1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/workqueue.h> 18 #include <net/xfrm.h> 19 #include <linux/pfkeyv2.h> 20 #include <linux/ipsec.h> 21 #include <linux/module.h> 22 #include <linux/cache.h> 23 #include <linux/audit.h> 24 #include <linux/uaccess.h> 25 #include <linux/ktime.h> 26 #include <linux/slab.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 30 #include <crypto/aead.h> 31 32 #include "xfrm_hash.h" 33 34 #define xfrm_state_deref_prot(table, net) \ 35 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 36 37 static void xfrm_state_gc_task(struct work_struct *work); 38 39 /* Each xfrm_state may be linked to two tables: 40 41 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 42 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 43 destination/tunnel endpoint. (output) 44 */ 45 46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 47 static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation); 48 static struct kmem_cache *xfrm_state_cache __ro_after_init; 49 50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 51 static HLIST_HEAD(xfrm_state_gc_list); 52 53 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 54 { 55 return refcount_inc_not_zero(&x->refcnt); 56 } 57 58 static inline unsigned int xfrm_dst_hash(struct net *net, 59 const xfrm_address_t *daddr, 60 const xfrm_address_t *saddr, 61 u32 reqid, 62 unsigned short family) 63 { 64 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 65 } 66 67 static inline unsigned int xfrm_src_hash(struct net *net, 68 const xfrm_address_t *daddr, 69 const xfrm_address_t *saddr, 70 unsigned short family) 71 { 72 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 73 } 74 75 static inline unsigned int 76 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 77 __be32 spi, u8 proto, unsigned short family) 78 { 79 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 80 } 81 82 static void xfrm_hash_transfer(struct hlist_head *list, 83 struct hlist_head *ndsttable, 84 struct hlist_head *nsrctable, 85 struct hlist_head *nspitable, 86 unsigned int nhashmask) 87 { 88 struct hlist_node *tmp; 89 struct xfrm_state *x; 90 91 hlist_for_each_entry_safe(x, tmp, list, bydst) { 92 unsigned int h; 93 94 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 95 x->props.reqid, x->props.family, 96 nhashmask); 97 hlist_add_head_rcu(&x->bydst, ndsttable + h); 98 99 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 100 x->props.family, 101 nhashmask); 102 hlist_add_head_rcu(&x->bysrc, nsrctable + h); 103 104 if (x->id.spi) { 105 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 106 x->id.proto, x->props.family, 107 nhashmask); 108 hlist_add_head_rcu(&x->byspi, nspitable + h); 109 } 110 } 111 } 112 113 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 114 { 115 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 116 } 117 118 static void xfrm_hash_resize(struct work_struct *work) 119 { 120 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 121 struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; 122 unsigned long nsize, osize; 123 unsigned int nhashmask, ohashmask; 124 int i; 125 126 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 127 ndst = xfrm_hash_alloc(nsize); 128 if (!ndst) 129 return; 130 nsrc = xfrm_hash_alloc(nsize); 131 if (!nsrc) { 132 xfrm_hash_free(ndst, nsize); 133 return; 134 } 135 nspi = xfrm_hash_alloc(nsize); 136 if (!nspi) { 137 xfrm_hash_free(ndst, nsize); 138 xfrm_hash_free(nsrc, nsize); 139 return; 140 } 141 142 spin_lock_bh(&net->xfrm.xfrm_state_lock); 143 write_seqcount_begin(&xfrm_state_hash_generation); 144 145 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 146 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 147 for (i = net->xfrm.state_hmask; i >= 0; i--) 148 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask); 149 150 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 151 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 152 ohashmask = net->xfrm.state_hmask; 153 154 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 155 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 156 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 157 net->xfrm.state_hmask = nhashmask; 158 159 write_seqcount_end(&xfrm_state_hash_generation); 160 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 161 162 osize = (ohashmask + 1) * sizeof(struct hlist_head); 163 164 synchronize_rcu(); 165 166 xfrm_hash_free(odst, osize); 167 xfrm_hash_free(osrc, osize); 168 xfrm_hash_free(ospi, osize); 169 } 170 171 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 172 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 173 174 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 175 176 int __xfrm_state_delete(struct xfrm_state *x); 177 178 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 179 static bool km_is_alive(const struct km_event *c); 180 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 181 182 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 183 { 184 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 185 int err = 0; 186 187 if (!afinfo) 188 return -EAFNOSUPPORT; 189 190 #define X(afi, T, name) do { \ 191 WARN_ON((afi)->type_ ## name); \ 192 (afi)->type_ ## name = (T); \ 193 } while (0) 194 195 switch (type->proto) { 196 case IPPROTO_COMP: 197 X(afinfo, type, comp); 198 break; 199 case IPPROTO_AH: 200 X(afinfo, type, ah); 201 break; 202 case IPPROTO_ESP: 203 X(afinfo, type, esp); 204 break; 205 case IPPROTO_IPIP: 206 X(afinfo, type, ipip); 207 break; 208 case IPPROTO_DSTOPTS: 209 X(afinfo, type, dstopts); 210 break; 211 case IPPROTO_ROUTING: 212 X(afinfo, type, routing); 213 break; 214 case IPPROTO_IPV6: 215 X(afinfo, type, ipip6); 216 break; 217 default: 218 WARN_ON(1); 219 err = -EPROTONOSUPPORT; 220 break; 221 } 222 #undef X 223 rcu_read_unlock(); 224 return err; 225 } 226 EXPORT_SYMBOL(xfrm_register_type); 227 228 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 229 { 230 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 231 232 if (unlikely(afinfo == NULL)) 233 return; 234 235 #define X(afi, T, name) do { \ 236 WARN_ON((afi)->type_ ## name != (T)); \ 237 (afi)->type_ ## name = NULL; \ 238 } while (0) 239 240 switch (type->proto) { 241 case IPPROTO_COMP: 242 X(afinfo, type, comp); 243 break; 244 case IPPROTO_AH: 245 X(afinfo, type, ah); 246 break; 247 case IPPROTO_ESP: 248 X(afinfo, type, esp); 249 break; 250 case IPPROTO_IPIP: 251 X(afinfo, type, ipip); 252 break; 253 case IPPROTO_DSTOPTS: 254 X(afinfo, type, dstopts); 255 break; 256 case IPPROTO_ROUTING: 257 X(afinfo, type, routing); 258 break; 259 case IPPROTO_IPV6: 260 X(afinfo, type, ipip6); 261 break; 262 default: 263 WARN_ON(1); 264 break; 265 } 266 #undef X 267 rcu_read_unlock(); 268 } 269 EXPORT_SYMBOL(xfrm_unregister_type); 270 271 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 272 { 273 const struct xfrm_type *type = NULL; 274 struct xfrm_state_afinfo *afinfo; 275 int modload_attempted = 0; 276 277 retry: 278 afinfo = xfrm_state_get_afinfo(family); 279 if (unlikely(afinfo == NULL)) 280 return NULL; 281 282 switch (proto) { 283 case IPPROTO_COMP: 284 type = afinfo->type_comp; 285 break; 286 case IPPROTO_AH: 287 type = afinfo->type_ah; 288 break; 289 case IPPROTO_ESP: 290 type = afinfo->type_esp; 291 break; 292 case IPPROTO_IPIP: 293 type = afinfo->type_ipip; 294 break; 295 case IPPROTO_DSTOPTS: 296 type = afinfo->type_dstopts; 297 break; 298 case IPPROTO_ROUTING: 299 type = afinfo->type_routing; 300 break; 301 case IPPROTO_IPV6: 302 type = afinfo->type_ipip6; 303 break; 304 default: 305 break; 306 } 307 308 if (unlikely(type && !try_module_get(type->owner))) 309 type = NULL; 310 311 rcu_read_unlock(); 312 313 if (!type && !modload_attempted) { 314 request_module("xfrm-type-%d-%d", family, proto); 315 modload_attempted = 1; 316 goto retry; 317 } 318 319 return type; 320 } 321 322 static void xfrm_put_type(const struct xfrm_type *type) 323 { 324 module_put(type->owner); 325 } 326 327 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 328 unsigned short family) 329 { 330 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 331 int err = 0; 332 333 if (unlikely(afinfo == NULL)) 334 return -EAFNOSUPPORT; 335 336 switch (type->proto) { 337 case IPPROTO_ESP: 338 WARN_ON(afinfo->type_offload_esp); 339 afinfo->type_offload_esp = type; 340 break; 341 default: 342 WARN_ON(1); 343 err = -EPROTONOSUPPORT; 344 break; 345 } 346 347 rcu_read_unlock(); 348 return err; 349 } 350 EXPORT_SYMBOL(xfrm_register_type_offload); 351 352 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 353 unsigned short family) 354 { 355 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 356 357 if (unlikely(afinfo == NULL)) 358 return; 359 360 switch (type->proto) { 361 case IPPROTO_ESP: 362 WARN_ON(afinfo->type_offload_esp != type); 363 afinfo->type_offload_esp = NULL; 364 break; 365 default: 366 WARN_ON(1); 367 break; 368 } 369 rcu_read_unlock(); 370 } 371 EXPORT_SYMBOL(xfrm_unregister_type_offload); 372 373 static const struct