1 /* 2 * xfrm_state.c 3 * 4 * Changes: 5 * Mitsuru KANDA @USAGI 6 * Kazunori MIYAZAWA @USAGI 7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 8 * IPv6 support 9 * YOSHIFUJI Hideaki @USAGI 10 * Split up af-specific functions 11 * Derek Atkins <derek@ihtfp.com> 12 * Add UDP Encapsulation 13 * 14 */ 15 16 #include <linux/workqueue.h> 17 #include <net/xfrm.h> 18 #include <linux/pfkeyv2.h> 19 #include <linux/ipsec.h> 20 #include <linux/module.h> 21 #include <linux/cache.h> 22 #include <linux/audit.h> 23 #include <asm/uaccess.h> 24 25 #include "xfrm_hash.h" 26 27 /* Each xfrm_state may be linked to two tables: 28 29 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 30 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 31 destination/tunnel endpoint. (output) 32 */ 33 34 static DEFINE_SPINLOCK(xfrm_state_lock); 35 36 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 37 static unsigned int xfrm_state_genid; 38 39 static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); 40 static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo); 41 42 #ifdef CONFIG_AUDITSYSCALL 43 static void xfrm_audit_state_replay(struct xfrm_state *x, 44 struct sk_buff *skb, __be32 net_seq); 45 #else 46 #define xfrm_audit_state_replay(x, s, sq) do { ; } while (0) 47 #endif /* CONFIG_AUDITSYSCALL */ 48 49 static inline unsigned int xfrm_dst_hash(struct net *net, 50 xfrm_address_t *daddr, 51 xfrm_address_t *saddr, 52 u32 reqid, 53 unsigned short family) 54 { 55 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 56 } 57 58 static inline unsigned int xfrm_src_hash(struct net *net, 59 xfrm_address_t *daddr, 60 xfrm_address_t *saddr, 61 unsigned short family) 62 { 63 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 64 } 65 66 static inline unsigned int 67 xfrm_spi_hash(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family) 68 { 69 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 70 } 71 72 static void xfrm_hash_transfer(struct hlist_head *list, 73 struct hlist_head *ndsttable, 74 struct hlist_head *nsrctable, 75 struct hlist_head *nspitable, 76 unsigned int nhashmask) 77 { 78 struct hlist_node *entry, *tmp; 79 struct xfrm_state *x; 80 81 hlist_for_each_entry_safe(x, entry, tmp, list, bydst) { 82 unsigned int h; 83 84 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 85 x->props.reqid, x->props.family, 86 nhashmask); 87 hlist_add_head(&x->bydst, ndsttable+h); 88 89 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 90 x->props.family, 91 nhashmask); 92 hlist_add_head(&x->bysrc, nsrctable+h); 93 94 if (x->id.spi) { 95 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 96 x->id.proto, x->props.family, 97 nhashmask); 98 hlist_add_head(&x->byspi, nspitable+h); 99 } 100 } 101 } 102 103 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 104 { 105 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 106 } 107 108 static DEFINE_MUTEX(hash_resize_mutex); 109 110 static void xfrm_hash_resize(struct work_struct *work) 111 { 112 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 113 struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; 114 unsigned long nsize, osize; 115 unsigned int nhashmask, ohashmask; 116 int i; 117 118 mutex_lock(&hash_resize_mutex); 119 120 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 121 ndst = xfrm_hash_alloc(nsize); 122 if (!ndst) 123 goto out_unlock; 124 nsrc = xfrm_hash_alloc(nsize); 125 if (!nsrc) { 126 xfrm_hash_free(ndst, nsize); 127 goto out_unlock; 128 } 129 nspi = xfrm_hash_alloc(nsize); 130 if (!nspi) { 131 xfrm_hash_free(ndst, nsize); 132 xfrm_hash_free(nsrc, nsize); 133 goto out_unlock; 134 } 135 136 spin_lock_bh(&xfrm_state_lock); 137 138 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 139 for (i = net->xfrm.state_hmask; i >= 0; i--) 140 xfrm_hash_transfer(net->xfrm.state_bydst+i, ndst, nsrc, nspi, 141 nhashmask); 142 143 odst = net->xfrm.state_bydst; 144 osrc = net->xfrm.state_bysrc; 145 ospi = net->xfrm.state_byspi; 146 ohashmask = net->xfrm.state_hmask; 147 148 net->xfrm.state_bydst = ndst; 149 net->xfrm.state_bysrc = nsrc; 150 net->xfrm.state_byspi = nspi; 151 net->xfrm.state_hmask = nhashmask; 152 153 spin_unlock_bh(&xfrm_state_lock); 