1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/workqueue.h> 18 #include <net/xfrm.h> 19 #include <linux/pfkeyv2.h> 20 #include <linux/ipsec.h> 21 #include <linux/module.h> 22 #include <linux/cache.h> 23 #include <linux/audit.h> 24 #include <linux/uaccess.h> 25 #include <linux/ktime.h> 26 #include <linux/slab.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 30 #include <crypto/aead.h> 31 32 #include "xfrm_hash.h" 33 34 #define xfrm_state_deref_prot(table, net) \ 35 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 36 37 static void xfrm_state_gc_task(struct work_struct *work); 38 39 /* Each xfrm_state may be linked to two tables: 40 41 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 42 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 43 destination/tunnel endpoint. (output) 44 */ 45 46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 47 static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation); 48 static struct kmem_cache *xfrm_state_cache __ro_after_init; 49 50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 51 static HLIST_HEAD(xfrm_state_gc_list); 52 53 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 54 { 55 return refcount_inc_not_zero(&x->refcnt); 56 } 57 58 static inline unsigned int xfrm_dst_hash(struct net *net, 59 const xfrm_address_t *daddr, 60 const xfrm_address_t *saddr, 61 u32 reqid, 62 unsigned short family) 63 { 64 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 65 } 66 67 static inline unsigned int xfrm_src_hash(struct net *net, 68 const xfrm_address_t *daddr, 69 const xfrm_address_t *saddr, 70 unsigned short family) 71 { 72 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 73 } 74 75 static inline unsigned int 76 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 77 __be32 spi, u8 proto, unsigned short family) 78 { 79 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 80 } 81 82 static void xfrm_hash_transfer(struct hlist_head *list, 83 struct hlist_head *ndsttable, 84 struct hlist_head *nsrctable, 85 struct hlist_head *nspitable, 86 unsigned int nhashmask) 87 { 88 struct hlist_node *tmp; 89 struct xfrm_state *x; 90 91 hlist_for_each_entry_safe(x, tmp, list, bydst) { 92 unsigned int h; 93 94 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 95 x->props.reqid, x->props.family, 96 nhashmask); 97 hlist_add_head_rcu(&x->bydst, ndsttable + h); 98 99 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 100 x->props.family, 101 nhashmask); 102 hlist_add_head_rcu(&x->bysrc, nsrctable + h); 103 104 if (x->id.spi) { 105 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 106 x->id.proto, x->props.family, 107 nhashmask); 108 hlist_add_head_rcu(&x->byspi, nspitable + h); 109 } 110 } 111 } 112 113 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 114 { 115 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 116 } 117 118 static void xfrm_hash_resize(struct work_struct *work) 119 { 120 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 121 struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; 122 unsigned long nsize, osize; 123 unsigned int nhashmask, ohashmask; 124 int i; 125 126 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 127 ndst = xfrm_hash_alloc(nsize); 128 if (!ndst) 129 return; 130 nsrc = xfrm_hash_alloc(nsize); 131 if (!nsrc) { 132 xfrm_hash_free(ndst, nsize); 133 return; 134 } 135 nspi = xfrm_hash_alloc(nsize); 136 if (!nspi) { 137 xfrm_hash_free(ndst, nsize); 138 xfrm_hash_free(nsrc, nsize); 139 return; 140 } 141 142 spin_lock_bh(&net->xfrm.xfrm_state_lock); 143 write_seqcount_begin(&xfrm_state_hash_generation); 144 145 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 146 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 147 for (i = net->xfrm.state_hmask; i >= 0; i--) 148 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask); 149 150 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 151 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 152 ohashmask = net->xfrm.state_hmask; 153 154 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 155 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 156 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 157 net->xfrm.state_hmask = nhashmask; 158 159 write_seqcount_end(&xfrm_state_hash_generation); 160 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 161 162 osize = (ohashmask + 1) * sizeof(struct hlist_head); 163 164 synchronize_rcu(); 165 166 xfrm_hash_free(odst, osize); 167 xfrm_hash_free(osrc, osize); 168 xfrm_hash_free(ospi, osize); 169 } 170 171 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 172 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 173 174 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 175 176 int __xfrm_state_delete(struct xfrm_state *x); 177 178 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 179 static bool km_is_alive(const struct km_event *c); 180 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 181 182 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 183 { 184 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 185 int err = 0; 186 187 if (!afinfo) 188 return -EAFNOSUPPORT; 189 190 #define X(afi, T, name) do { \ 191 WARN_ON((afi)->type_ ## name); \ 192 (afi)->type_ ## name = (T); \ 193 } while (0) 194 195 switch (type->proto) { 196 case IPPROTO_COMP: 197 X(afinfo, type, comp); 198 break; 199 case IPPROTO_AH: 200 X(afinfo, type, ah); 201 break; 202 case IPPROTO_ESP: 203 X(afinfo, type, esp); 204 break; 205 case IPPROTO_IPIP: 206 X(afinfo, type, ipip); 207 break; 208 case IPPROTO_DSTOPTS: 209 X(afinfo, type, dstopts); 210 break; 211 case IPPROTO_ROUTING: 212 X(afinfo, type, routing); 213 break; 214 case IPPROTO_IPV6: 215 X(afinfo, type, ipip6); 216 break; 217 default: 218 WARN_ON(1); 219 err = -EPROTONOSUPPORT; 220 break; 221 } 222 #undef X 223 rcu_read_unlock(); 224 return err; 225 } 226 EXPORT_SYMBOL(xfrm_register_type); 227 228 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 229 { 230 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 231 232 if (unlikely(afinfo == NULL)) 233 return; 234 235 #define X(afi, T, name) do { \ 236 WARN_ON((afi)->type_ ## name != (T)); \ 237 (afi)->type_ ## name = NULL; \ 238 } while (0) 239 240 switch (type->proto) { 241 case IPPROTO_COMP: 242 X(afinfo, type, comp); 243 break; 244 case IPPROTO_AH: 245 X(afinfo, type, ah); 246 break; 247 case IPPROTO_ESP: 248 X(afinfo, type, esp); 249 break; 250 case IPPROTO_IPIP: 251 X(afinfo, type, ipip); 252 break; 253 case IPPROTO_DSTOPTS: 254 X(afinfo, type, dstopts); 255 break; 256 case IPPROTO_ROUTING: 257 X(afinfo, type, routing); 258 break; 259 case IPPROTO_IPV6: 260 X(afinfo, type, ipip6); 261 break; 262 default: 263 WARN_ON(1); 264 break; 265 } 266 #undef X 267 rcu_read_unlock(); 268 } 269 EXPORT_SYMBOL(xfrm_unregister_type); 270 271 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 272 { 273 const struct xfrm_type *type = NULL; 274 struct xfrm_state_afinfo *afinfo; 275 int modload_attempted = 0; 276 277 retry: 278 afinfo = xfrm_state_get_afinfo(family); 279 if (unlikely(afinfo == NULL)) 280 return NULL; 281 282 switch (proto) { 283 case IPPROTO_COMP: 284 type = afinfo->type_comp; 285 break; 286 case IPPROTO_AH: 287 type = afinfo->type_ah; 288 break; 289 case IPPROTO_ESP: 290 type = afinfo->type_esp; 291 break; 292 case IPPROTO_IPIP: 293 type = afinfo->type_ipip; 294 break; 295 case IPPROTO_DSTOPTS: 296 type = afinfo->type_dstopts; 297 break; 298 case IPPROTO_ROUTING: 299 type = afinfo->type_routing; 300 break; 301 case IPPROTO_IPV6: 302 type = afinfo->type_ipip6; 303 break; 304 default: 305 break; 306 } 307 308 if (unlikely(type && !try_module_get(type->owner))) 309 type = NULL; 310 311 rcu_read_unlock(); 312 313 if (!type && !modload_attempted) { 314 request_module("xfrm-type-%d-%d", family, proto); 315 modload_attempted = 1; 316 goto retry; 317 } 318 319 return type; 320 } 321 322 static void xfrm_put_type(const struct xfrm_type *type) 323 { 324 module_put(type->owner); 325 } 326 327 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 328 unsigned short family) 329 { 330 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 331 int err = 0; 332 333 if (unlikely(afinfo == NULL)) 334 return -EAFNOSUPPORT; 335 336 switch (type->proto) { 337 case IPPROTO_ESP: 338 WARN_ON(afinfo->type_offload_esp); 339 afinfo->type_offload_esp = type; 340 break; 341 default: 342 WARN_ON(1); 343 err = -EPROTONOSUPPORT; 344 break; 345 } 346 347 rcu_read_unlock(); 348 return err; 349 } 350 EXPORT_SYMBOL(xfrm_register_type_offload); 351 352 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 353 unsigned short family) 354 { 355 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 356 357 if (unlikely(afinfo == NULL)) 358 return; 359 360 switch (type->proto) { 361 case IPPROTO_ESP: 362 WARN_ON(afinfo->type_offload_esp != type); 363 afinfo->type_offload_esp = NULL; 364 break; 365 default: 366 WARN_ON(1); 367 break; 368 } 369 rcu_read_unlock(); 370 } 371 EXPORT_SYMBOL(xfrm_unregister_type_offload); 372 373 static