xfrm_type_offload * 374 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 375 { 376 const struct xfrm_type_offload *type = NULL; 377 struct xfrm_state_afinfo *afinfo; 378 379 retry: 380 afinfo = xfrm_state_get_afinfo(family); 381 if (unlikely(afinfo == NULL)) 382 return NULL; 383 384 switch (proto) { 385 case IPPROTO_ESP: 386 type = afinfo->type_offload_esp; 387 break; 388 default: 389 break; 390 } 391 392 if ((type && !try_module_get(type->owner))) 393 type = NULL; 394 395 rcu_read_unlock(); 396 397 if (!type && try_load) { 398 request_module("xfrm-offload-%d-%d", family, proto); 399 try_load = false; 400 goto retry; 401 } 402 403 return type; 404 } 405 406 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 407 { 408 module_put(type->owner); 409 } 410 411 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 412 [XFRM_MODE_BEET] = { 413 .encap = XFRM_MODE_BEET, 414 .flags = XFRM_MODE_FLAG_TUNNEL, 415 .family = AF_INET, 416 }, 417 [XFRM_MODE_TRANSPORT] = { 418 .encap = XFRM_MODE_TRANSPORT, 419 .family = AF_INET, 420 }, 421 [XFRM_MODE_TUNNEL] = { 422 .encap = XFRM_MODE_TUNNEL, 423 .flags = XFRM_MODE_FLAG_TUNNEL, 424 .family = AF_INET, 425 }, 426 }; 427 428 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 429 [XFRM_MODE_BEET] = { 430 .encap = XFRM_MODE_BEET, 431 .flags = XFRM_MODE_FLAG_TUNNEL, 432 .family = AF_INET6, 433 }, 434 [XFRM_MODE_ROUTEOPTIMIZATION] = { 435 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 436 .family = AF_INET6, 437 }, 438 [XFRM_MODE_TRANSPORT] = { 439 .encap = XFRM_MODE_TRANSPORT, 440 .family = AF_INET6, 441 }, 442 [XFRM_MODE_TUNNEL] = { 443 .encap = XFRM_MODE_TUNNEL, 444 .flags = XFRM_MODE_FLAG_TUNNEL, 445 .family = AF_INET6, 446 }, 447 }; 448 449 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 450 { 451 const struct xfrm_mode *mode; 452 453 if (unlikely(encap >= XFRM_MODE_MAX)) 454 return NULL; 455 456 switch (family) { 457 case AF_INET: 458 mode = &xfrm4_mode_map[encap]; 459 if (mode->family == family) 460 return mode; 461 break; 462 case AF_INET6: 463 mode = &xfrm6_mode_map[encap]; 464 if (mode->family == family) 465 return mode; 466 break; 467 default: 468 break; 469 } 470 471 return NULL; 472 } 473 474 void xfrm_state_free(struct xfrm_state *x) 475 { 476 kmem_cache_free(xfrm_state_cache, x); 477 } 478 EXPORT_SYMBOL(xfrm_state_free); 479 480 static void ___xfrm_state_destroy(struct xfrm_state *x) 481 { 482 hrtimer_cancel(&x->mtimer); 483 del_timer_sync(&x->rtimer); 484 kfree(x->aead); 485 kfree(x->aalg); 486 kfree(x->ealg); 487 kfree(x->calg); 488 kfree(x->encap); 489 kfree(x->coaddr); 490 kfree(x->replay_esn); 491 kfree(x->preplay_esn); 492 if (x->type_offload) 493 xfrm_put_type_offload(x->type_offload); 494 if (x->type) { 495 x->type->destructor(x); 496 xfrm_put_type(x->type); 497 } 498 if (x->xfrag.page) 499 put_page(x->xfrag.page); 500 xfrm_dev_state_free(x); 501 security_xfrm_state_free(x); 502 xfrm_state_free(x); 503 } 504 505 static void xfrm_state_gc_task(struct work_struct *work) 506 { 507 struct xfrm_state *x; 508 struct hlist_node *tmp; 509 struct hlist_head gc_list; 510 511 spin_lock_bh(&xfrm_state_gc_lock); 512 hlist_move_list(&xfrm_state_gc_list, &gc_list); 513 spin_unlock_bh(&xfrm_state_gc_lock); 514 515 synchronize_rcu(); 516 517 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 518 ___xfrm_state_destroy(x); 519 } 520 521 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 522 { 523 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 524 enum hrtimer_restart ret = HRTIMER_NORESTART; 525 time64_t now = ktime_get_real_seconds(); 526 time64_t next = TIME64_MAX; 527 int warn = 0; 528 int err = 0; 529 530 spin_lock(&x->lock); 531 if (x->km.state == XFRM_STATE_DEAD) 532 goto out; 533 if (x->km.state == XFRM_STATE_EXPIRED) 534 goto expired; 535 if (x->lft.hard_add_expires_seconds) { 536 long tmo = x->lft.hard_add_expires_seconds + 537 x->curlft.add_time - now; 538 if (tmo <= 0) { 539 if (x->xflags & XFRM_SOFT_EXPIRE) { 540 /* enter hard expire without soft expire first?! 541 * setting a new date could trigger this. 542 * workaround: fix x->curflt.add_time by below: 543 */ 544 x->curlft.add_time = now - x->saved_tmo - 1; 545 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 546 } else 547 goto expired; 548 } 549 if (tmo < next) 550 next = tmo; 551 } 552 if (x->lft.hard_use_expires_seconds) { 553 long tmo = x->lft.hard_use_expires_seconds + 554 (x->curlft.use_time ? : now) - now; 555 if (tmo <= 0) 556 goto expired; 557 if (tmo < next) 558 next = tmo; 559 } 560 if (x->km.dying) 561 goto resched; 562 if (x->lft.soft_add_expires_seconds) { 563 long tmo = x->lft.soft_add_expires_seconds + 564 x->curlft.add_time - now; 565 if (tmo <= 0) { 566 warn = 1; 567 x->xflags &= ~XFRM_SOFT_EXPIRE; 568 } else if (tmo < next) { 569 next = tmo; 570 x->xflags |= XFRM_SOFT_EXPIRE; 571 x->saved_tmo = tmo; 572 } 573 } 574 if (x->lft.soft_use_expires_seconds) { 575 long tmo = x->lft.soft_use_expires_seconds + 576 (x->curlft.use_time ? : now) - now; 577 if (tmo <= 0) 578 warn = 1; 579 else if (tmo < next) 580 next = tmo; 581 } 582 583 x->km.dying = warn; 584 if (warn) 585 km_state_expired(x, 0, 0); 586 resched: 587 if (next != TIME64_MAX) { 588 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 589 ret = HRTIMER_RESTART; 590 } 591 592 goto out; 593 594 expired: 595 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 596 x->km.state = XFRM_STATE_EXPIRED; 597 598 err = __xfrm_state_delete(x); 599 if (!err) 600 km_state_expired(x, 1, 0); 601 602 xfrm_audit_state_delete(x, err ? 0 : 1, true); 603 604 out: 605 spin_unlock(&x->lock); 606 return ret; 607 } 608 609 static void xfrm_replay_timer_handler(struct timer_list *t); 610 611 struct xfrm_state *xfrm_state_alloc(struct net *net) 612 { 613 struct xfrm_state *x; 614 615 x = kmem_cache_alloc(xfrm_state_cache, GFP_ATOMIC | __GFP_ZERO); 616 617 if (x) { 618 write_pnet(&x->xs_net, net); 619 refcount_set(&x->refcnt, 1); 620 atomic_set(&x->tunnel_users, 0); 621 INIT_LIST_HEAD(&x->km.all); 622 INIT_HLIST_NODE(&x->bydst); 623 INIT_HLIST_NODE(&x->bysrc); 624 INIT_HLIST_NODE(&x->byspi); 625 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 626 x->mtimer.function = xfrm_timer_handler; 627 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 628 x->curlft.add_time = ktime_get_real_seconds(); 629 x->lft.soft_byte_limit = XFRM_INF; 630 x->lft.soft_packet_limit = XFRM_INF; 631 x->lft.hard_byte_limit = XFRM_INF; 632 x->lft.hard_packet_limit = XFRM_INF; 633 x->replay_maxage = 0; 634 x->replay_maxdiff = 0; 635 spin_lock_init(&x->lock); 636 } 637 return x; 638 } 639 EXPORT_SYMBOL(xfrm_state_alloc); 640 641 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 642 { 643 WARN_ON(x->km.state != XFRM_STATE_DEAD); 644 645 if (sync) { 646 synchronize_rcu(); 647 ___xfrm_state_destroy(x); 648 } else { 649 spin_lock_bh(&xfrm_state_gc_lock); 650 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 651 spin_unlock_bh(&xfrm_state_gc_lock); 652 schedule_work(&xfrm_state_gc_work); 653 } 654 } 655 EXPORT_SYMBOL(__xfrm_state_destroy); 656 657 int __xfrm_state_delete(struct xfrm_state *x) 658 { 659 struct net *net = xs_net(x); 660 int err = -ESRCH; 661 662 if (x->km.state != XFRM_STATE_DEAD) { 663 x->km.state = XFRM_STATE_DEAD; 664 spin_lock(&net->xfrm.xfrm_state_lock); 665 list_del(&x->km.all); 666 hlist_del_rcu(&x->bydst); 667 hlist_del_rcu(&x->bysrc); 668 if (x->id.spi) 669 hlist_del_rcu(&x->byspi); 670 net->xfrm.state_num--; 671 spin_unlock(&net->xfrm.xfrm_state_lock); 672 673 if (x->encap_sk) 674 sock_put(rcu_dereference_raw(x->encap_sk)); 675 676 xfrm_dev_state_delete(x); 677 678 /* All xfrm_state objects are created by xfrm_state_alloc. 679 * The xfrm_state_alloc call gives a reference, and that 680 * is what we are dropping here. 681 */ 682 xfrm_state_put(x); 683 err = 0; 684 } 685 686 return err; 687 } 688 EXPORT_SYMBOL(__xfrm_state_delete); 689 690 int xfrm_state_delete(struct xfrm_state *x) 691 { 692 int err; 693 694 spin_lock_bh(&x->lock); 695 err = __xfrm_state_delete(x); 696 spin_unlock_bh(&x->lock); 697 698 return err; 699 } 700 EXPORT_SYMBOL(xfrm_state_delete); 701 702 #ifdef CONFIG_SECURITY_NETWORK_XFRM 703 static inline int 704 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 705 { 706 int i, err = 0; 707 708 for (i = 0; i <= net->xfrm.state_hmask; i++) { 709 struct xfrm_state *x; 710 711 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 712 if (xfrm_id_proto_match(x->id.proto, proto) && 713 (err = security_xfrm_state_delete(x)) != 0) { 714 xfrm_audit_state_delete(x, 0, task_valid); 715 return err; 716 } 717 } 718 } 719 720 return err; 721 } 722 723 static inline int 724 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 725 { 726 int i, err = 0; 727 728 for (i = 0; i <= net->xfrm.state_hmask; i++) { 729 struct xfrm_state *x; 730 struct xfrm_state_offload *xso; 731 732 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 733 xso = &x->xso; 734 735 if (xso->dev == dev && 736 (err = security_xfrm_state_delete(x)) != 0) { 737 xfrm_audit_state_delete(x, 0, task_valid); 738 return err; 739 } 740 } 741 } 742 743 return err; 744 } 745 #else 746 static inline int 747 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 748 { 749 return 0; 750 } 751 752 static inline int 753 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 754 { 755 return 0; 756 } 757 #endif 758 759 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 760 { 761 int i, err = 0, cnt = 0; 762 763 spin_lock_bh(&net->xfrm.xfrm_state_lock); 764 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 765 if (err) 766 goto out; 767 768 err = -ESRCH; 769 for (i = 0; i <= net->xfrm.state_hmask; i++) { 770 struct xfrm_state *x; 771 restart: 772 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 773 if (!xfrm_state_kern(x) && 774 xfrm_id_proto_match(x->id.proto, proto)) { 775 xfrm_state_hold(x); 776 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 777 778 err = xfrm_state_delete(x); 779 xfrm_audit_state_delete(x, err ? 