154 155 osize = (ohashmask + 1) * sizeof(struct hlist_head); 156 xfrm_hash_free(odst, osize); 157 xfrm_hash_free(osrc, osize); 158 xfrm_hash_free(ospi, osize); 159 160 out_unlock: 161 mutex_unlock(&hash_resize_mutex); 162 } 163 164 static DEFINE_RWLOCK(xfrm_state_afinfo_lock); 165 static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO]; 166 167 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 168 169 int __xfrm_state_delete(struct xfrm_state *x); 170 171 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 172 void km_state_expired(struct xfrm_state *x, int hard, u32 pid); 173 174 static struct xfrm_state_afinfo *xfrm_state_lock_afinfo(unsigned int family) 175 { 176 struct xfrm_state_afinfo *afinfo; 177 if (unlikely(family >= NPROTO)) 178 return NULL; 179 write_lock_bh(&xfrm_state_afinfo_lock); 180 afinfo = xfrm_state_afinfo[family]; 181 if (unlikely(!afinfo)) 182 write_unlock_bh(&xfrm_state_afinfo_lock); 183 return afinfo; 184 } 185 186 static void xfrm_state_unlock_afinfo(struct xfrm_state_afinfo *afinfo) 187 __releases(xfrm_state_afinfo_lock) 188 { 189 write_unlock_bh(&xfrm_state_afinfo_lock); 190 } 191 192 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 193 { 194 struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family); 195 const struct xfrm_type **typemap; 196 int err = 0; 197 198 if (unlikely(afinfo == NULL)) 199 return -EAFNOSUPPORT; 200 typemap = afinfo->type_map; 201 202 if (likely(typemap[type->proto] == NULL)) 203 typemap[type->proto] = type; 204 else 205 err = -EEXIST; 206 xfrm_state_unlock_afinfo(afinfo); 207 return err; 208 } 209 EXPORT_SYMBOL(xfrm_register_type); 210 211 int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 212 { 213 struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family); 214 const struct xfrm_type **typemap; 215 int err = 0; 216 217 if (unlikely(afinfo == NULL)) 218 return -EAFNOSUPPORT; 219 typemap = afinfo->type_map; 220 221 if (unlikely(typemap[type->proto] != type)) 222 err = -ENOENT; 223 else 224 typemap[type->proto] = NULL; 225 xfrm_state_unlock_afinfo(afinfo); 226 return err; 227 } 228 EXPORT_SYMBOL(xfrm_unregister_type); 229 230 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 231 { 232 struct xfrm_state_afinfo *afinfo; 233 const struct xfrm_type **typemap; 234 const struct xfrm_type *type; 235 int modload_attempted = 0; 236 237 retry: 238 afinfo = xfrm_state_get_afinfo(family); 239 if (unlikely(afinfo == NULL)) 240 return NULL; 241 typemap = afinfo->type_map; 242 243 type = typemap[proto]; 244 if (unlikely(type && !try_module_get(type->owner))) 245 type = NULL; 246 if (!type && !modload_attempted) { 247 xfrm_state_put_afinfo(afinfo); 248 request_module("xfrm-type-%d-%d", family, proto); 249 modload_attempted = 1; 250 goto retry; 251 } 252 253 xfrm_state_put_afinfo(afinfo); 254 return type; 255 } 256 257 static void xfrm_put_type(const struct xfrm_type *type) 258 { 259 module_put(type->owner); 260 } 261 262 int xfrm_register_mode(struct xfrm_mode *mode, int family) 263 { 264 struct xfrm_state_afinfo *afinfo; 265 struct xfrm_mode **modemap; 266 int err; 267 268 if (unlikely(mode->encap >= XFRM_MODE_MAX)) 269 return -EINVAL; 270 271 afinfo = xfrm_state_lock_afinfo(family); 272 if (unlikely(afinfo == NULL)) 273 return -EAFNOSUPPORT; 274 275 err = -EEXIST; 276 modemap = afinfo->mode_map; 277 if (modemap[mode->encap]) 278 goto out; 279 280 err = -ENOENT; 281 if (!try_module_get(afinfo->owner)) 282 goto out; 283 284 mode->afinfo = afinfo; 285 modemap[mode->encap] = mode; 286 err = 0; 287 288 out: 289 xfrm_state_unlock_afinfo(afinfo); 290 return err; 291 } 292 EXPORT_SYMBOL(xfrm_register_mode); 293 294 int xfrm_unregister_mode(struct xfrm_mode *mode, int family) 295 { 296 struct xfrm_state_afinfo *afinfo; 297 struct xfrm_mode **modemap; 298 int err; 299 300 if (unlikely(mode->encap >= XFRM_MODE_MAX)) 301 return -EINVAL; 302 303 afinfo = xfrm_state_lock_afinfo(family); 304 if (unlikely(afinfo == NULL)) 305 return -EAFNOSUPPORT; 306 307 err = -ENOENT; 308 modemap = afinfo->mode_map; 309 if (likely(modemap[mode->encap] == mode)) { 310 modemap[mode->encap] = NULL; 311 module_put(mode->afinfo->owner); 312 