const struct xfrm_type_offload * 374 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 375 { 376 const struct xfrm_type_offload *type = NULL; 377 struct xfrm_state_afinfo *afinfo; 378 379 retry: 380 afinfo = xfrm_state_get_afinfo(family); 381 if (unlikely(afinfo == NULL)) 382 return NULL; 383 384 switch (proto) { 385 case IPPROTO_ESP: 386 type = afinfo->type_offload_esp; 387 break; 388 default: 389 break; 390 } 391 392 if ((type && !try_module_get(type->owner))) 393 type = NULL; 394 395 rcu_read_unlock(); 396 397 if (!type && try_load) { 398 request_module("xfrm-offload-%d-%d", family, proto); 399 try_load = false; 400 goto retry; 401 } 402 403 return type; 404 } 405 406 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 407 { 408 module_put(type->owner); 409 } 410 411 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 412 [XFRM_MODE_BEET] = { 413 .encap = XFRM_MODE_BEET, 414 .flags = XFRM_MODE_FLAG_TUNNEL, 415 .family = AF_INET, 416 }, 417 [XFRM_MODE_TRANSPORT] = { 418 .encap = XFRM_MODE_TRANSPORT, 419 .family = AF_INET, 420 }, 421 [XFRM_MODE_TUNNEL] = { 422 .encap = XFRM_MODE_TUNNEL, 423 .flags = XFRM_MODE_FLAG_TUNNEL, 424 .family = AF_INET, 425 }, 426 }; 427 428 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 429 [XFRM_MODE_BEET] = { 430 .encap = XFRM_MODE_BEET, 431 .flags = XFRM_MODE_FLAG_TUNNEL, 432 .family = AF_INET6, 433 }, 434 [XFRM_MODE_ROUTEOPTIMIZATION] = { 435 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 436 .family = AF_INET6, 437 }, 438 [XFRM_MODE_TRANSPORT] = { 439 .encap = XFRM_MODE_TRANSPORT, 440 .family = AF_INET6, 441 }, 442 [XFRM_MODE_TUNNEL] = { 443 .encap = XFRM_MODE_TUNNEL, 444 .flags = XFRM_MODE_FLAG_TUNNEL, 445 .family = AF_INET6, 446 }, 447 }; 448 449 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 450 { 451 const struct xfrm_mode *mode; 452 453 if (unlikely(encap >= XFRM_MODE_MAX)) 454 return NULL; 455 456 switch (family) { 457 case AF_INET: 458 mode = &xfrm4_mode_map[encap]; 459 if (mode->family == family) 460 return mode; 461 break; 462 case AF_INET6: 463 mode = &xfrm6_mode_map[encap]; 464 if (mode->family == family) 465 return mode; 466 break; 467 default: 468 break; 469 } 470 471 return NULL; 472 } 473 474 void xfrm_state_free(struct xfrm_state *x) 475 { 476 kmem_cache_free(xfrm_state_cache, x); 477 } 478 EXPORT_SYMBOL(xfrm_state_free); 479 480 static void ___xfrm_state_destroy(struct xfrm_state *x) 481 { 482 hrtimer_cancel(&x->mtimer); 483 del_timer_sync(&x->rtimer); 484 kfree(x->aead); 485 kfree(x->aalg); 486 kfree(x->ealg); 487 kfree(x->calg); 488 kfree(x->encap); 489 kfree(x->coaddr); 490 kfree(x->replay_esn); 491 kfree(x->preplay_esn); 492 if (x->type_offload) 493 xfrm_put_type_offload(x->type_offload); 494 if (x->type) { 495 x->type->destructor(x); 496 xfrm_put_type(x->type); 497 } 498 xfrm_dev_state_free(x); 499 security_xfrm_state_free(x); 500 xfrm_state_free(x); 501 } 502 503 static void xfrm_state_gc_task(struct work_struct *work) 504 { 505 struct xfrm_state *x; 506 struct hlist_node *tmp; 507 struct hlist_head gc_list; 508 509 spin_lock_bh(&xfrm_state_gc_lock); 510 hlist_move_list(&xfrm_state_gc_list, &gc_list); 511 spin_unlock_bh(&xfrm_state_gc_lock); 512 513 synchronize_rcu(); 514 515 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 516 ___xfrm_state_destroy(x); 517 } 518 519 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 520 { 521 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 522 enum hrtimer_restart ret = HRTIMER_NORESTART; 523 time64_t now = ktime_get_real_seconds(); 524 time64_t next = TIME64_MAX; 525 int warn = 0; 526 int err = 0; 527 528 spin_lock(&x->lock); 529 if (x->km.state == XFRM_STATE_DEAD) 530 goto out; 531 if (x->km.state == XFRM_STATE_EXPIRED) 532 goto expired; 533 if (x->lft.hard_add_expires_seconds) { 534 long tmo = x->lft.hard_add_expires_seconds + 535 x->curlft.add_time - now; 536 if (tmo <= 0) { 537 if (x->xflags & XFRM_SOFT_EXPIRE) { 538 /* enter hard expire without soft expire first?! 539 * setting a new date could trigger this. 540 * workaround: fix x->curflt.add_time by below: 541 */ 542 x->curlft.add_time = now - x->saved_tmo - 1; 543 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 544 } else 545 goto expired; 546 } 547 if (tmo < next) 548 next = tmo; 549 } 550 if (x->lft.hard_use_expires_seconds) { 551 long tmo = x->lft.hard_use_expires_seconds + 552 (x->curlft.use_time ? : now) - now; 553 if (tmo <= 0) 554 goto expired; 555 if (tmo < next) 556 next = tmo; 557 } 558 if (x->km.dying) 559 goto resched; 560 if (x->lft.soft_add_expires_seconds) { 561 long tmo = x->lft.soft_add_expires_seconds + 562 x->curlft.add_time - now; 563 if (tmo <= 0) { 564 warn = 1; 565 x->xflags &= ~XFRM_SOFT_EXPIRE; 566 } else if (tmo < next) { 567 next = tmo; 568 x->xflags |= XFRM_SOFT_EXPIRE; 569 x->saved_tmo = tmo; 570 } 571 } 572 if (x->lft.soft_use_expires_seconds) { 573 long tmo = x->lft.soft_use_expires_seconds + 574 (x->curlft.use_time ? : now) - now; 575 if (tmo <= 0) 576 warn = 1; 577 else if (tmo < next) 578 next = tmo; 579 } 580 581 x->km.dying = warn; 582 if (warn) 583 km_state_expired(x, 0, 0); 584 resched: 585 if (next != TIME64_MAX) { 586 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 587 ret = HRTIMER_RESTART; 588 } 589 590 goto out; 591 592 expired: 593 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 594 x->km.state = XFRM_STATE_EXPIRED; 595 596 err = __xfrm_state_delete(x); 597 if (!err) 598 km_state_expired(x, 1, 0); 599 600 xfrm_audit_state_delete(x, err ? 0 : 1, true); 601 602 out: 603 spin_unlock(&x->lock); 604 return ret; 605 } 606 607 static void xfrm_replay_timer_handler(struct timer_list *t); 608 609 struct xfrm_state *xfrm_state_alloc(struct net *net) 610 { 611 struct xfrm_state *x; 612 613 x = kmem_cache_alloc(xfrm_state_cache, GFP_ATOMIC | __GFP_ZERO); 614 615 if (x) { 616 write_pnet(&x->xs_net, net); 617 refcount_set(&x->refcnt, 1); 618 atomic_set(&x->tunnel_users, 0); 619 INIT_LIST_HEAD(&x->km.all); 620 INIT_HLIST_NODE(&x->bydst); 621 INIT_HLIST_NODE(&x->bysrc); 622 INIT_HLIST_NODE(&x->byspi); 623 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 624 x->mtimer.function = xfrm_timer_handler; 625 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 626 x->curlft.add_time = ktime_get_real_seconds(); 627 x->lft.soft_byte_limit = XFRM_INF; 628 x->lft.soft_packet_limit = XFRM_INF; 629 x->lft.hard_byte_limit = XFRM_INF; 630 x->lft.hard_packet_limit = XFRM_INF; 631 x->replay_maxage = 0; 632 x->replay_maxdiff = 0; 633 spin_lock_init(&x->lock); 634 } 635 return x; 636 } 637 EXPORT_SYMBOL(xfrm_state_alloc); 638 639 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 640 { 641 WARN_ON(x->km.state != XFRM_STATE_DEAD); 642 643 if (sync) { 644 synchronize_rcu(); 645 ___xfrm_state_destroy(x); 646 } else { 647 spin_lock_bh(&xfrm_state_gc_lock); 648 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 649 spin_unlock_bh(&xfrm_state_gc_lock); 650 schedule_work(&xfrm_state_gc_work); 651 } 652 } 653 EXPORT_SYMBOL(__xfrm_state_destroy); 654 655 int __xfrm_state_delete(struct xfrm_state *x) 656 { 657 struct net *net = xs_net(x); 658 int err = -ESRCH; 659 660 if (x->km.state != XFRM_STATE_DEAD) { 661 x->km.state = XFRM_STATE_DEAD; 662 spin_lock(&net->xfrm.xfrm_state_lock); 663 list_del(&x->km.all); 664 hlist_del_rcu(&x->bydst); 665 hlist_del_rcu(&x->bysrc); 666 if (x->id.spi) 667 hlist_del_rcu(&x->byspi); 668 net->xfrm.state_num--; 669 spin_unlock(&net->xfrm.xfrm_state_lock); 670 671 xfrm_dev_state_delete(x); 672 673 /* All xfrm_state objects are created by xfrm_state_alloc. 674 * The xfrm_state_alloc call gives a reference, and that 675 * is what we are dropping here. 676 */ 677 xfrm_state_put(x); 678 err = 0; 679 } 680 681 return err; 682 } 683 EXPORT_SYMBOL(__xfrm_state_delete); 684 685 int xfrm_state_delete(struct xfrm_state *x) 686 { 687 int err; 688 689 spin_lock_bh(&x->lock); 690 err = __xfrm_state_delete(x); 691 spin_unlock_bh(&x->lock); 692 693 return err; 694 } 695 EXPORT_SYMBOL(xfrm_state_delete); 696 697 #ifdef CONFIG_SECURITY_NETWORK_XFRM 698 static inline int 699 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 700 { 701 int i, err = 0; 702 703 for (i = 0; i <= net->xfrm.state_hmask; i++) { 704 struct xfrm_state *x; 705 706 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 707 if (xfrm_id_proto_match(x->id.proto, proto) && 708 (err = security_xfrm_state_delete(x)) != 0) { 709 xfrm_audit_state_delete(x, 0, task_valid); 710 return err; 711 } 712 } 713 } 714 715 return err; 716 } 717 718 static inline int 719 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 720 { 721 int i, err = 0; 722 723 for (i = 0; i <= net->xfrm.state_hmask; i++) { 724 struct xfrm_state *x; 725 struct xfrm_state_offload *xso; 726 727 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 728 xso = &x->xso; 729 730 if (xso->dev == dev && 731 (err = security_xfrm_state_delete(x)) != 0) { 732 xfrm_audit_state_delete(x, 0, task_valid); 733 return err; 734 } 735 } 736 } 737 738 return err; 739 } 740 #else 741 static inline int 742 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 743 { 744 return 0; 745 } 746 747 static inline int 748 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 749 { 750 return 0; 751 } 752 #endif 753 754 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 755 { 756 int i, err = 0, cnt = 0; 757 758 spin_lock_bh(&net->xfrm.xfrm_state_lock); 759 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 760 if (err) 761 goto out; 762 763 err = -ESRCH; 764 for (i = 0; i <= net->xfrm.state_hmask; i++) { 765 struct xfrm_state *x; 766 restart: 767 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 768 if (!xfrm_state_kern(x) && 769 xfrm_id_proto_match(x->id.proto, proto)) { 770 xfrm_state_hold(x); 771 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 772 773 err = xfrm_state_delete(x); 774 xfrm_audit_state_delete(x, err ? 