0 : 1, 780 task_valid); 781 if (sync) 782 xfrm_state_put_sync(x); 783 else 784 xfrm_state_put(x); 785 if (!err) 786 cnt++; 787 788 spin_lock_bh(&net->xfrm.xfrm_state_lock); 789 goto restart; 790 } 791 } 792 } 793 out: 794 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 795 if (cnt) 796 err = 0; 797 798 return err; 799 } 800 EXPORT_SYMBOL(xfrm_state_flush); 801 802 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 803 { 804 int i, err = 0, cnt = 0; 805 806 spin_lock_bh(&net->xfrm.xfrm_state_lock); 807 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 808 if (err) 809 goto out; 810 811 err = -ESRCH; 812 for (i = 0; i <= net->xfrm.state_hmask; i++) { 813 struct xfrm_state *x; 814 struct xfrm_state_offload *xso; 815 restart: 816 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 817 xso = &x->xso; 818 819 if (!xfrm_state_kern(x) && xso->dev == dev) { 820 xfrm_state_hold(x); 821 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 822 823 err = xfrm_state_delete(x); 824 xfrm_audit_state_delete(x, err ? 0 : 1, 825 task_valid); 826 xfrm_state_put(x); 827 if (!err) 828 cnt++; 829 830 spin_lock_bh(&net->xfrm.xfrm_state_lock); 831 goto restart; 832 } 833 } 834 } 835 if (cnt) 836 err = 0; 837 838 out: 839 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 840 return err; 841 } 842 EXPORT_SYMBOL(xfrm_dev_state_flush); 843 844 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 845 { 846 spin_lock_bh(&net->xfrm.xfrm_state_lock); 847 si->sadcnt = net->xfrm.state_num; 848 si->sadhcnt = net->xfrm.state_hmask + 1; 849 si->sadhmcnt = xfrm_state_hashmax; 850 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 851 } 852 EXPORT_SYMBOL(xfrm_sad_getinfo); 853 854 static void 855 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 856 { 857 const struct flowi4 *fl4 = &fl->u.ip4; 858 859 sel->daddr.a4 = fl4->daddr; 860 sel->saddr.a4 = fl4->saddr; 861 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 862 sel->dport_mask = htons(0xffff); 863 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 864 sel->sport_mask = htons(0xffff); 865 sel->family = AF_INET; 866 sel->prefixlen_d = 32; 867 sel->prefixlen_s = 32; 868 sel->proto = fl4->flowi4_proto; 869 sel->ifindex = fl4->flowi4_oif; 870 } 871 872 static void 873 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 874 { 875 const struct flowi6 *fl6 = &fl->u.ip6; 876 877 /* Initialize temporary selector matching only to current session. */ 878 *(struct in6_addr *)&sel->daddr = fl6->daddr; 879 *(struct in6_addr *)&sel->saddr = fl6->saddr; 880 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 881 sel->dport_mask = htons(0xffff); 882 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 883 sel->sport_mask = htons(0xffff); 884 sel->family = AF_INET6; 885 sel->prefixlen_d = 128; 886 sel->prefixlen_s = 128; 887 sel->proto = fl6->flowi6_proto; 888 sel->ifindex = fl6->flowi6_oif; 889 } 890 891 static void 892 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 893 const struct xfrm_tmpl *tmpl, 894 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 895 unsigned short family) 896 { 897 switch (family) { 898 case AF_INET: 899 __xfrm4_init_tempsel(&x->sel, fl); 900 break; 901 case AF_INET6: 902 __xfrm6_init_tempsel(&x->sel, fl); 903 break; 904 } 905 906 x->id = tmpl->id; 907 908 switch (tmpl->encap_family) { 909 case AF_INET: 910 if (x->id.daddr.a4 == 0) 911 x->id.daddr.a4 = daddr->a4; 912 x->props.saddr = tmpl->saddr; 913 if (x->props.saddr.a4 == 0) 914 x->props.saddr.a4 = saddr->a4; 915 break; 916 case AF_INET6: 917 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 918 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 919 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 920 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 921 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 922 break; 923 } 924 925 x->props.mode = tmpl->mode; 926 x->props.reqid = tmpl->reqid; 927 x->props.family = tmpl->encap_family; 928 } 929 930 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 931 const xfrm_address_t *daddr, 932 __be32 spi, u8 proto, 933 unsigned short family) 934 { 935 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 936 struct xfrm_state *x; 937 938 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 939 if (x->props.family != family || 940 x->id.spi != spi || 941 x->id.proto != proto || 942 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 943 continue; 944 945 if ((mark & x->mark.m) != x->mark.v) 946 continue; 947 if (!xfrm_state_hold_rcu(x)) 948 continue; 949 return x; 950 } 951 952 return NULL; 953 } 954 955 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 956 const xfrm_address_t *daddr, 957 const xfrm_address_t *saddr, 958 u8 proto, unsigned short family) 959 { 960 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 961 struct xfrm_state *x; 962 963 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 964 if (x->props.family != family || 965 x->id.proto != proto || 966 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 967 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 968 continue; 969 970 if ((mark & x->mark.m) != x->mark.v) 971 continue; 972 if (!xfrm_state_hold_rcu(x)) 973 continue; 974 return x; 975 } 976 977 return NULL; 978 } 979 980 static inline struct xfrm_state * 981 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 982 { 983 struct net *net = xs_net(x); 984 u32 mark = x->mark.v & x->mark.m; 985 986 if (use_spi) 987 return __xfrm_state_lookup(net, mark, &x->id.daddr, 988 x->id.spi, x->id.proto, family); 989 else 990 return __xfrm_state_lookup_byaddr(net, mark, 991 &x->id.daddr, 992 &x->props.saddr, 993 x->id.proto, family); 994 } 995 996 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 997 { 998 if (have_hash_collision && 999 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 1000 net->xfrm.state_num > net->xfrm.state_hmask) 1001 schedule_work(&net->xfrm.state_hash_work); 1002 } 1003 1004 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1005 const struct flowi *fl, unsigned short family, 1006 struct xfrm_state **best, int *acq_in_progress, 1007 int *error) 1008 { 1009 /* Resolution logic: 1010 * 1. There is a valid state with matching selector. Done. 1011 * 2. Valid state with inappropriate selector. Skip. 1012 * 1013 * Entering area of "sysdeps". 1014 * 1015 * 3. If state is not valid, selector is temporary, it selects 1016 * only session which triggered previous resolution. Key 1017 * manager will do something to install a state with proper 1018 * selector. 1019 */ 1020 if (x->km.state == XFRM_STATE_VALID) { 1021 if ((x->sel.family && 1022 !xfrm_selector_match(&x->sel, fl, x->sel.family)) || 1023 !security_xfrm_state_pol_flow_match(x, pol, fl)) 1024 return; 1025 1026 if (!*best || 1027 (*best)->km.dying > x->km.dying || 1028 ((*best)->km.dying == x->km.dying && 1029 (*best)->curlft.add_time < x->curlft.add_time)) 1030 *best = x; 1031 } else if (x->km.state == XFRM_STATE_ACQ) { 1032 *acq_in_progress = 1; 1033 } else if (x->km.state == XFRM_STATE_ERROR || 1034 x->km.state == XFRM_STATE_EXPIRED) { 1035 if (xfrm_selector_match(&x->sel, fl, x->sel.family) && 1036 security_xfrm_state_pol_flow_match(x, pol, fl)) 1037 *error = -ESRCH; 1038 } 1039 } 1040 1041 struct xfrm_state * 1042 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1043 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1044 struct xfrm_policy *pol, int *err, 1045 unsigned short family, u32 if_id) 1046 { 1047 static xfrm_address_t saddr_wildcard = { }; 1048 struct net *net = xp_net(pol); 1049 unsigned int h, h_wildcard; 1050 struct xfrm_state *x, *x0, *to_put; 1051 int acquire_in_progress = 0; 1052 int error = 0; 1053 struct xfrm_state *best = NULL; 1054 u32 mark = pol->mark.v & pol->mark.m; 1055 unsigned short encap_family = tmpl->encap_family; 1056 unsigned int sequence; 1057 struct km_event c; 1058 1059 to_put = NULL; 1060 1061 sequence = read_seqcount_begin(&xfrm_state_hash_generation); 1062 1063 rcu_read_lock(); 1064 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1065 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1066 if (x->props.family == encap_family && 1067 x->props.reqid == tmpl->reqid && 1068 (mark & x->mark.m) == x->mark.v && 1069 x->if_id == if_id && 1070 !