;
3022 	const struct ipv6hdr *iph6;
3023 
3024 	switch (family) {
3025 	case AF_INET:
3026 		iph4 = ip_hdr(skb);
3027 		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
3028 				 &iph4->saddr, &iph4->daddr);
3029 		break;
3030 	case AF_INET6:
3031 		iph6 = ipv6_hdr(skb);
3032 		audit_log_format(audit_buf,
3033 				 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
3034 				 &iph6->saddr, &iph6->daddr,
3035 				 iph6->flow_lbl[0] & 0x0f,
3036 				 iph6->flow_lbl[1],
3037 				 iph6->flow_lbl[2]);
3038 		break;
3039 	}
3040 }
3041 
3042 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
3043 {
3044 	struct audit_buffer *audit_buf;
3045 
3046 	audit_buf = xfrm_audit_start("SAD-add");
3047 	if (audit_buf == NULL)
3048 		return;
3049 	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
3050 	xfrm_audit_helper_sainfo(x, audit_buf);
3051 	audit_log_format(audit_buf, " res=%u", result);
3052 	audit_log_end(audit_buf);
3053 }
3054 EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
3055 
3056 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
3057 {
3058 	struct audit_buffer *audit_buf;
3059 
3060 	audit_buf = xfrm_audit_start("SAD-delete");
3061 	if (audit_buf == NULL)
3062 		return;
3063 	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
3064 	xfrm_audit_helper_sainfo(x, audit_buf);
3065 	audit_log_format(audit_buf, " res=%u", result);
3066 	audit_log_end(audit_buf);
3067 }
3068 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
3069 
3070 void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
3071 				      struct sk_buff *skb)
3072 {
3073 	struct audit_buffer *audit_buf;
3074 	u32 spi;
3075 
3076 	audit_buf = xfrm_audit_start("SA-replay-overflow");
3077 	if (audit_buf == NULL)
3078 		return;
3079 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
3080 	/* don't record the sequence number because it's inherent in this kind
3081 	 * of audit message */
3082 	spi = ntohl(x->id.spi);
3083 	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
3084 	audit_log_end(audit_buf);
3085 }
3086 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
3087 
3088 void xfrm_audit_state_replay(struct xfrm_state *x,
3089 			     struct sk_buff *skb, __be32 net_seq)
3090 {
3091 	struct audit_buffer *audit_buf;
3092 	u32 spi;
3093 
3094 	audit_buf = xfrm_audit_start("SA-replayed-pkt");
3095 	if (audit_buf == NULL)
3096 		return;
3097 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
3098 	spi = ntohl(x->id.spi);
3099 	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
3100 			 spi, spi, ntohl(net_seq));
3101 	audit_log_end(audit_buf);
3102 }
3103 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
3104 
3105 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
3106 {
3107 	struct audit_buffer *audit_buf;
3108 
3109 	audit_buf = xfrm_audit_start("SA-notfound");
3110 	if (audit_buf == NULL)
3111 		return;
3112 	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
3113 	audit_log_end(audit_buf);
3114 }
3115 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
3116 
3117 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
3118 			       __be32 net_spi, __be32 net_seq)
3119 {
3120 	struct audit_buffer *audit_buf;
3121 	u32 spi;
3122 
3123 	audit_buf = xfrm_audit_start("SA-notfound");
3124 	if (audit_buf == NULL)
3125 		return;
3126 	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
3127 	spi = ntohl(net_spi);
3128 	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
3129 			 spi, spi, ntohl(net_seq));
3130 	audit_log_end(audit_buf);
3131 }
3132 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
3133 
3134 void xfrm_audit_state_icvfail(struct xfrm_state *x,
3135 			      struct sk_buff *skb, u8 proto)
3136 {
3137 	struct audit_buffer *audit_buf;
3138 	__be32 net_spi;
3139 	__be32 net_seq;
3140 
3141 	audit_buf = xfrm_audit_start("SA-icv-failure");
3142 	if (audit_buf == NULL)
3143 		return;
3144 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
3145 	if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
3146 		u32 spi = ntohl(net_spi);
3147 		audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
3148 				 spi, spi, ntohl(net_seq));
3149 	}
3150 	audit_log_end(audit_buf);
3151 }
3152 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
3153 #endif /* CONFIG_AUDITSYSCALL */
3154