0 : 1, 775 task_valid); 776 if (sync) 777 xfrm_state_put_sync(x); 778 else 779 xfrm_state_put(x); 780 if (!err) 781 cnt++; 782 783 spin_lock_bh(&net->xfrm.xfrm_state_lock); 784 goto restart; 785 } 786 } 787 } 788 out: 789 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 790 if (cnt) 791 err = 0; 792 793 return err; 794 } 795 EXPORT_SYMBOL(xfrm_state_flush); 796 797 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 798 { 799 int i, err = 0, cnt = 0; 800 801 spin_lock_bh(&net->xfrm.xfrm_state_lock); 802 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 803 if (err) 804 goto out; 805 806 err = -ESRCH; 807 for (i = 0; i <= net->xfrm.state_hmask; i++) { 808 struct xfrm_state *x; 809 struct xfrm_state_offload *xso; 810 restart: 811 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 812 xso = &x->xso; 813 814 if (!xfrm_state_kern(x) && xso->dev == dev) { 815 xfrm_state_hold(x); 816 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 817 818 err = xfrm_state_delete(x); 819 xfrm_audit_state_delete(x, err ? 0 : 1, 820 task_valid); 821 xfrm_state_put(x); 822 if (!err) 823 cnt++; 824 825 spin_lock_bh(&net->xfrm.xfrm_state_lock); 826 goto restart; 827 } 828 } 829 } 830 if (cnt) 831 err = 0; 832 833 out: 834 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 835 return err; 836 } 837 EXPORT_SYMBOL(xfrm_dev_state_flush); 838 839 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 840 { 841 spin_lock_bh(&net->xfrm.xfrm_state_lock); 842 si->sadcnt = net->xfrm.state_num; 843 si->sadhcnt = net->xfrm.state_hmask + 1; 844 si->sadhmcnt = xfrm_state_hashmax; 845 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 846 } 847 EXPORT_SYMBOL(xfrm_sad_getinfo); 848 849 static void 850 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 851 { 852 const struct flowi4 *fl4 = &fl->u.ip4; 853 854 sel->daddr.a4 = fl4->daddr; 855 sel->saddr.a4 = fl4->saddr; 856 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 857 sel->dport_mask = htons(0xffff); 858 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 859 sel->sport_mask = htons(0xffff); 860 sel->family = AF_INET; 861 sel->prefixlen_d = 32; 862 sel->prefixlen_s = 32; 863 sel->proto = fl4->flowi4_proto; 864 sel->ifindex = fl4->flowi4_oif; 865 } 866 867 static void 868 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 869 { 870 const struct flowi6 *fl6 = &fl->u.ip6; 871 872 /* Initialize temporary selector matching only to current session. */ 873 *(struct in6_addr *)&sel->daddr = fl6->daddr; 874 *(struct in6_addr *)&sel->saddr = fl6->saddr; 875 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 876 sel->dport_mask = htons(0xffff); 877 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 878 sel->sport_mask = htons(0xffff); 879 sel->family = AF_INET6; 880 sel->prefixlen_d = 128; 881 sel->prefixlen_s = 128; 882 sel->proto = fl6->flowi6_proto; 883 sel->ifindex = fl6->flowi6_oif; 884 } 885 886 static void 887 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 888 const struct xfrm_tmpl *tmpl, 889 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 890 unsigned short family) 891 { 892 switch (family) { 893 case AF_INET: 894 __xfrm4_init_tempsel(&x->sel, fl); 895 break; 896 case AF_INET6: 897 __xfrm6_init_tempsel(&x->sel, fl); 898 break; 899 } 900 901 x->id = tmpl->id; 902 903 switch (tmpl->encap_family) { 904 case AF_INET: 905 if (x->id.daddr.a4 == 0) 906 x->id.daddr.a4 = daddr->a4; 907 x->props.saddr = tmpl->saddr; 908 if (x->props.saddr.a4 == 0) 909 x->props.saddr.a4 = saddr->a4; 910 break; 911 case AF_INET6: 912 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 913 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 914 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 915 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 916 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 917 break; 918 } 919 920 x->props.mode = tmpl->mode; 921 x->props.reqid = tmpl->reqid; 922 x->props.family = tmpl->encap_family; 923 } 924 925 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 926 const xfrm_address_t *daddr, 927 __be32 spi, u8 proto, 928 unsigned short family) 929 { 930 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 931 struct xfrm_state *x; 932 933 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 934 if (x->props.family != family || 935 x->id.spi != spi || 936 x->id.proto != proto || 937 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 938 continue; 939 940 if ((mark & x->mark.m) != x->mark.v) 941 continue; 942 if (!xfrm_state_hold_rcu(x)) 943 continue; 944 return x; 945 } 946 947 return NULL; 948 } 949 950 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 951 const xfrm_address_t *daddr, 952 const xfrm_address_t *saddr, 953 u8 proto, unsigned short family) 954 { 955 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 956 struct xfrm_state *x; 957 958 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 959 if (x->props.family != family || 960 x->id.proto != proto || 961 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 962 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 963 continue; 964 965 if ((mark & x->mark.m) != x->mark.v) 966 continue; 967 if (!xfrm_state_hold_rcu(x)) 968 continue; 969 return x; 970 } 971 972 return NULL; 973 } 974 975 static inline struct xfrm_state * 976 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 977 { 978 struct net *net = xs_net(x); 979 u32 mark = x->mark.v & x->mark.m; 980 981 if (use_spi) 982 return __xfrm_state_lookup(net, mark, &x->id.daddr, 983 x->id.spi, x->id.proto, family); 984 else 985 return __xfrm_state_lookup_byaddr(net, mark, 986 &x->id.daddr, 987 &x->props.saddr, 988 x->id.proto, family); 989 } 990 991 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 992 { 993 if (have_hash_collision && 994 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 995 net->xfrm.state_num > net->xfrm.state_hmask) 996 schedule_work(&net->xfrm.state_hash_work); 997 } 998 999 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1000 const struct flowi *fl, unsigned short family, 1001 struct xfrm_state **best, int *acq_in_progress, 1002 int *error) 1003 { 1004 /* Resolution logic: 1005 * 1. There is a valid state with matching selector. Done. 1006 * 2. Valid state with inappropriate selector. Skip. 1007 * 1008 * Entering area of "sysdeps". 1009 * 1010 * 3. If state is not valid, selector is temporary, it selects 1011 * only session which triggered previous resolution. Key 1012 * manager will do something to install a state with proper 1013 * selector. 1014 */ 1015 if (x->km.state == XFRM_STATE_VALID) { 1016 if ((x->sel.family && 1017 !xfrm_selector_match(&x->sel, fl, x->sel.family)) || 1018 !security_xfrm_state_pol_flow_match(x, pol, fl)) 1019 return; 1020 1021 if (!*best || 1022 (*best)->km.dying > x->km.dying || 1023 ((*best)->km.dying == x->km.dying && 1024 (*best)->curlft.add_time < x->curlft.add_time)) 1025 *best = x; 1026 } else if (x->km.state == XFRM_STATE_ACQ) { 1027 *acq_in_progress = 1; 1028 } else if (x->km.state == XFRM_STATE_ERROR || 1029 x->km.state == XFRM_STATE_EXPIRED) { 1030 if (xfrm_selector_match(&x->sel, fl, x->sel.family) && 1031 security_xfrm_state_pol_flow_match(x, pol, fl)) 1032 *error = -ESRCH; 1033 } 1034 } 1035 1036 struct xfrm_state * 1037 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1038 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1039 struct xfrm_policy *pol, int *err, 1040 unsigned short family, u32 if_id) 1041 { 1042 static xfrm_address_t saddr_wildcard = { }; 1043 struct net *net = xp_net(pol); 1044 unsigned int h, h_wildcard; 1045 struct xfrm_state *x, *x0, *to_put; 1046 int acquire_in_progress = 0; 1047 int error = 0; 1048 struct xfrm_state *best = NULL; 1049 u32 mark = pol->mark.v & pol->mark.m; 1050 unsigned short encap_family = tmpl->encap_family; 1051 unsigned int sequence; 1052 struct km_event c; 1053 1054 to_put = NULL; 1055 1056 sequence = read_seqcount_begin(&xfrm_state_hash_generation); 1057 1058 rcu_read_lock(); 1059 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1060 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1061 if (x->props.family == encap_family && 1062 x->props.reqid == tmpl->reqid && 1063 (mark & x->mark.m) == x->mark.v && 1064 x->if_id == if_id && 1065 !