(x->props.flags & XFRM_STATE_WILDRECV) && 1071 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1072 tmpl->mode == x->props.mode && 1073 tmpl->id.proto == x->id.proto && 1074 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1075 xfrm_state_look_at(pol, x, fl, encap_family, 1076 &best, &acquire_in_progress, &error); 1077 } 1078 if (best || acquire_in_progress) 1079 goto found; 1080 1081 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1082 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1083 if (x->props.family == encap_family && 1084 x->props.reqid == tmpl->reqid && 1085 (mark & x->mark.m) == x->mark.v && 1086 x->if_id == if_id && 1087 !(x->props.flags & XFRM_STATE_WILDRECV) && 1088 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1089 tmpl->mode == x->props.mode && 1090 tmpl->id.proto == x->id.proto && 1091 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1092 xfrm_state_look_at(pol, x, fl, encap_family, 1093 &best, &acquire_in_progress, &error); 1094 } 1095 1096 found: 1097 x = best; 1098 if (!x && !error && !acquire_in_progress) { 1099 if (tmpl->id.spi && 1100 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi, 1101 tmpl->id.proto, encap_family)) != NULL) { 1102 to_put = x0; 1103 error = -EEXIST; 1104 goto out; 1105 } 1106 1107 c.net = net; 1108 /* If the KMs have no listeners (yet...), avoid allocating an SA 1109 * for each and every packet - garbage collection might not 1110 * handle the flood. 1111 */ 1112 if (!km_is_alive(&c)) { 1113 error = -ESRCH; 1114 goto out; 1115 } 1116 1117 x = xfrm_state_alloc(net); 1118 if (x == NULL) { 1119 error = -ENOMEM; 1120 goto out; 1121 } 1122 /* Initialize temporary state matching only 1123 * to current session. */ 1124 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1125 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1126 x->if_id = if_id; 1127 1128 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1129 if (error) { 1130 x->km.state = XFRM_STATE_DEAD; 1131 to_put = x; 1132 x = NULL; 1133 goto out; 1134 } 1135 1136 if (km_query(x, tmpl, pol) == 0) { 1137 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1138 x->km.state = XFRM_STATE_ACQ; 1139 list_add(&x->km.all, &net->xfrm.state_all); 1140 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1141 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1142 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1143 if (x->id.spi) { 1144 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1145 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1146 } 1147 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1148 hrtimer_start(&x->mtimer, 1149 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1150 HRTIMER_MODE_REL_SOFT); 1151 net->xfrm.state_num++; 1152 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1153 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1154 } else { 1155 x->km.state = XFRM_STATE_DEAD; 1156 to_put = x; 1157 x = NULL; 1158 error = -ESRCH; 1159 } 1160 } 1161 out: 1162 if (x) { 1163 if (!xfrm_state_hold_rcu(x)) { 1164 *err = -EAGAIN; 1165 x = NULL; 1166 } 1167 } else { 1168 *err = acquire_in_progress ? -EAGAIN : error; 1169 } 1170 rcu_read_unlock(); 1171 if (to_put) 1172 xfrm_state_put(to_put); 1173 1174 if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) { 1175 *err = -EAGAIN; 1176 if (x) { 1177 xfrm_state_put(x); 1178 x = NULL; 1179 } 1180 } 1181 1182 return x; 1183 } 1184 1185 struct xfrm_state * 1186 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1187 xfrm_address_t *daddr, xfrm_address_t *saddr, 1188 unsigned short family, u8 mode, u8 proto, u32 reqid) 1189 { 1190 unsigned int h; 1191 struct xfrm_state *rx = NULL, *x = NULL; 1192 1193 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1194 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1195 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1196 if (x->props.family == family && 1197 x->props.reqid == reqid && 1198 (mark & x->mark.m) == x->mark.v && 1199 x->if_id == if_id && 1200 !(x->props.flags & XFRM_STATE_WILDRECV) && 1201 xfrm_state_addr_check(x, daddr, saddr, family) && 1202 mode == x->props.mode && 1203 proto == x->id.proto && 1204 x->km.state == XFRM_STATE_VALID) { 1205 rx = x; 1206 break; 1207 } 1208 } 1209 1210 if (rx) 1211 xfrm_state_hold(rx); 1212 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1213 1214 1215 return rx; 1216 } 1217 EXPORT_SYMBOL(xfrm_stateonly_find); 1218 1219 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1220 unsigned short family) 1221 { 1222 struct xfrm_state *x; 1223 struct xfrm_state_walk *w; 1224 1225 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1226 list_for_each_entry(w, &net->xfrm.state_all, all) { 1227 x = container_of(w, struct xfrm_state, km); 1228 if (x->props.family != family || 1229 x->id.spi != spi) 1230 continue; 1231 1232 xfrm_state_hold(x); 1233 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1234 return x; 1235 } 1236 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1237 return NULL; 1238 } 1239 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1240 1241 static void __xfrm_state_insert(struct xfrm_state *x) 1242 { 1243 struct net *net = xs_net(x); 1244 unsigned int h; 1245 1246 list_add(&x->km.all, &net->xfrm.state_all); 1247 1248 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1249 x->props.reqid, x->props.family); 1250 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1251 1252 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1253 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1254 1255 if (x->id.spi) { 1256 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1257 x->props.family); 1258 1259 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1260 } 1261 1262 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1263 if (x->replay_maxage) 1264 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1265 1266 net->xfrm.state_num++; 1267 1268 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1269 } 1270 1271 /* net->xfrm.xfrm_state_lock is held */ 1272 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1273 { 1274 struct net *net = xs_net(xnew); 1275 unsigned short family = xnew->props.family; 1276 u32 reqid = xnew->props.reqid; 1277 struct xfrm_state *x; 1278 unsigned int h; 1279 u32 mark = xnew->mark.v & xnew->mark.m; 1280 u32 if_id = xnew->if_id; 1281 1282 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1283 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1284 if (x->props.family == family && 1285 x->props.reqid == reqid && 1286 x->if_id == if_id && 1287 (mark & x->mark.m) == x->mark.v && 1288 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1289 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1290 x->genid++; 1291 } 1292 } 1293 1294 void xfrm_state_insert(struct xfrm_state *x) 1295 { 1296 struct net *net = xs_net(x); 1297 1298 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1299 __xfrm_state_bump_genids(x); 1300 __xfrm_state_insert(x); 1301 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1302 } 1303 EXPORT_SYMBOL(xfrm_state_insert); 1304 1305 /* net->xfrm.xfrm_state_lock is held */ 1306 static struct xfrm_state *__find_acq_core(struct net *net, 1307 const struct xfrm_mark *m, 1308 unsigned short family, u8 mode, 1309 u32 reqid, u32 if_id, u8 proto, 1310 const xfrm_address_t *daddr, 1311 const xfrm_address_t *saddr, 1312 int create) 1313 { 1314 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1315 struct xfrm_state *x; 1316 u32 mark = m->v & m->m; 1317 1318 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1319 if (x->props.reqid != reqid || 1320 x->props.mode != mode || 1321 x->props.family != family || 1322 x->km.state != XFRM_STATE_ACQ || 1323 x->id.spi != 0 || 1324 x->id.proto != proto || 1325 (mark & x->mark.m) != x->mark.v || 1326 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1327 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1328 continue; 1329 1330 xfrm_state_hold(x); 1331 return x; 1332 } 1333 1334 if (!create) 1335 return NULL; 1336 1337 x = xfrm_state_alloc(net); 1338 if (likely(x)) { 1339 switch (family) { 1340 case AF_INET: 1341 x->sel.daddr.a4 = daddr->a4; 1342 x->sel.saddr.a4 = saddr->a4; 1343 x->sel.prefixlen_d = 32; 1344 x->sel.prefixlen_s = 32; 1345 x->props.saddr.a4 = saddr->a4; 1346 x->id.daddr.a4 = daddr->a4; 1347 break; 1348 1349 case AF_INET6: 1350 x->sel.daddr.in6 = daddr->in6; 1351 x->sel.saddr.in6 = saddr->in6; 1352 x->sel.prefixlen_d = 128; 1353 x->sel.prefixlen_s = 128; 1354 x->props.saddr.in6 = saddr->in6; 1355 x->id.daddr.in6 = daddr->in6; 1356 break; 1357 } 1358 1359 x->km.state = XFRM_STATE_ACQ; 1360 x->id.proto = proto; 1361 x->props.family = family; 1362 x->props.mode = mode; 1363 x->props.reqid = reqid; 1364 x->if_id = if_id; 1365 x->mark.v = m->v; 1366 x->mark.m = m->m; 1367 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1368 xfrm_state_hold(x); 1369 hrtimer_start(&x->mtimer, 1370 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1371 HRTIMER_MODE_REL_SOFT); 1372 list_add(&x->km.all, &net->xfrm.state_all); 1373 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1374 h = xfrm_src_hash(net, daddr, saddr, family); 1375 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1376 1377 net->xfrm.state_num++; 1378 1379 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1380 } 1381 1382 return x; 1383 } 1384 1385 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1386 1387 int xfrm_state_add(struct xfrm_state *x) 1388 { 1389 struct net *net = xs_net(x); 1390 struct xfrm_state *x1, *to_put; 1391 int family; 1392 int err; 1393 u32 mark = x->mark.v & x->mark.m; 1394 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1395 1396 family = x->props.family; 1397 1398 to_put = NULL; 1399 1400 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1401 1402 x1 = __xfrm_state_locate(x, use_spi, family); 1403 if (x1) { 1404 to_put = x1; 1405 x1 = NULL; 1406 err = -EEXIST; 1407 goto out; 1408 } 1409 1410 if (use_spi && x->km.seq) { 1411 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1412 if (x1 && ((x1->id.proto != x->id.proto) || 1413 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1414 to_put = x1; 1415 x1 = NULL; 1416 } 1417 } 1418 1419 if (use_spi && !x1) 1420 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1421 x->props.reqid, x->if_id, x->id.proto, 1422 &x->id.daddr, &x->props.saddr, 0); 1423 1424 __xfrm_state_bump_genids(x); 1425 __xfrm_state_insert(x); 1426 err = 0; 1427 1428 out: 1429 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1430 1431 if (x1) { 1432 xfrm_state_delete(x1); 1433 xfrm_state_put(x1); 1434 } 1435 1436 if (to_put) 1437 xfrm_state_put(to_put); 1438 1439 return err; 1440 } 1441 EXPORT_SYMBOL(xfrm_state_add); 1442 1443 #ifdef CONFIG_XFRM_MIGRATE 1444 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1445 struct xfrm_encap_tmpl *encap) 1446 { 1447 struct net *net = xs_net(orig); 1448 struct xfrm_state *x = xfrm_state_alloc(net); 1449 if (!x) 1450 goto out; 1451 1452 memcpy(&x->id, &orig->id, sizeof(x->id)); 1453 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1454 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1455 x->props.mode = orig->props.mode; 1456 x->props.replay_window = orig->props.replay_window; 1457 x->props.reqid = orig->props.reqid; 1458 x->props.family = orig->props.family; 1459 x->props.saddr = orig->props.saddr; 1460 1461 if (orig->aalg) { 1462 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1463 if (!x->aalg) 1464 goto error; 1465 } 1466 x->props.aalgo = orig->props.aalgo; 1467 1468 if (orig->aead) { 1469 x->aead = xfrm_algo_aead_clone(orig->aead); 1470 x->geniv = orig->geniv; 1471 if (!x->aead) 1472 goto error; 1473 } 1474 if (orig->ealg) { 1475 x->ealg = xfrm_algo_clone(orig->ealg); 1476 if (!x->ealg) 1477 goto error; 1478 } 1479 x->props.ealgo = orig->props.ealgo; 1480 1481 if (orig->calg) { 1482 x->calg = xfrm_algo_clone(orig->calg); 1483 if (!x->calg) 1484 goto error; 1485 } 1486 x->props.calgo = orig->props.calgo; 1487 1488 if (encap || orig->encap) { 1489 if (encap) 1490 x->encap = kmemdup(encap, sizeof(*x->encap), 1491 GFP_KERNEL); 1492 else 1493 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1494 GFP_KERNEL); 1495 1496 if (!x->encap) 1497 goto error; 1498 } 1499 1500 if (orig->coaddr) { 1501 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1502 GFP_KERNEL); 1503 if (!x->coaddr) 1504 goto error; 1505 } 1506 1507 if (orig->replay_esn) { 1508 if (xfrm_replay_clone(x, orig)) 1509 goto error; 1510 } 1511 1512 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1513 1514 if (xfrm_init_state(x) < 0) 1515 goto error; 1516 1517 x->props.flags = orig->props.flags; 1518 x->props.extra_flags = orig->props.extra_flags; 1519 1520 x->if_id = orig->if_id; 1521 x->tfcpad = orig->tfcpad; 1522 x->replay_maxdiff = orig->replay_maxdiff; 1523 x->replay_maxage = orig->replay_maxage; 1524 x->curlft.add_time = orig->curlft.add_time; 1525 x->km.state = orig->km.state; 1526 x->km.seq = orig->km.seq; 1527 x->replay = orig->replay; 1528 x->preplay = orig->preplay; 1529 1530 return x; 1531 1532 error: 1533 xfrm_state_put(x); 1534 out: 1535 return NULL; 1536 } 1537 1538 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net) 1539 { 1540 unsigned int h; 1541 struct xfrm_state *x = NULL; 1542 1543 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1544 1545 if (m->reqid) { 1546 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1547 m->reqid, m->old_family); 1548 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1549 if (x->props.mode != m->mode || 1550 x->id.proto != m->proto) 1551 continue; 1552 if (m->reqid && x->props.reqid != m->reqid) 1553 continue; 1554 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1555 m->old_family) || 1556 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1557 m->old_family)) 1558 continue; 1559 xfrm_state_hold(x); 1560 break; 1561 } 1562 } else { 1563 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1564 m->old_family); 1565 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1566 if (x->props.mode != m->mode || 1567 x->id.proto != m->proto) 1568 continue; 1569 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1570 m->old_family) || 1571 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1572 m->old_family)) 1573 continue; 1574 xfrm_state_hold(x); 1575 break; 1576 } 1577 } 1578 1579 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1580 1581 return x; 1582 } 1583 EXPORT_SYMBOL(xfrm_migrate_state_find); 1584 1585 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1586 struct xfrm_migrate *m, 1587 struct xfrm_encap_tmpl *encap) 1588 { 1589 struct xfrm_state *xc; 1590 1591 xc = xfrm_state_clone(x, encap); 1592 if (!xc) 1593 return NULL; 1594 1595 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1596 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1597 1598 /* add state */ 1599 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1600 /* a care is needed when the destination address of the 1601 state is to be updated as it is a part of triplet */ 1602 xfrm_state_insert(xc); 1603 } else { 1604 if (xfrm_state_add(xc) < 0) 1605 goto error; 1606 } 1607 1608 return xc; 1609 error: 1610 xfrm_state_put(xc); 1611 return NULL; 1612 } 1613 EXPORT_SYMBOL(xfrm_state_migrate); 1614 #endif 1615 1616 int xfrm_state_update(struct xfrm_state *x) 1617 { 1618 struct xfrm_state *x1, *to_put; 1619 int err; 1620 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1621 struct net *net = xs_net(x); 1622 1623 to_put = NULL; 1624 1625 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1626 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1627 1628 err = -ESRCH; 1629 if (!x1) 1630 goto out; 1631 1632 if (xfrm_state_kern(x1)) { 1633 to_put = x1; 1634 err = -EEXIST; 1635 goto out; 1636 } 1637 1638 if (x1->km.state == XFRM_STATE_ACQ) { 1639 __xfrm_state_insert(x); 1640 x = NULL; 1641 } 1642 err = 0; 1643 1644 out: 1645 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1646 1647 if (to_put) 1648 xfrm_state_put(to_put); 1649 1650 if (err) 1651 return err; 1652 1653 if (!x) { 1654 xfrm_state_delete(x1); 1655 xfrm_state_put(x1); 1656 return 0; 1657 } 1658 1659 err = -EINVAL; 1660 spin_lock_bh(&x1->lock); 1661 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1662 if (x->encap && x1->encap && 1663 x->encap->encap_type == x1->encap->encap_type) 1664 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1665 else if (x->encap || x1->encap) 1666 goto fail; 1667 1668 if (x->coaddr && x1->coaddr) { 1669 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1670 } 1671 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1672 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1673 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1674 x1->km.dying = 0; 1675 1676 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 1677 HRTIMER_MODE_REL_SOFT); 1678 if (x1->curlft.use_time) 1679 xfrm_state_check_expire(x1); 1680 1681 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1682 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1683 1684 if (x->props.smark.m || x->props.smark.v) 1685 x1->props.smark = x->props.smark; 1686 1687 if (x->if_id) 1688 x1->if_id = x->if_id; 1689 1690 __xfrm_state_bump_genids(x1); 1691 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1692 } 1693 1694 err = 0; 1695 x->km.state = XFRM_STATE_DEAD; 1696 __xfrm_state_put(x); 1697 } 1698 1699 fail: 1700 spin_unlock_bh(&x1->lock); 1701 1702 xfrm_state_put(x1); 1703 1704 return err; 1705 } 1706 EXPORT_SYMBOL(xfrm_state_update); 1707 1708 int xfrm_state_check_expire(struct xfrm_state *x) 1709 { 1710 if (!x->curlft.use_time) 1711 x->curlft.use_time = ktime_get_real_seconds(); 1712 1713 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1714 x->curlft.packets >= x->lft.hard_packet_limit) { 1715 x->km.state = XFRM_STATE_EXPIRED; 1716 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 1717 