(x->props.flags & XFRM_STATE_WILDRECV) && 1066 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1067 tmpl->mode == x->props.mode && 1068 tmpl->id.proto == x->id.proto && 1069 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1070 xfrm_state_look_at(pol, x, fl, encap_family, 1071 &best, &acquire_in_progress, &error); 1072 } 1073 if (best || acquire_in_progress) 1074 goto found; 1075 1076 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1077 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1078 if (x->props.family == encap_family && 1079 x->props.reqid == tmpl->reqid && 1080 (mark & x->mark.m) == x->mark.v && 1081 x->if_id == if_id && 1082 !(x->props.flags & XFRM_STATE_WILDRECV) && 1083 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1084 tmpl->mode == x->props.mode && 1085 tmpl->id.proto == x->id.proto && 1086 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1087 xfrm_state_look_at(pol, x, fl, encap_family, 1088 &best, &acquire_in_progress, &error); 1089 } 1090 1091 found: 1092 x = best; 1093 if (!x && !error && !acquire_in_progress) { 1094 if (tmpl->id.spi && 1095 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi, 1096 tmpl->id.proto, encap_family)) != NULL) { 1097 to_put = x0; 1098 error = -EEXIST; 1099 goto out; 1100 } 1101 1102 c.net = net; 1103 /* If the KMs have no listeners (yet...), avoid allocating an SA 1104 * for each and every packet - garbage collection might not 1105 * handle the flood. 1106 */ 1107 if (!km_is_alive(&c)) { 1108 error = -ESRCH; 1109 goto out; 1110 } 1111 1112 x = xfrm_state_alloc(net); 1113 if (x == NULL) { 1114 error = -ENOMEM; 1115 goto out; 1116 } 1117 /* Initialize temporary state matching only 1118 * to current session. */ 1119 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1120 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1121 x->if_id = if_id; 1122 1123 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1124 if (error) { 1125 x->km.state = XFRM_STATE_DEAD; 1126 to_put = x; 1127 x = NULL; 1128 goto out; 1129 } 1130 1131 if (km_query(x, tmpl, pol) == 0) { 1132 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1133 x->km.state = XFRM_STATE_ACQ; 1134 list_add(&x->km.all, &net->xfrm.state_all); 1135 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1136 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1137 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1138 if (x->id.spi) { 1139 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1140 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1141 } 1142 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1143 hrtimer_start(&x->mtimer, 1144 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1145 HRTIMER_MODE_REL_SOFT); 1146 net->xfrm.state_num++; 1147 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1148 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1149 } else { 1150 x->km.state = XFRM_STATE_DEAD; 1151 to_put = x; 1152 x = NULL; 1153 error = -ESRCH; 1154 } 1155 } 1156 out: 1157 if (x) { 1158 if (!xfrm_state_hold_rcu(x)) { 1159 *err = -EAGAIN; 1160 x = NULL; 1161 } 1162 } else { 1163 *err = acquire_in_progress ? -EAGAIN : error; 1164 } 1165 rcu_read_unlock(); 1166 if (to_put) 1167 xfrm_state_put(to_put); 1168 1169 if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) { 1170 *err = -EAGAIN; 1171 if (x) { 1172 xfrm_state_put(x); 1173 x = NULL; 1174 } 1175 } 1176 1177 return x; 1178 } 1179 1180 struct xfrm_state * 1181 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1182 xfrm_address_t *daddr, xfrm_address_t *saddr, 1183 unsigned short family, u8 mode, u8 proto, u32 reqid) 1184 { 1185 unsigned int h; 1186 struct xfrm_state *rx = NULL, *x = NULL; 1187 1188 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1189 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1190 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1191 if (x->props.family == family && 1192 x->props.reqid == reqid && 1193 (mark & x->mark.m) == x->mark.v && 1194 x->if_id == if_id && 1195 !(x->props.flags & XFRM_STATE_WILDRECV) && 1196 xfrm_state_addr_check(x, daddr, saddr, family) && 1197 mode == x->props.mode && 1198 proto == x->id.proto && 1199 x->km.state == XFRM_STATE_VALID) { 1200 rx = x; 1201 break; 1202 } 1203 } 1204 1205 if (rx) 1206 xfrm_state_hold(rx); 1207 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1208 1209 1210 return rx; 1211 } 1212 EXPORT_SYMBOL(xfrm_stateonly_find); 1213 1214 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1215 unsigned short family) 1216 { 1217 struct xfrm_state *x; 1218 struct xfrm_state_walk *w; 1219 1220 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1221 list_for_each_entry(w, &net->xfrm.state_all, all) { 1222 x = container_of(w, struct xfrm_state, km); 1223 if (x->props.family != family || 1224 x->id.spi != spi) 1225 continue; 1226 1227 xfrm_state_hold(x); 1228 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1229 return x; 1230 } 1231 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1232 return NULL; 1233 } 1234 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1235 1236 static void __xfrm_state_insert(struct xfrm_state *x) 1237 { 1238 struct net *net = xs_net(x); 1239 unsigned int h; 1240 1241 list_add(&x->km.all, &net->xfrm.state_all); 1242 1243 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1244 x->props.reqid, x->props.family); 1245 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1246 1247 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1248 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1249 1250 if (x->id.spi) { 1251 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1252 x->props.family); 1253 1254 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1255 } 1256 1257 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1258 if (x->replay_maxage) 1259 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1260 1261 net->xfrm.state_num++; 1262 1263 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1264 } 1265 1266 /* net->xfrm.xfrm_state_lock is held */ 1267 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1268 { 1269 struct net *net = xs_net(xnew); 1270 unsigned short family = xnew->props.family; 1271 u32 reqid = xnew->props.reqid; 1272 struct xfrm_state *x; 1273 unsigned int h; 1274 u32 mark = xnew->mark.v & xnew->mark.m; 1275 u32 if_id = xnew->if_id; 1276 1277 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1278 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1279 if (x->props.family == family && 1280 x->props.reqid == reqid && 1281 x->if_id == if_id && 1282 (mark & x->mark.m) == x->mark.v && 1283 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1284 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1285 x->genid++; 1286 } 1287 } 1288 1289 void xfrm_state_insert(struct xfrm_state *x) 1290 { 1291 struct net *net = xs_net(x); 1292 1293 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1294 __xfrm_state_bump_genids(x); 1295 __xfrm_state_insert(x); 1296 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1297 } 1298 EXPORT_SYMBOL(xfrm_state_insert); 1299 1300 /* net->xfrm.xfrm_state_lock is held */ 1301 static struct xfrm_state *__find_acq_core(struct net *net, 1302 const struct xfrm_mark *m, 1303 unsigned short family, u8 mode, 1304 u32 reqid, u32 if_id, u8 proto, 1305 const xfrm_address_t *daddr, 1306 const xfrm_address_t *saddr, 1307 int create) 1308 { 1309 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1310 struct xfrm_state *x; 1311 u32 mark = m->v & m->m; 1312 1313 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1314 if (x->props.reqid != reqid || 1315 x->props.mode != mode || 1316 x->props.family != family || 1317 x->km.state != XFRM_STATE_ACQ || 1318 x->id.spi != 0 || 1319 x->id.proto != proto || 1320 (mark & x->mark.m) != x->mark.v || 1321 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1322 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1323 continue; 1324 1325 xfrm_state_hold(x); 1326 return x; 1327 } 1328 1329 if (!create) 1330 return NULL; 1331 1332 x = xfrm_state_alloc(net); 1333 if (likely(x)) { 1334 switch (family) { 1335 case AF_INET: 1336 x->sel.daddr.a4 = daddr->a4; 1337 x->sel.saddr.a4 = saddr->a4; 1338 x->sel.prefixlen_d = 32; 1339 x->sel.prefixlen_s = 32; 1340 x->props.saddr.a4 = saddr->a4; 1341 x->id.daddr.a4 = daddr->a4; 1342 break; 1343 1344 case AF_INET6: 1345 x->sel.daddr.in6 = daddr->in6; 1346 x->sel.saddr.in6 = saddr->in6; 1347 x->sel.prefixlen_d = 128; 1348 x->sel.prefixlen_s = 128; 1349 x->props.saddr.in6 = saddr->in6; 1350 x->id.daddr.in6 = daddr->in6; 1351 break; 1352 } 1353 1354 x->km.state = XFRM_STATE_ACQ; 1355 x->id.proto = proto; 1356 x->props.family = family; 1357 x->props.mode = mode; 1358 x->props.reqid = reqid; 1359 x->if_id = if_id; 1360 x->mark.v = m->v; 1361 x->mark.m = m->m; 1362 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1363 xfrm_state_hold(x); 1364 hrtimer_start(&x->mtimer, 1365 