return -EINVAL; 1718 } 1719 1720 if (!x->km.dying && 1721 (x->curlft.bytes >= x->lft.soft_byte_limit || 1722 x->curlft.packets >= x->lft.soft_packet_limit)) { 1723 x->km.dying = 1; 1724 km_state_expired(x, 0, 0); 1725 } 1726 return 0; 1727 } 1728 EXPORT_SYMBOL(xfrm_state_check_expire); 1729 1730 struct xfrm_state * 1731 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1732 u8 proto, unsigned short family) 1733 { 1734 struct xfrm_state *x; 1735 1736 rcu_read_lock(); 1737 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1738 rcu_read_unlock(); 1739 return x; 1740 } 1741 EXPORT_SYMBOL(xfrm_state_lookup); 1742 1743 struct xfrm_state * 1744 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1745 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1746 u8 proto, unsigned short family) 1747 { 1748 struct xfrm_state *x; 1749 1750 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1751 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1752 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1753 return x; 1754 } 1755 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1756 1757 struct xfrm_state * 1758 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1759 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1760 const xfrm_address_t *saddr, int create, unsigned short family) 1761 { 1762 struct xfrm_state *x; 1763 1764 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1765 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 1766 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1767 1768 return x; 1769 } 1770 EXPORT_SYMBOL(xfrm_find_acq); 1771 1772 #ifdef CONFIG_XFRM_SUB_POLICY 1773 #if IS_ENABLED(CONFIG_IPV6) 1774 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 1775 static void 1776 __xfrm6_sort(void **dst, void **src, int n, 1777 int (*cmp)(const void *p), int maxclass) 1778 { 1779 int count[XFRM_MAX_DEPTH] = { }; 1780 int class[XFRM_MAX_DEPTH]; 1781 int i; 1782 1783 for (i = 0; i < n; i++) { 1784 int c = cmp(src[i]); 1785 1786 class[i] = c; 1787 count[c]++; 1788 } 1789 1790 for (i = 2; i < maxclass; i++) 1791 count[i] += count[i - 1]; 1792 1793 for (i = 0; i < n; i++) { 1794 dst[count[class[i] - 1]++] = src[i]; 1795 src[i] = NULL; 1796 } 1797 } 1798 1799 /* Rule for xfrm_state: 1800 * 1801 * rule 1: select IPsec transport except AH 1802 * rule 2: select MIPv6 RO or inbound trigger 1803 * rule 3: select IPsec transport AH 1804 * rule 4: select IPsec tunnel 1805 * rule 5: others 1806 */ 1807 static int __xfrm6_state_sort_cmp(const void *p) 1808 { 1809 const struct xfrm_state *v = p; 1810 1811 switch (v->props.mode) { 1812 case XFRM_MODE_TRANSPORT: 1813 if (v->id.proto != IPPROTO_AH) 1814 return 1; 1815 else 1816 return 3; 1817 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1818 case XFRM_MODE_ROUTEOPTIMIZATION: 1819 case XFRM_MODE_IN_TRIGGER: 1820 return 2; 1821 #endif 1822 case XFRM_MODE_TUNNEL: 1823 case XFRM_MODE_BEET: 1824 return 4; 1825 } 1826 return 5; 1827 } 1828 1829 /* Rule for xfrm_tmpl: 1830 * 1831 * rule 1: select IPsec transport 1832 * rule 2: select MIPv6 RO or inbound trigger 1833 * rule 3: select IPsec tunnel 1834 * rule 4: others 1835 */ 1836 static int __xfrm6_tmpl_sort_cmp(const void *p) 1837 { 1838 const struct xfrm_tmpl *v = p; 1839 1840 switch (v->mode) { 1841 case XFRM_MODE_TRANSPORT: 1842 return 1; 1843 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1844 case XFRM_MODE_ROUTEOPTIMIZATION: 1845 case XFRM_MODE_IN_TRIGGER: 1846 return 2; 1847 #endif 1848 case XFRM_MODE_TUNNEL: 1849 case XFRM_MODE_BEET: 1850 return 3; 1851 } 1852 return 4; 1853 } 1854 #else 1855 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 1856 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 1857 1858 static inline void 1859 __xfrm6_sort(void **dst, void **src, int n, 1860 int (*cmp)(const void *p), int maxclass) 1861 { 1862 int i; 1863 1864 for (i = 0; i < n; i++) 1865 dst[i] = src[i]; 1866 } 1867 #endif /* CONFIG_IPV6 */ 1868 1869 void 1870 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1871 unsigned short family) 1872 { 1873 int i; 1874 1875 if (family == AF_INET6) 1876 __xfrm6_sort((void **)dst, (void **)src, n, 1877 __xfrm6_tmpl_sort_cmp, 5); 1878 else 1879 for (i = 0; i < n; i++) 1880 dst[i] = src[i]; 1881 } 1882 1883 void 1884 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1885 unsigned short family) 1886 { 1887 int i; 1888 1889 if (family == AF_INET6) 1890 __xfrm6_sort((void **)dst, (void **)src, n, 1891 __xfrm6_state_sort_cmp, 6); 1892 else 1893 for (i = 0; i < n; i++) 1894 dst[i] = src[i]; 1895 } 1896 #endif 1897 1898 /* Silly enough, but I'm lazy to build resolution list */ 1899 1900 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1901 { 1902 int i; 1903 1904 for (i = 0; i <= net->xfrm.state_hmask; i++) { 1905 struct xfrm_state *x; 1906 1907 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 1908 if (x->km.seq == seq && 1909 (mark & x->mark.m) == x->mark.v && 1910 x->km.state == XFRM_STATE_ACQ) { 1911 xfrm_state_hold(x); 1912 return x; 1913 } 1914 } 1915 } 1916 return NULL; 1917 } 1918 1919 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1920 { 1921 struct xfrm_state *x; 1922 1923 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1924 x = __xfrm_find_acq_byseq(net, mark, seq); 1925 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1926 return x; 1927 } 1928 EXPORT_SYMBOL(xfrm_find_acq_byseq); 1929 1930 u32 xfrm_get_acqseq(void) 1931 { 1932 u32 res; 1933 static atomic_t acqseq; 1934 1935 do { 1936 res = atomic_inc_return(&acqseq); 1937 } while (!res); 1938 1939 return res; 1940 } 1941 EXPORT_SYMBOL(xfrm_get_acqseq); 1942 1943 int verify_spi_info(u8 proto, u32 min, u32 max) 1944 { 1945 switch (proto) { 1946 case IPPROTO_AH: 1947 case IPPROTO_ESP: 1948 break; 1949 1950 case IPPROTO_COMP: 1951 /* IPCOMP spi is 16-bits. */ 1952 if (max >= 0x10000) 1953 return -EINVAL; 1954 break; 1955 1956 default: 1957 return -EINVAL; 1958 } 1959 1960 if (min > max) 1961 return -EINVAL; 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL(verify_spi_info); 1966 1967 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) 1968 { 1969 struct net *net = xs_net(x); 1970 unsigned int h; 1971 struct xfrm_state *x0; 1972 int err = -ENOENT; 1973 __be32 minspi = htonl(low); 1974 __be32 maxspi = htonl(high); 1975 u32 mark = x->mark.v & x->mark.m; 1976 1977 spin_lock_bh(&x->lock); 1978 if (x->km.state == XFRM_STATE_DEAD) 1979 goto unlock; 1980 1981 err = 0; 1982 if (x->id.spi) 1983 goto unlock; 1984 1985 err = -ENOENT; 1986 1987 if (minspi == maxspi) { 1988 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 1989 if (x0) { 1990 xfrm_state_put(x0); 1991 goto unlock; 1992 } 1993 x->id.spi = minspi; 1994 } else { 1995 u32 spi = 0; 1996 for (h = 0; h < high-low+1; h++) { 1997 spi = low + prandom_u32()%(high-low+1); 1998 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 1999 if (x0 == NULL) { 2000 x->id.spi = htonl(spi); 2001 break; 2002 } 2003 xfrm_state_put(x0); 2004 } 2005 } 2006 if (x->id.spi) { 2007 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2008 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2009 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 2010 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2011 2012 err = 0; 2013 } 2014 2015 unlock: 2016 spin_unlock_bh(&x->lock); 2017 2018 return err; 2019 } 2020 EXPORT_SYMBOL(xfrm_alloc_spi); 2021 2022 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2023 struct xfrm_address_filter *filter) 2024 { 2025 if (filter) { 2026 if ((filter->family == AF_INET || 2027 filter->family == AF_INET6) && 2028 x->props.family != filter->family) 2029 return false; 2030 2031 return addr_match(&x->props.saddr, &filter->saddr, 2032 filter->splen) && 2033 addr_match(&x->id.daddr, &filter->daddr, 2034 filter->dplen); 2035 } 2036 return true; 2037 } 2038 2039 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2040 int (*func)(struct xfrm_state *, int, void*), 2041 void *data) 2042 { 2043 struct xfrm_state *state; 2044 struct xfrm_state_walk *x; 2045 int err = 0; 2046 2047 if (walk->seq != 0 && list_empty(&walk->all)) 2048 return 0; 2049 2050 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2051 if (list_empty(&walk->all)) 2052 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2053 else 2054 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2055 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2056 if (x->state == XFRM_STATE_DEAD) 2057 continue; 2058 state = container_of(x, struct xfrm_state, km); 2059 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2060 continue; 2061 if (!__xfrm_state_filter_match(state, walk->filter)) 2062 continue; 2063 err = func(state, walk->seq, data); 2064 if (err) { 2065 list_move_tail(&walk->all, &x->all); 2066 goto out; 2067 } 2068 walk->seq++; 2069 } 2070 if (walk->seq == 0) { 2071 err = -ENOENT; 2072 goto out; 2073 } 2074 list_del_init(&walk->all); 2075 out: 2076 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2077 return err; 2078 } 2079 EXPORT_SYMBOL(xfrm_state_walk); 2080 2081 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2082 struct xfrm_address_filter *filter) 2083 { 2084 INIT_LIST_HEAD(&walk->all); 2085 walk->proto = proto; 2086 walk->state = XFRM_STATE_DEAD; 2087 walk->seq = 0; 2088 walk->filter = filter; 2089 } 2090 EXPORT_SYMBOL(xfrm_state_walk_init); 2091 2092 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2093 { 2094 kfree(walk->filter); 2095 2096 if (list_empty(&walk->all)) 2097 return; 2098 2099 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2100 list_del(&walk->all); 2101 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2102 } 2103 EXPORT_SYMBOL(xfrm_state_walk_done); 2104 2105 static void xfrm_replay_timer_handler(struct timer_list *t) 2106 { 2107 struct xfrm_state *x = from_timer(x, t, rtimer); 2108 2109 spin_lock(&x->lock); 2110 2111 if (x->km.state == XFRM_STATE_VALID) { 2112 if (xfrm_aevent_is_on(xs_net(x))) 2113 x->repl->notify(x, XFRM_REPLAY_TIMEOUT); 2114 else 2115 x->xflags |= XFRM_TIME_DEFER; 2116 } 2117 2118 spin_unlock(&x->lock); 2119 } 2120 2121 static LIST_HEAD(xfrm_km_list); 2122 2123 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2124 { 2125 struct xfrm_mgr *km; 2126 2127 rcu_read_lock(); 2128 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2129 if (km->notify_policy) 2130 km->notify_policy(xp, dir, c); 2131 rcu_read_unlock(); 2132 } 2133 2134 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2135 { 2136 struct xfrm_mgr *km; 2137 rcu_read_lock(); 2138 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2139 if (km->notify) 2140 km->notify(x, c); 2141 rcu_read_unlock(); 2142 } 2143 2144 EXPORT_SYMBOL(km_policy_notify); 2145 EXPORT_SYMBOL(km_state_notify); 2146 2147 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2148 { 2149 struct km_event c; 2150 2151 c.data.hard = hard; 2152 c.portid = portid; 2153 c.event = XFRM_MSG_EXPIRE; 2154 km_state_notify(x, &c); 2155 } 2156 2157 EXPORT_SYMBOL(km_state_expired); 2158 /* 2159 * We send to all registered managers regardless of failure 2160 * We are happy with one success 2161 */ 2162 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2163 { 2164 int err = -EINVAL, acqret; 2165 struct xfrm_mgr *km; 2166 2167 rcu_read_lock(); 2168 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2169 acqret = km->acquire(x, t, pol); 2170 if (!acqret) 2171 err = acqret; 2172 } 2173 rcu_read_unlock(); 2174 return err; 2175 } 2176 EXPORT_SYMBOL(km_query); 2177 2178 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2179 { 2180 int err = -EINVAL; 2181 struct xfrm_mgr *km; 2182 2183 rcu_read_lock(); 2184 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2185 if (km->new_mapping) 2186 err = km->new_mapping(x, ipaddr, sport); 2187 if (!err) 2188 break; 2189 } 2190 rcu_read_unlock(); 2191 return err; 2192 } 2193 EXPORT_SYMBOL(km_new_mapping); 2194 2195 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2196 { 2197 struct km_event c; 2198 2199 c.data.hard = hard; 2200 c.portid = portid; 2201 c.event = XFRM_MSG_POLEXPIRE; 2202 km_policy_notify(pol, dir, &c); 2203 } 2204 EXPORT_SYMBOL(km_policy_expired); 2205 2206 #ifdef CONFIG_XFRM_MIGRATE 2207 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2208 const struct xfrm_migrate *m, int num_migrate, 2209 const struct xfrm_kmaddress *k, 2210 const struct xfrm_encap_tmpl *encap) 2211 { 2212 int err = -EINVAL; 2213 int ret; 2214 struct xfrm_mgr *km; 2215 2216 rcu_read_lock(); 2217 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2218 if (km->migrate) { 2219 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2220 encap); 2221 if (!ret) 2222 err = ret; 2223 } 2224 } 2225 rcu_read_unlock(); 2226 return err; 2227 } 2228 EXPORT_SYMBOL(km_migrate); 2229 #endif 2230 2231 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2232 { 2233 int err = -EINVAL; 2234 int ret; 2235 struct xfrm_mgr *km; 2236 2237 rcu_read_lock(); 2238 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2239 if (km->report) { 2240 ret = km->report(net, proto, sel, addr); 2241 if (!ret) 2242 err = ret; 2243 } 2244 } 2245 rcu_read_unlock(); 2246 return err; 2247 } 2248 EXPORT_SYMBOL(km_report); 2249 2250 static bool km_is_alive(const struct km_event *c) 2251 { 2252 struct xfrm_mgr *km; 2253 bool is_alive = false; 2254 2255 rcu_read_lock(); 2256 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2257 if (km->is_alive && km->is_alive(c)) { 2258 is_alive = true; 2259 break; 2260 } 2261 } 2262 rcu_read_unlock(); 2263 2264 return is_alive; 2265 } 2266 2267 int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 2268 { 2269 int err; 2270 u8 *data; 2271 struct xfrm_mgr *km; 2272 struct xfrm_policy *pol = NULL; 2273 2274 if (in_compat_syscall()) 2275 return -EOPNOTSUPP; 2276 2277 if (!optval && !optlen) { 2278 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2279 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2280 __sk_dst_reset(sk); 2281 return 0; 2282 } 2283 2284 if (optlen <= 0 || optlen > PAGE_SIZE) 2285 return -EMSGSIZE; 2286 2287 data = memdup_user(optval, optlen); 2288 if (IS_ERR(data)) 2289 return PTR_ERR(data); 2290 2291 err = -EINVAL; 2292 rcu_read_lock(); 2293 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2294 pol = km->compile_policy(sk, optname, data, 2295 optlen, &err); 2296 if (err >= 0) 2297 break; 2298 } 2299 rcu_read_unlock(); 2300 2301 if (err >= 0) { 2302 xfrm_sk_policy_insert(sk, err, pol); 2303 xfrm_pol_put(pol); 2304 __sk_dst_reset(sk); 2305 err = 0; 2306 } 2307 2308 kfree(data); 2309 return err; 2310 } 2311 EXPORT_SYMBOL(xfrm_user_policy); 2312 2313 static DEFINE_SPINLOCK(xfrm_km_lock); 2314 2315 int xfrm_register_km(struct xfrm_mgr *km) 2316 { 2317 spin_lock_bh(&xfrm_km_lock); 2318 list_add_tail_rcu(&km->list, &xfrm_km_list); 2319 spin_unlock_bh(&xfrm_km_lock); 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(xfrm_register_km); 2323 2324 int xfrm_unregister_km(struct xfrm_mgr *km) 2325 { 2326 spin_lock_bh(&xfrm_km_lock); 2327 list_del_rcu(&km->list); 2328 spin_unlock_bh(&xfrm_km_lock); 2329 synchronize_rcu(); 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(xfrm_unregister_km); 2333 2334 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2335 { 2336 int err = 0; 2337 2338 if (WARN_ON(afinfo->family >= NPROTO)) 2339 return -EAFNOSUPPORT; 2340 2341 spin_lock_bh(&xfrm_state_afinfo_lock); 2342 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2343 err = -EEXIST; 2344 else 2345 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2346 spin_unlock_bh(&xfrm_state_afinfo_lock); 2347 return err; 2348 } 2349 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2350 2351 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2352 { 2353 int err = 0, family = afinfo->family; 2354 2355 if (WARN_ON(family >= NPROTO)) 2356 return -EAFNOSUPPORT; 2357 2358 spin_lock_bh(&xfrm_state_afinfo_lock); 2359 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2360 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2361 err = -EINVAL; 2362 else 2363 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2364 } 2365 spin_unlock_bh(&xfrm_state_afinfo_lock); 2366 synchronize_rcu(); 2367 return err; 2368 } 2369 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2370 2371 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2372 { 2373 if (unlikely(family >= NPROTO)) 2374 return NULL; 2375 2376 return rcu_dereference(xfrm_state_afinfo[family]); 2377 } 2378 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2379 2380 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2381 { 2382 struct xfrm_state_afinfo *afinfo; 2383 if (unlikely(family >= NPROTO)) 2384 return NULL; 2385 rcu_read_lock(); 2386 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2387 if (unlikely(!afinfo)) 2388 rcu_read_unlock(); 2389 return afinfo; 2390 } 2391 2392 void xfrm_flush_gc(void) 2393 { 2394 flush_work(&xfrm_state_gc_work); 2395 } 2396 EXPORT_SYMBOL(xfrm_flush_gc); 2397 2398 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2399 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2400 { 2401 if (x->tunnel) { 2402 struct xfrm_state *t = x->tunnel; 2403 2404 if (atomic_read(&t->tunnel_users) == 2) 2405 xfrm_state_delete(t); 2406 atomic_dec(&t->tunnel_users); 2407 xfrm_state_put_sync(t); 2408 x->tunnel = NULL; 2409 } 2410 } 2411 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2412 2413 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2414 { 2415 const struct xfrm_type *type = READ_ONCE(x->type); 2416 struct crypto_aead *aead; 2417 u32 blksize, net_adj = 0; 2418 2419 if (x->km.state != XFRM_STATE_VALID || 2420 !type || type->proto != IPPROTO_ESP) 2421 return mtu - x->props.header_len; 2422 2423 aead = x->data; 2424 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2425 2426 switch (x->props.mode) { 2427 case XFRM_MODE_TRANSPORT: 2428 case XFRM_MODE_BEET: 2429 if (x->props.family == AF_INET) 2430 net_adj = sizeof(struct iphdr); 2431 else if (x->props.family == AF_INET6) 2432 net_adj = sizeof(struct ipv6hdr); 2433 break; 2434 case XFRM_MODE_TUNNEL: 2435 break; 2436 default: 2437 