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1366 HRTIMER_MODE_REL_SOFT); 1367 list_add(&x->km.all, &net->xfrm.state_all); 1368 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1369 h = xfrm_src_hash(net, daddr, saddr, family); 1370 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1371 1372 net->xfrm.state_num++; 1373 1374 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1375 } 1376 1377 return x; 1378 } 1379 1380 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1381 1382 int xfrm_state_add(struct xfrm_state *x) 1383 { 1384 struct net *net = xs_net(x); 1385 struct xfrm_state *x1, *to_put; 1386 int family; 1387 int err; 1388 u32 mark = x->mark.v & x->mark.m; 1389 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1390 1391 family = x->props.family; 1392 1393 to_put = NULL; 1394 1395 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1396 1397 x1 = __xfrm_state_locate(x, use_spi, family); 1398 if (x1) { 1399 to_put = x1; 1400 x1 = NULL; 1401 err = -EEXIST; 1402 goto out; 1403 } 1404 1405 if (use_spi && x->km.seq) { 1406 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1407 if (x1 && ((x1->id.proto != x->id.proto) || 1408 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1409 to_put = x1; 1410 x1 = NULL; 1411 } 1412 } 1413 1414 if (use_spi && !x1) 1415 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1416 x->props.reqid, x->if_id, x->id.proto, 1417 &x->id.daddr, &x->props.saddr, 0); 1418 1419 __xfrm_state_bump_genids(x); 1420 __xfrm_state_insert(x); 1421 err = 0; 1422 1423 out: 1424 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1425 1426 if (x1) { 1427 xfrm_state_delete(x1); 1428 xfrm_state_put(x1); 1429 } 1430 1431 if (to_put) 1432 xfrm_state_put(to_put); 1433 1434 return err; 1435 } 1436 EXPORT_SYMBOL(xfrm_state_add); 1437 1438 #ifdef CONFIG_XFRM_MIGRATE 1439 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1440 struct xfrm_encap_tmpl *encap) 1441 { 1442 struct net *net = xs_net(orig); 1443 struct xfrm_state *x = xfrm_state_alloc(net); 1444 if (!x) 1445 goto out; 1446 1447 memcpy(&x->id, &orig->id, sizeof(x->id)); 1448 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1449 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1450 x->props.mode = orig->props.mode; 1451 x->props.replay_window = orig->props.replay_window; 1452 x->props.reqid = orig->props.reqid; 1453 x->props.family = orig->props.family; 1454 x->props.saddr = orig->props.saddr; 1455 1456 if (orig->aalg) { 1457 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1458 if (!x->aalg) 1459 goto error; 1460 } 1461 x->props.aalgo = orig->props.aalgo; 1462 1463 if (orig->aead) { 1464 x->aead = xfrm_algo_aead_clone(orig->aead); 1465 x->geniv = orig->geniv; 1466 if (!x->aead) 1467 goto error; 1468 } 1469 if (orig->ealg) { 1470 x->ealg = xfrm_algo_clone(orig->ealg); 1471 if (!x->ealg) 1472 goto error; 1473 } 1474 x->props.ealgo = orig->props.ealgo; 1475 1476 if (orig->calg) { 1477 x->calg = xfrm_algo_clone(orig->calg); 1478 if (!x->calg) 1479 goto error; 1480 } 1481 x->props.calgo = orig->props.calgo; 1482 1483 if (encap || orig->encap) { 1484 if (encap) 1485 x->encap = kmemdup(encap, sizeof(*x->encap), 1486 GFP_KERNEL); 1487 else 1488 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1489 GFP_KERNEL); 1490 1491 if (!x->encap) 1492 goto error; 1493 } 1494 1495 if (orig->coaddr) { 1496 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1497 GFP_KERNEL); 1498 if (!x->coaddr) 1499 goto error; 1500 } 1501 1502 if (orig->replay_esn) { 1503 if (xfrm_replay_clone(x, orig)) 1504 goto error; 1505 } 1506 1507 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1508 1509 if (xfrm_init_state(x) < 0) 1510 goto error; 1511 1512 x->props.flags = orig->props.flags; 1513 x->props.extra_flags = orig->props.extra_flags; 1514 1515 x->if_id = orig->if_id; 1516 x->tfcpad = orig->tfcpad; 1517 x->replay_maxdiff = orig->replay_maxdiff; 1518 x->replay_maxage = orig->replay_maxage; 1519 x->curlft.add_time = orig->curlft.add_time; 1520 x->km.state = orig->km.state; 1521 x->km.seq = orig->km.seq; 1522 x->replay = orig->replay; 1523 x->preplay = orig->preplay; 1524 1525 return x; 1526 1527 error: 1528 xfrm_state_put(x); 1529 out: 1530 return NULL; 1531 } 1532 1533 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net) 1534 { 1535 unsigned int h; 1536 struct xfrm_state *x = NULL; 1537 1538 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1539 1540 if (m->reqid) { 1541 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1542 m->reqid, m->old_family); 1543 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1544 if (x->props.mode != m->mode || 1545 x->id.proto != m->proto) 1546 continue; 1547 if (m->reqid && x->props.reqid != m->reqid) 1548 continue; 1549 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1550 m->old_family) || 1551 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1552 m->old_family)) 1553 continue; 1554 xfrm_state_hold(x); 1555 break; 1556 } 1557 } else { 1558 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1559 m->old_family); 1560 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1561 if (x->props.mode != m->mode || 1562 x->id.proto != m->proto) 1563 continue; 1564 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1565 m->old_family) || 1566 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1567 m->old_family)) 1568 continue; 1569 xfrm_state_hold(x); 1570 break; 1571 } 1572 } 1573 1574 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1575 1576 return x; 1577 } 1578 EXPORT_SYMBOL(xfrm_migrate_state_find); 1579 1580 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1581 struct xfrm_migrate *m, 1582 struct xfrm_encap_tmpl *encap) 1583 { 1584 struct xfrm_state *xc; 1585 1586 xc = xfrm_state_clone(x, encap); 1587 if (!xc) 1588 return NULL; 1589 1590 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1591 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1592 1593 /* add state */ 1594 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1595 /* a care is needed when the destination address of the 1596 state is to be updated as it is a part of triplet */ 1597 xfrm_state_insert(xc); 1598 } else { 1599 if (xfrm_state_add(xc) < 0) 1600 goto error; 1601 } 1602 1603 return xc; 1604 error: 1605 xfrm_state_put(xc); 1606 return NULL; 1607 } 1608 EXPORT_SYMBOL(xfrm_state_migrate); 1609 #endif 1610 1611 int xfrm_state_update(struct xfrm_state *x) 1612 { 1613 struct xfrm_state *x1, *to_put; 1614 int err; 1615 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1616 struct net *net = xs_net(x); 1617 1618 to_put = NULL; 1619 1620 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1621 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1622 1623 err = -ESRCH; 1624 if (!x1) 1625 goto out; 1626 1627 if (xfrm_state_kern(x1)) { 1628 to_put = x1; 1629 err = -EEXIST; 1630 goto out; 1631 } 1632 1633 if (x1->km.state == XFRM_STATE_ACQ) { 1634 __xfrm_state_insert(x); 1635 x = NULL; 1636 } 1637 err = 0; 1638 1639 out: 1640 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1641 1642 if (to_put) 1643 xfrm_state_put(to_put); 1644 1645 if (err) 1646 return err; 1647 1648 if (!x) { 1649 xfrm_state_delete(x1); 1650 xfrm_state_put(x1); 1651 return 0; 1652 } 1653 1654 err = -EINVAL; 1655 spin_lock_bh(&x1->lock); 1656 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1657 if (x->encap && x1->encap && 1658 x->encap->encap_type == x1->encap->encap_type) 1659 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1660 else if (x->encap || x1->encap) 1661 goto fail; 1662 1663 if (x->coaddr && x1->coaddr) { 1664 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1665 } 1666 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1667 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1668 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1669 x1->km.dying = 0; 1670 1671 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 1672 HRTIMER_MODE_REL_SOFT); 1673 if (x1->curlft.use_time) 1674 xfrm_state_check_expire(x1); 1675 1676 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1677 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1678 1679 if (x->props.smark.m || x->props.smark.v) 1680 x1->props.smark = x->props.smark; 1681 1682 if (x->if_id) 1683 x1->if_id = x->if_id; 1684 1685 __xfrm_state_bump_genids(x1); 1686 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1687 } 1688 1689 err = 0; 1690 x->km.state = XFRM_STATE_DEAD; 1691 __xfrm_state_put(x); 1692 } 1693 1694 fail: 1695 spin_unlock_bh(&x1->lock); 1696 1697 xfrm_state_put(x1); 1698 1699 return err; 1700 } 1701 EXPORT_SYMBOL(xfrm_state_update); 1702 1703 int xfrm_state_check_expire(struct xfrm_state *x) 1704 { 1705 if (!x->curlft.use_time) 1706 x->curlft.use_time = ktime_get_real_seconds(); 1707 1708 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1709 x->curlft.packets >= x->lft.hard_packet_limit) { 1710 x->km.state = XFRM_STATE_EXPIRED; 1711 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 1712 return -EINVAL; 1713 } 1714 1715 if (!x->km.dying && 1716 (x->curlft.bytes >= x->lft.soft_byte_limit || 1717 x->curlft.packets >= x->lft.soft_packet_limit)) { 1718 x->km.dying = 1; 1719 km_state_expired(x, 0, 0); 1720 } 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(xfrm_state_check_expire); 1724 1725 struct xfrm_state * 1726 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1727 u8 proto, unsigned short family) 1728 { 1729 struct xfrm_state *x; 1730 1731 rcu_read_lock(); 1732 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1733 rcu_read_unlock(); 1734 return x; 1735 } 1736 EXPORT_SYMBOL(xfrm_state_lookup); 1737 1738 struct xfrm_state * 1739 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1740 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1741 u8 proto, unsigned short family) 1742 { 1743 struct xfrm_state *x; 1744 1745 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1746 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1747 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1748 return x; 1749 } 1750 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1751 1752 struct xfrm_state * 1753 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1754 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1755 const xfrm_address_t *saddr, int create, unsigned short family) 1756 { 1757 struct xfrm_state *x; 1758 1759 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1760 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 1761 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1762 1763 return x; 1764 } 1765 EXPORT_SYMBOL(xfrm_find_acq); 1766 1767 #ifdef CONFIG_XFRM_SUB_POLICY 1768 #if IS_ENABLED(CONFIG_IPV6) 1769 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 1770 static void 1771 __xfrm6_sort(void **dst, void **src, int n, 1772 int (*cmp)(const void *p), int maxclass) 1773 { 1774 int count[XFRM_MAX_DEPTH] = { }; 1775 int class[XFRM_MAX_DEPTH]; 1776 int i; 1777 1778 for (i = 0; i < n; i++) { 1779 int c = cmp(src[i]); 1780 1781 class[i] = c; 1782 count[c]++; 1783 } 1784 1785 for (i = 2; i < maxclass; i++) 1786 count[i] += count[i - 1]; 1787 1788 for (i = 0; i < n; i++) { 1789 dst[count[class[i] - 1]++] = src[i]; 1790 src[i] = NULL; 1791 } 1792 } 1793 1794 /* Rule for xfrm_state: 1795 * 1796 * rule 1: select IPsec transport except AH 1797 * rule 2: select MIPv6 RO or inbound trigger 1798 * rule 3: select IPsec transport AH 1799 * rule 4: select IPsec tunnel 1800 * rule 5: others 1801 */ 1802 static int __xfrm6_state_sort_cmp(const void *p) 1803 { 1804 const struct xfrm_state *v = p; 1805 1806 switch (v->props.mode) { 1807 case XFRM_MODE_TRANSPORT: 1808 if (v->id.proto != IPPROTO_AH) 1809 return 1; 1810 else 1811 return 3; 1812 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1813 case XFRM_MODE_ROUTEOPTIMIZATION: 1814 case XFRM_MODE_IN_TRIGGER: 1815 return 2; 1816 #endif 1817 case XFRM_MODE_TUNNEL: 1818 case XFRM_MODE_BEET: 1819 return 4; 1820 } 1821 return 5; 1822 } 1823 1824 /* Rule for xfrm_tmpl: 1825 * 1826 * rule 1: select IPsec transport 1827 * rule 2: select MIPv6 RO or inbound trigger 1828 * rule 3: select IPsec tunnel 1829 * rule 4: others 1830 */ 1831 static int __xfrm6_tmpl_sort_cmp(const void *p) 1832 { 1833 const struct xfrm_tmpl *v = p; 1834 1835 switch (v->mode) { 1836 case XFRM_MODE_TRANSPORT: 1837 return 1; 1838 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1839 case XFRM_MODE_ROUTEOPTIMIZATION: 1840 case XFRM_MODE_IN_TRIGGER: 1841 return 2; 1842 #endif 1843 case XFRM_MODE_TUNNEL: 1844 case XFRM_MODE_BEET: 1845 return 3; 1846 } 1847 return 4; 1848 } 1849 #else 1850 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 1851 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 1852 1853 static inline void 1854 __xfrm6_sort(void **dst, void **src, int n, 1855 int (*cmp)(const void *p), int maxclass) 1856 { 1857 int i; 1858 1859 for (i = 0; i < n; i++) 1860 dst[i] = src[i]; 1861 } 1862 #endif /* CONFIG_IPV6 */ 1863 1864 void 1865 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1866 unsigned short family) 1867 { 1868 int i; 1869 1870 if (family == AF_INET6) 1871 __xfrm6_sort((void **)dst, (void **)src, n, 1872 __xfrm6_tmpl_sort_cmp, 5); 1873 else 1874 for (i = 0; i < n; i++) 1875 dst[i] = src[i]; 1876 } 1877 1878 void 1879 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1880 unsigned short family) 1881 { 1882 int i; 1883 1884 if (family == AF_INET6) 1885 __xfrm6_sort((void **)dst, (void **)src, n, 1886 __xfrm6_state_sort_cmp, 6); 1887 else 1888 for (i = 0; i < n; i++) 1889 dst[i] = src[i]; 1890 } 1891 #endif 1892 1893 /* Silly enough, but I'm lazy to build resolution list */ 1894 1895 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1896 { 1897 int i; 1898 1899 for (i = 0; i <= net->xfrm.state_hmask; i++) { 1900 struct xfrm_state *x; 1901 1902 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 1903 if (x->km.seq == seq && 1904 (mark & x->mark.m) == x->mark.v && 1905 x->km.state == XFRM_STATE_ACQ) { 1906 xfrm_state_hold(x); 1907 return x; 1908 } 1909 } 1910 } 1911 return NULL; 1912 } 1913 1914 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1915 { 1916 struct xfrm_state *x; 1917 1918 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1919 x = __xfrm_find_acq_byseq(net, mark, seq); 1920 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1921 return x; 1922 } 1923 EXPORT_SYMBOL(xfrm_find_acq_byseq); 1924 1925 u32 xfrm_get_acqseq(void) 1926 { 1927 u32 res; 1928 static atomic_t acqseq; 1929 1930 do { 1931 res = atomic_inc_return(&acqseq); 1932 } while (!res); 1933 1934 return res; 1935 } 1936 EXPORT_SYMBOL(xfrm_get_acqseq); 1937 1938 int verify_spi_info(u8 proto, u32 min, u32 max) 1939 { 1940 switch (proto) { 1941 case IPPROTO_AH: 1942 case IPPROTO_ESP: 1943 break; 1944 1945 case IPPROTO_COMP: 1946 /* IPCOMP spi is 16-bits. */ 1947 if (max >= 0x10000) 1948 return -EINVAL; 1949 break; 1950 1951 default: 1952 return -EINVAL; 1953 } 1954 1955 if (min > max) 1956 return -EINVAL; 1957 1958 return 0; 1959 } 1960 EXPORT_SYMBOL(verify_spi_info); 1961 1962 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) 1963 { 1964 struct net *net = xs_net(x); 1965 unsigned int h; 1966 struct xfrm_state *x0; 1967 int err = -ENOENT; 1968 __be32 minspi = htonl(low); 1969 __be32 maxspi = htonl(high); 1970 u32 mark = x->mark.v & x->mark.m; 1971 1972 spin_lock_bh(&x->lock); 1973 if (x->km.state == XFRM_STATE_DEAD) 1974 goto unlock; 1975 1976 err = 0; 1977 if (x->id.spi) 1978 goto unlock; 1979 1980 err = -ENOENT; 1981 1982 if (minspi == maxspi) { 1983 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 1984 if (x0) { 1985 xfrm_state_put(x0); 1986 goto unlock; 1987 } 1988 x->id.spi = minspi; 1989 } else { 1990 u32 spi = 0; 1991 for (h = 0; h < high-low+1; h++) { 1992 spi = low + prandom_u32()%(high-low+1); 1993 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 1994 if (x0 == NULL) { 1995 x->id.spi = htonl(spi); 1996 break; 1997 } 1998 xfrm_state_put(x0); 1999 } 2000 } 2001 if (x->id.spi) { 2002 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2003 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2004 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 2005 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2006 2007 err = 0; 2008 } 2009 2010 unlock: 2011 spin_unlock_bh(&x->lock); 2012 2013 return err; 2014 } 2015 EXPORT_SYMBOL(xfrm_alloc_spi); 2016 2017 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2018 struct xfrm_address_filter *filter) 2019 { 2020 if (filter) { 2021 if ((filter->family == AF_INET || 2022 filter->family == AF_INET6) && 2023 x->props.family != filter->family) 2024 return false; 2025 2026 return addr_match(&x->props.saddr, &filter->saddr, 2027 filter->splen) && 2028 addr_match(&x->id.daddr, &filter->daddr, 2029 filter->dplen); 2030 } 2031 return true; 2032 } 2033 2034 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2035 int (*func)(struct xfrm_state *, int, void*), 2036 void *data) 2037 { 2038 struct xfrm_state *state; 2039 struct xfrm_state_walk *x; 2040 int err = 0; 2041 2042 if (walk->seq != 0 && list_empty(&walk->all)) 2043 return 0; 2044 2045 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2046 if (list_empty(&walk->all)) 2047 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2048 else 2049 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2050 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2051 if (x->state == XFRM_STATE_DEAD) 2052 continue; 2053 state = container_of(x, struct xfrm_state, km); 2054 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2055 continue; 2056 if (!