WARN_ON_ONCE(1); 2438 break; 2439 } 2440 2441 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2442 net_adj) & ~(blksize - 1)) + net_adj - 2; 2443 } 2444 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2445 2446 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload) 2447 { 2448 const struct xfrm_mode *inner_mode; 2449 const struct xfrm_mode *outer_mode; 2450 int family = x->props.family; 2451 int err; 2452 2453 if (family == AF_INET && 2454 xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc) 2455 x->props.flags |= XFRM_STATE_NOPMTUDISC; 2456 2457 err = -EPROTONOSUPPORT; 2458 2459 if (x->sel.family != AF_UNSPEC) { 2460 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2461 if (inner_mode == NULL) 2462 goto error; 2463 2464 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2465 family != x->sel.family) 2466 goto error; 2467 2468 x->inner_mode = *inner_mode; 2469 } else { 2470 const struct xfrm_mode *inner_mode_iaf; 2471 int iafamily = AF_INET; 2472 2473 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2474 if (inner_mode == NULL) 2475 goto error; 2476 2477 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) 2478 goto error; 2479 2480 x->inner_mode = *inner_mode; 2481 2482 if (x->props.family == AF_INET) 2483 iafamily = AF_INET6; 2484 2485 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2486 if (inner_mode_iaf) { 2487 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2488 x->inner_mode_iaf = *inner_mode_iaf; 2489 } 2490 } 2491 2492 x->type = xfrm_get_type(x->id.proto, family); 2493 if (x->type == NULL) 2494 goto error; 2495 2496 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2497 2498 err = x->type->init_state(x); 2499 if (err) 2500 goto error; 2501 2502 outer_mode = xfrm_get_mode(x->props.mode, family); 2503 if (!outer_mode) { 2504 err = -EPROTONOSUPPORT; 2505 goto error; 2506 } 2507 2508 x->outer_mode = *outer_mode; 2509 if (init_replay) { 2510 err = xfrm_init_replay(x); 2511 if (err) 2512 goto error; 2513 } 2514 2515 error: 2516 return err; 2517 } 2518 2519 EXPORT_SYMBOL(__xfrm_init_state); 2520 2521 int xfrm_init_state(struct xfrm_state *x) 2522 { 2523 int err; 2524 2525 err = __xfrm_init_state(x, true, false); 2526 if (!err) 2527 x->km.state = XFRM_STATE_VALID; 2528 2529 return err; 2530 } 2531 2532 EXPORT_SYMBOL(xfrm_init_state); 2533 2534 int __net_init xfrm_state_init(struct net *net) 2535 { 2536 unsigned int sz; 2537 2538 if (net_eq(net, &init_net)) 2539 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2540 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2541 2542 INIT_LIST_HEAD(&net->xfrm.state_all); 2543 2544 sz = sizeof(struct hlist_head) * 8; 2545 2546 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2547 if (!net->xfrm.state_bydst) 2548 goto out_bydst; 2549 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2550 if (!net->xfrm.state_bysrc) 2551 goto out_bysrc; 2552 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2553 if (!net->xfrm.state_byspi) 2554 goto out_byspi; 2555 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2556 2557 net->xfrm.state_num = 0; 2558 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2559 spin_lock_init(&net->xfrm.xfrm_state_lock); 2560 return 0; 2561 2562 out_byspi: 2563 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2564 out_bysrc: 2565 xfrm_hash_free(net->xfrm.state_bydst, sz); 2566 out_bydst: 2567 return -ENOMEM; 2568 } 2569 2570 void xfrm_state_fini(struct net *net) 2571 { 2572 unsigned int sz; 2573 2574 flush_work(&net->xfrm.state_hash_work); 2575 flush_work(&xfrm_state_gc_work); 2576 xfrm_state_flush(net, 0, false, true); 2577 2578 WARN_ON(!list_empty(&net->xfrm.state_all)); 2579 2580 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2581 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2582 xfrm_hash_free(net->xfrm.state_byspi, sz); 2583 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2584 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2585 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2586 xfrm_hash_free(net->xfrm.state_bydst, sz); 2587 } 2588 2589 #ifdef CONFIG_AUDITSYSCALL 2590 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2591 struct audit_buffer *audit_buf) 2592 { 2593 struct xfrm_sec_ctx *ctx = x->security; 2594 u32 spi = ntohl(x->id.spi); 2595 2596 if (ctx) 2597 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2598 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2599 2600 switch (x->props.family) { 2601 case AF_INET: 2602 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2603 &x->props.saddr.a4, &x->id.daddr.a4); 2604 break; 2605 case AF_INET6: 2606 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2607 x->props.saddr.a6, x->id.daddr.a6); 2608 break; 2609 } 2610 2611 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2612 } 2613 2614 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2615 struct audit_buffer *audit_buf) 2616 { 2617 const struct iphdr *iph4; 2618 const struct ipv6hdr *iph6; 2619 2620 switch (family) { 2621 case AF_INET: 2622 iph4 = ip_hdr(skb); 2623 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2624 &iph4->saddr, &iph4->daddr); 2625 break; 2626 case AF_INET6: 2627 iph6 = ipv6_hdr(skb); 2628 audit_log_format(audit_buf, 2629 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2630 &iph6->saddr, &iph6->daddr, 2631 iph6->flow_lbl[0] & 0x0f, 2632 iph6->flow_lbl[1], 2633 iph6->flow_lbl[2]); 2634 break; 2635 } 2636 } 2637 2638 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2639 { 2640 struct audit_buffer *audit_buf; 2641 2642 audit_buf = xfrm_audit_start("SAD-add"); 2643 if (audit_buf == NULL) 2644 return; 2645 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2646 xfrm_audit_helper_sainfo(x, audit_buf); 2647 audit_log_format(audit_buf, " res=%u", result); 2648 audit_log_end(audit_buf); 2649 } 2650 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2651 2652 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 2653 { 2654 struct audit_buffer *audit_buf; 2655 2656 audit_buf = xfrm_audit_start("SAD-delete"); 2657 if (audit_buf == NULL) 2658 return; 2659 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2660 xfrm_audit_helper_sainfo(x, audit_buf); 2661 audit_log_format(audit_buf, " res=%u", result); 2662 audit_log_end(audit_buf); 2663 } 2664 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 2665 2666 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 2667 struct sk_buff *skb) 2668 { 2669 struct audit_buffer *audit_buf; 2670 u32 spi; 2671 2672 audit_buf = xfrm_audit_start("SA-replay-overflow"); 2673 if (audit_buf == NULL) 2674 return; 2675 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2676 /* don't record the sequence number because it's inherent in this kind 2677 * of audit message */ 2678 spi = ntohl(x->id.spi); 2679 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2680 audit_log_end(audit_buf); 2681 } 2682 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 2683 2684 void xfrm_audit_state_replay(struct xfrm_state *x, 2685 struct sk_buff *skb, __be32 net_seq) 2686 { 2687 struct audit_buffer *audit_buf; 2688 u32 spi; 2689 2690 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 2691 if (audit_buf == NULL) 2692 return; 2693 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2694 spi = ntohl(x->id.spi); 2695 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2696 spi, spi, ntohl(net_seq)); 2697 audit_log_end(audit_buf); 2698 } 2699 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 2700 2701 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 2702 { 2703 struct audit_buffer *audit_buf; 2704 2705 audit_buf = xfrm_audit_start("SA-notfound"); 2706 if (audit_buf == NULL) 2707 return; 2708 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2709 audit_log_end(audit_buf); 2710 } 2711 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 2712 2713 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 2714 __be32 net_spi, __be32 net_seq) 2715 { 2716 struct audit_buffer *audit_buf; 2717 u32 spi; 2718 2719 audit_buf = xfrm_audit_start("SA-notfound"); 2720 if (audit_buf == NULL) 2721 return; 2722 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2723 spi = ntohl(net_spi); 2724 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2725 spi, spi, ntohl(net_seq)); 2726 audit_log_end(audit_buf); 2727 } 2728 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 2729 2730 void xfrm_audit_state_icvfail(struct xfrm_state *x, 2731 struct sk_buff *skb, u8 proto) 2732 { 2733 struct audit_buffer *audit_buf; 2734 __be32 net_spi; 2735 __be32 net_seq; 2736 2737 audit_buf = xfrm_audit_start("SA-icv-failure"); 2738 if (audit_buf == NULL) 2739 return; 2740 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2741 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 2742 u32 spi = ntohl(net_spi); 2743 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2744 spi, spi, ntohl(net_seq)); 2745 } 2746 audit_log_end(audit_buf); 2747 } 2748 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 2749 #endif /* CONFIG_AUDITSYSCALL */ 2750