__xfrm_state_filter_match(state, walk->filter)) 2057 continue; 2058 err = func(state, walk->seq, data); 2059 if (err) { 2060 list_move_tail(&walk->all, &x->all); 2061 goto out; 2062 } 2063 walk->seq++; 2064 } 2065 if (walk->seq == 0) { 2066 err = -ENOENT; 2067 goto out; 2068 } 2069 list_del_init(&walk->all); 2070 out: 2071 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2072 return err; 2073 } 2074 EXPORT_SYMBOL(xfrm_state_walk); 2075 2076 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2077 struct xfrm_address_filter *filter) 2078 { 2079 INIT_LIST_HEAD(&walk->all); 2080 walk->proto = proto; 2081 walk->state = XFRM_STATE_DEAD; 2082 walk->seq = 0; 2083 walk->filter = filter; 2084 } 2085 EXPORT_SYMBOL(xfrm_state_walk_init); 2086 2087 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2088 { 2089 kfree(walk->filter); 2090 2091 if (list_empty(&walk->all)) 2092 return; 2093 2094 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2095 list_del(&walk->all); 2096 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2097 } 2098 EXPORT_SYMBOL(xfrm_state_walk_done); 2099 2100 static void xfrm_replay_timer_handler(struct timer_list *t) 2101 { 2102 struct xfrm_state *x = from_timer(x, t, rtimer); 2103 2104 spin_lock(&x->lock); 2105 2106 if (x->km.state == XFRM_STATE_VALID) { 2107 if (xfrm_aevent_is_on(xs_net(x))) 2108 x->repl->notify(x, XFRM_REPLAY_TIMEOUT); 2109 else 2110 x->xflags |= XFRM_TIME_DEFER; 2111 } 2112 2113 spin_unlock(&x->lock); 2114 } 2115 2116 static LIST_HEAD(xfrm_km_list); 2117 2118 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2119 { 2120 struct xfrm_mgr *km; 2121 2122 rcu_read_lock(); 2123 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2124 if (km->notify_policy) 2125 km->notify_policy(xp, dir, c); 2126 rcu_read_unlock(); 2127 } 2128 2129 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2130 { 2131 struct xfrm_mgr *km; 2132 rcu_read_lock(); 2133 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2134 if (km->notify) 2135 km->notify(x, c); 2136 rcu_read_unlock(); 2137 } 2138 2139 EXPORT_SYMBOL(km_policy_notify); 2140 EXPORT_SYMBOL(km_state_notify); 2141 2142 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2143 { 2144 struct km_event c; 2145 2146 c.data.hard = hard; 2147 c.portid = portid; 2148 c.event = XFRM_MSG_EXPIRE; 2149 km_state_notify(x, &c); 2150 } 2151 2152 EXPORT_SYMBOL(km_state_expired); 2153 /* 2154 * We send to all registered managers regardless of failure 2155 * We are happy with one success 2156 */ 2157 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2158 { 2159 int err = -EINVAL, acqret; 2160 struct xfrm_mgr *km; 2161 2162 rcu_read_lock(); 2163 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2164 acqret = km->acquire(x, t, pol); 2165 if (!acqret) 2166 err = acqret; 2167 } 2168 rcu_read_unlock(); 2169 return err; 2170 } 2171 EXPORT_SYMBOL(km_query); 2172 2173 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2174 { 2175 int err = -EINVAL; 2176 struct xfrm_mgr *km; 2177 2178 rcu_read_lock(); 2179 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2180 if (km->new_mapping) 2181 err = km->new_mapping(x, ipaddr, sport); 2182 if (!err) 2183 break; 2184 } 2185 rcu_read_unlock(); 2186 return err; 2187 } 2188 EXPORT_SYMBOL(km_new_mapping); 2189 2190 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2191 { 2192 struct km_event c; 2193 2194 c.data.hard = hard; 2195 c.portid = portid; 2196 c.event = XFRM_MSG_POLEXPIRE; 2197 km_policy_notify(pol, dir, &c); 2198 } 2199 EXPORT_SYMBOL(km_policy_expired); 2200 2201 #ifdef CONFIG_XFRM_MIGRATE 2202 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2203 const struct xfrm_migrate *m, int num_migrate, 2204 const struct xfrm_kmaddress *k, 2205 const struct xfrm_encap_tmpl *encap) 2206 { 2207 int err = -EINVAL; 2208 int ret; 2209 struct xfrm_mgr *km; 2210 2211 rcu_read_lock(); 2212 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2213 if (km->migrate) { 2214 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2215 encap); 2216 if (!ret) 2217 err = ret; 2218 } 2219 } 2220 rcu_read_unlock(); 2221 return err; 2222 } 2223 EXPORT_SYMBOL(km_migrate); 2224 #endif 2225 2226 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2227 { 2228 int err = -EINVAL; 2229 int ret; 2230 struct xfrm_mgr *km; 2231 2232 rcu_read_lock(); 2233 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2234 if (km->report) { 2235 ret = km->report(net, proto, sel, addr); 2236 if (!ret) 2237 err = ret; 2238 } 2239 } 2240 rcu_read_unlock(); 2241 return err; 2242 } 2243 EXPORT_SYMBOL(km_report); 2244 2245 static bool km_is_alive(const struct km_event *c) 2246 { 2247 struct xfrm_mgr *km; 2248 bool is_alive = false; 2249 2250 rcu_read_lock(); 2251 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2252 if (km->is_alive && km->is_alive(c)) { 2253 is_alive = true; 2254 break; 2255 } 2256 } 2257 rcu_read_unlock(); 2258 2259 return is_alive; 2260 } 2261 2262 int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 2263 { 2264 int err; 2265 u8 *data; 2266 struct xfrm_mgr *km; 2267 struct xfrm_policy *pol = NULL; 2268 2269 if (in_compat_syscall()) 2270 return -EOPNOTSUPP; 2271 2272 if (!optval && !optlen) { 2273 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2274 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2275 __sk_dst_reset(sk); 2276 return 0; 2277 } 2278 2279 if (optlen <= 0 || optlen > PAGE_SIZE) 2280 return -EMSGSIZE; 2281 2282 data = memdup_user(optval, optlen); 2283 if (IS_ERR(data)) 2284 return PTR_ERR(data); 2285 2286 err = -EINVAL; 2287 rcu_read_lock(); 2288 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2289 pol = km->compile_policy(sk, optname, data, 2290 optlen, &err); 2291 if (err >= 0) 2292 break; 2293 } 2294 rcu_read_unlock(); 2295 2296 if (err >= 0) { 2297 xfrm_sk_policy_insert(sk, err, pol); 2298 xfrm_pol_put(pol); 2299 __sk_dst_reset(sk); 2300 err = 0; 2301 } 2302 2303 kfree(data); 2304 return err; 2305 } 2306 EXPORT_SYMBOL(xfrm_user_policy); 2307 2308 static DEFINE_SPINLOCK(xfrm_km_lock); 2309 2310 int xfrm_register_km(struct xfrm_mgr *km) 2311 { 2312 spin_lock_bh(&xfrm_km_lock); 2313 list_add_tail_rcu(&km->list, &xfrm_km_list); 2314 spin_unlock_bh(&xfrm_km_lock); 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(xfrm_register_km); 2318 2319 int xfrm_unregister_km(struct xfrm_mgr *km) 2320 { 2321 spin_lock_bh(&xfrm_km_lock); 2322 list_del_rcu(&km->list); 2323 spin_unlock_bh(&xfrm_km_lock); 2324 synchronize_rcu(); 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(xfrm_unregister_km); 2328 2329 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2330 { 2331 int err = 0; 2332 2333 if (WARN_ON(afinfo->family >= NPROTO)) 2334 return -EAFNOSUPPORT; 2335 2336 spin_lock_bh(&xfrm_state_afinfo_lock); 2337 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2338 err = -EEXIST; 2339 else 2340 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2341 spin_unlock_bh(&xfrm_state_afinfo_lock); 2342 return err; 2343 } 2344 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2345 2346 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2347 { 2348 int err = 0, family = afinfo->family; 2349 2350 if (WARN_ON(family >= NPROTO)) 2351 return -EAFNOSUPPORT; 2352 2353 spin_lock_bh(&xfrm_state_afinfo_lock); 2354 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2355 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2356 err = -EINVAL; 2357 else 2358 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2359 } 2360 spin_unlock_bh(&xfrm_state_afinfo_lock); 2361 synchronize_rcu(); 2362 return err; 2363 } 2364 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2365 2366 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2367 { 2368 if (unlikely(family >= NPROTO)) 2369 return NULL; 2370 2371 return rcu_dereference(xfrm_state_afinfo[family]); 2372 } 2373 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2374 2375 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2376 { 2377 struct xfrm_state_afinfo *afinfo; 2378 if (unlikely(family >= NPROTO)) 2379 return NULL; 2380 rcu_read_lock(); 2381 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2382 if (unlikely(!afinfo)) 2383 rcu_read_unlock(); 2384 return afinfo; 2385 } 2386 2387 void xfrm_flush_gc(void) 2388 { 2389 flush_work(&xfrm_state_gc_work); 2390 } 2391 EXPORT_SYMBOL(xfrm_flush_gc); 2392 2393 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2394 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2395 { 2396 if (x->tunnel) { 2397 struct xfrm_state *t = x->tunnel; 2398 2399 if (atomic_read(&t->tunnel_users) == 2) 2400 xfrm_state_delete(t); 2401 atomic_dec(&t->tunnel_users); 2402 xfrm_state_put_sync(t); 2403 x->tunnel = NULL; 2404 } 2405 } 2406 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2407 2408 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2409 { 2410 const struct xfrm_type *type = READ_ONCE(x->type); 2411 struct crypto_aead *aead; 2412 u32 blksize, net_adj = 0; 2413 2414 if (x->km.state != XFRM_STATE_VALID || 2415 !type || type->proto != IPPROTO_ESP) 2416 return mtu - x->props.header_len; 2417 2418 aead = x->data; 2419 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2420 2421 switch (x->props.mode) { 2422 case XFRM_MODE_TRANSPORT: 2423 case XFRM_MODE_BEET: 2424 if (x->props.family == AF_INET) 2425 net_adj = sizeof(struct iphdr); 2426 else if (x->props.family == AF_INET6) 2427 net_adj = sizeof(struct ipv6hdr); 2428 break; 2429 case XFRM_MODE_TUNNEL: 2430 break; 2431 default: 2432 WARN_ON_ONCE(1); 2433 break; 2434 } 2435 2436 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2437 net_adj) & ~(blksize - 1)) + net_adj - 2; 2438 } 2439 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2440 2441 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload) 2442 { 2443 const struct xfrm_mode *inner_mode; 2444 const struct xfrm_mode *outer_mode; 2445 int family = x->props.family; 2446 int err; 2447 2448 if (family == AF_INET && 2449 xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc) 2450 x->props.flags |= XFRM_STATE_NOPMTUDISC; 2451 2452 err = -EPROTONOSUPPORT; 2453 2454 if (x->sel.family != AF_UNSPEC) { 2455 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2456 if (inner_mode == NULL) 2457 goto error; 2458 2459 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2460 family != x->sel.family) 2461 goto error; 2462 2463 x->inner_mode = *inner_mode; 2464 } else { 2465 const struct xfrm_mode *inner_mode_iaf; 2466 int iafamily = AF_INET; 2467 2468 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2469 if (inner_mode == NULL) 2470 goto error; 2471 2472 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) 2473 goto error; 2474 2475 x->inner_mode = *inner_mode; 2476 2477 if (x->props.family == AF_INET) 2478 iafamily = AF_INET6; 2479 2480 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2481 if (inner_mode_iaf) { 2482 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2483 x->inner_mode_iaf = *inner_mode_iaf; 2484 } 2485 } 2486 2487 x->type = xfrm_get_type(x->id.proto, family); 2488 if (x->type == NULL) 2489 goto error; 2490 2491 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2492 2493 err = x->type->init_state(x); 2494 if (err) 2495 goto error; 2496 2497 outer_mode = xfrm_get_mode(x->props.mode, family); 2498 if (!outer_mode) { 2499 err = -EPROTONOSUPPORT; 2500 goto error; 2501 } 2502 2503 x->outer_mode = *outer_mode; 2504 if (init_replay) { 2505 err = xfrm_init_replay(x); 2506 if (err) 2507 goto error; 2508 } 2509 2510 error: 2511 return err; 2512 } 2513 2514 EXPORT_SYMBOL(__xfrm_init_state); 2515 2516 int xfrm_init_state(struct xfrm_state *x) 2517 { 2518 int err; 2519 2520 err = __xfrm_init_state(x, true, false); 2521 if (!err) 2522 x->km.state = XFRM_STATE_VALID; 2523 2524 return err; 2525 } 2526 2527 EXPORT_SYMBOL(xfrm_init_state); 2528 2529 int __net_init xfrm_state_init(struct net *net) 2530 { 2531 unsigned int sz; 2532 2533 if (net_eq(net, &init_net)) 2534 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2535 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2536 2537 INIT_LIST_HEAD(&net->xfrm.state_all); 2538 2539 sz = sizeof(struct hlist_head) * 8; 2540 2541 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2542 if (!net->xfrm.state_bydst) 2543 goto out_bydst; 2544 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2545 if (!net->xfrm.state_bysrc) 2546 goto out_bysrc; 2547 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2548 if (!net->xfrm.state_byspi) 2549 goto out_byspi; 2550 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2551 2552 net->xfrm.state_num = 0; 2553 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2554 spin_lock_init(&net->xfrm.xfrm_state_lock); 2555 return 0; 2556 2557 out_byspi: 2558 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2559 out_bysrc: 2560 xfrm_hash_free(net->xfrm.state_bydst, sz); 2561 out_bydst: 2562 return -ENOMEM; 2563 } 2564 2565 void xfrm_state_fini(struct net *net) 2566 { 2567 unsigned int sz; 2568 2569 flush_work(&net->xfrm.state_hash_work); 2570 flush_work(&xfrm_state_gc_work); 2571 xfrm_state_flush(net, 0, false, true); 2572 2573 WARN_ON(!list_empty(&net->xfrm.state_all)); 2574 2575 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2576 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2577 xfrm_hash_free(net->xfrm.state_byspi, sz); 2578 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2579 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2580 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2581 xfrm_hash_free(net->xfrm.state_bydst, sz); 2582 } 2583 2584 #ifdef CONFIG_AUDITSYSCALL 2585 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2586 struct audit_buffer *audit_buf) 2587 { 2588 struct xfrm_sec_ctx *ctx = x->security; 2589 u32 spi = ntohl(x->id.spi); 2590 2591 if (ctx) 2592 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2593 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2594 2595 switch (x->props.family) { 2596 case AF_INET: 2597 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2598 &x->props.saddr.a4, &x->id.daddr.a4); 2599 break; 2600 case AF_INET6: 2601 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2602 x->props.saddr.a6, x->id.daddr.a6); 2603 break; 2604 } 2605 2606 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2607 } 2608 2609 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2610 struct audit_buffer *audit_buf) 2611 { 2612 const struct iphdr *iph4; 2613 const struct ipv6hdr *iph6; 2614 2615 switch (family) { 2616 case AF_INET: 2617 iph4 = ip_hdr(skb); 2618 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2619 &iph4->saddr, &iph4->daddr); 2620 break; 2621 case AF_INET6: 2622 iph6 = ipv6_hdr(skb); 2623 audit_log_format(audit_buf, 2624 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2625 &iph6->saddr, &iph6->daddr, 2626 iph6->flow_lbl[0] & 0x0f, 2627 iph6->flow_lbl[1], 2628 iph6->flow_lbl[2]); 2629 break; 2630 } 2631 } 2632 2633 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2634 { 2635 struct audit_buffer *audit_buf; 2636 2637 audit_buf = xfrm_audit_start("SAD-add"); 2638 if (audit_buf == NULL) 2639 return; 2640 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2641 xfrm_audit_helper_sainfo(x, audit_buf); 2642 audit_log_format(audit_buf, " res=%u", result); 2643 audit_log_end(audit_buf); 2644 } 2645 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2646 2647 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 2648 { 2649 struct audit_buffer *audit_buf; 2650 2651 audit_buf = xfrm_audit_start("SAD-delete"); 2652 if (audit_buf == NULL) 2653 return; 2654 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2655 xfrm_audit_helper_sainfo(x, audit_buf); 2656 audit_log_format(audit_buf, " res=%u", result); 2657 audit_log_end(audit_buf); 2658 } 2659 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 2660 2661 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 2662 struct sk_buff *skb) 2663 { 2664 struct audit_buffer *audit_buf; 2665 u32 spi; 2666 2667 audit_buf = xfrm_audit_start("SA-replay-overflow"); 2668 if (audit_buf == NULL) 2669 return; 2670 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2671 /* don't record the sequence number because it's inherent in this kind 2672 * of audit message */ 2673 spi = ntohl(x->id.spi); 2674 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2675 audit_log_end(audit_buf); 2676 } 2677 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 2678 2679 void xfrm_audit_state_replay(struct xfrm_state *x, 2680 struct sk_buff *skb, __be32 net_seq) 2681 { 2682 struct audit_buffer *audit_buf; 2683 u32 spi; 2684 2685 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 2686 if (audit_buf == NULL) 2687 return; 2688 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2689 spi = ntohl(x->id.spi); 2690 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2691 spi, spi, ntohl(net_seq)); 2692 audit_log_end(audit_buf); 2693 } 2694 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 2695 2696 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 2697 { 2698 struct audit_buffer *audit_buf; 2699 2700 audit_buf = xfrm_audit_start("SA-notfound"); 2701 if (audit_buf == NULL) 2702 return; 2703 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2704 audit_log_end(audit_buf); 2705 } 2706 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 2707 2708 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 2709 __be32 net_spi, __be32 net_seq) 2710 { 2711 struct audit_buffer *audit_buf; 2712 u32 spi; 2713 2714 audit_buf = xfrm_audit_start("SA-notfound"); 2715 if (audit_buf == NULL) 2716 return; 2717 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2718 spi = ntohl(net_spi); 2719 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2720 spi, spi, ntohl(net_seq)); 2721 audit_log_end(audit_buf); 2722 } 2723 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 2724 2725 void xfrm_audit_state_icvfail(struct xfrm_state *x, 2726 struct sk_buff *skb, u8 proto) 2727 { 2728 struct audit_buffer *audit_buf; 2729 __be32 net_spi; 2730 __be32 net_seq; 2731 2732 audit_buf = xfrm_audit_start("SA-icv-failure"); 2733 if (audit_buf == NULL) 2734 return; 2735 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2736 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 2737 u32 spi = ntohl(net_spi); 2738 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2739 spi, spi, ntohl(net_seq)); 2740 } 2741 audit_log_end(audit_buf); 2742 } 2743 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 2744 #endif /* CONFIG_AUDITSYSCALL */ 2745