err = 0; 313 } 314 315 xfrm_state_unlock_afinfo(afinfo); 316 return err; 317 } 318 EXPORT_SYMBOL(xfrm_unregister_mode); 319 320 static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 321 { 322 struct xfrm_state_afinfo *afinfo; 323 struct xfrm_mode *mode; 324 int modload_attempted = 0; 325 326 if (unlikely(encap >= XFRM_MODE_MAX)) 327 return NULL; 328 329 retry: 330 afinfo = xfrm_state_get_afinfo(family); 331 if (unlikely(afinfo == NULL)) 332 return NULL; 333 334 mode = afinfo->mode_map[encap]; 335 if (unlikely(mode && !try_module_get(mode->owner))) 336 mode = NULL; 337 if (!mode && !modload_attempted) { 338 xfrm_state_put_afinfo(afinfo); 339 request_module("xfrm-mode-%d-%d", family, encap); 340 modload_attempted = 1; 341 goto retry; 342 } 343 344 xfrm_state_put_afinfo(afinfo); 345 return mode; 346 } 347 348 static void xfrm_put_mode(struct xfrm_mode *mode) 349 { 350 module_put(mode->owner); 351 } 352 353 static void xfrm_state_gc_destroy(struct xfrm_state *x) 354 { 355 del_timer_sync(&x->timer); 356 del_timer_sync(&x->rtimer); 357 kfree(x->aalg); 358 kfree(x->ealg); 359 kfree(x->calg); 360 kfree(x->encap); 361 kfree(x->coaddr); 362 if (x->inner_mode) 363 xfrm_put_mode(x->inner_mode); 364 if (x->inner_mode_iaf) 365 xfrm_put_mode(x->inner_mode_iaf); 366 if (x->outer_mode) 367 xfrm_put_mode(x->outer_mode); 368 if (x->type) { 369 x->type->destructor(x); 370 xfrm_put_type(x->type); 371 } 372 security_xfrm_state_free(x); 373 kfree(x); 374 } 375 376 static void xfrm_state_gc_task(struct work_struct *work) 377 { 378 struct net *net = container_of(work, struct net, xfrm.state_gc_work); 379 struct xfrm_state *x; 380 struct hlist_node *entry, *tmp; 381 struct hlist_head gc_list; 382 383 spin_lock_bh(&xfrm_state_gc_lock); 384 hlist_move_list(&net->xfrm.state_gc_list, &gc_list); 385 spin_unlock_bh(&xfrm_state_gc_lock); 386 387 hlist_for_each_entry_safe(x, entry, tmp, &gc_list, gclist) 388 xfrm_state_gc_destroy(x); 389 390 wake_up(&net->xfrm.km_waitq); 391 } 392 393 static inline unsigned long make_jiffies(long secs) 394 { 395 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ) 396 return MAX_SCHEDULE_TIMEOUT-1; 397 else 398 return secs*HZ; 399 } 400 401 static void xfrm_timer_handler(unsigned long data) 402 { 403 struct xfrm_state *x = (struct xfrm_state*)data; 404 struct net *net = xs_net(x); 405 unsigned long now = get_seconds(); 406 long next = LONG_MAX; 407 int warn = 0; 408 int err = 0; 409 410 spin_lock(&x->lock); 411 if (x->km.state == XFRM_STATE_DEAD) 412 goto out; 413 if (x->km.state == XFRM_STATE_EXPIRED) 414 goto expired; 415 if (x->lft.hard_add_expires_seconds) { 416 long tmo = x->lft.hard_add_expires_seconds + 417 x->curlft.add_time - now; 418 if (tmo <= 0) 419 goto expired; 420 if (tmo < next) 421 next = tmo; 422 } 423 if (x->lft.hard_use_expires_seconds) { 424 long tmo = x->lft.hard_use_expires_seconds + 425 (x->curlft.use_time ? : now) - now; 426 if (tmo <= 0) 427 goto expired; 428 if (tmo < next) 429 next = tmo; 430 } 431 if (x->km.dying) 432 goto resched; 433 if (x->lft.soft_add_expires_seconds) { 434 long tmo = x->lft.soft_add_expires_seconds + 435 x->curlft.add_time - now; 436 if (tmo <= 0) 437 warn = 1; 438 else if (tmo < next) 439 next = tmo; 440 } 441 if (x->lft.soft_use_expires_seconds) { 442 long tmo = x->lft.soft_use_expires_seconds + 443 (x->curlft.use_time ? : now) - now; 444 if (tmo <= 0) 445 warn = 1; 446 else if (tmo < next) 447 next = tmo; 448 } 449 450 x->km.dying = warn; 451 if (warn) 452 km_state_expired(x, 0, 0); 453 resched: 454 if (next != LONG_MAX) 455 mod_timer(&x->timer, jiffies + make_jiffies(next)); 456 457 goto out; 458 459 expired: 460 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) { 461 x->km.state = XFRM_STATE_EXPIRED; 462 wake_up(&net->xfrm.km_waitq); 463 next = 2; 464 goto resched; 465 } 466 467 err = __xfrm_state_delete(x); 468 if (!err && x->id.spi) 469 km_state_expired(x, 1, 0); 470 471 xfrm_audit_state_delete(x, err ? 0 : 1, 472 audit_get_loginuid(current), 473 audit_get_sessionid(current), 0); 474 475 out: 476 spin_unlock(&x->lock); 477 } 478 479 static void xfrm_replay_timer_handler(unsigned long data); 480 481 struct xfrm_state *xfrm_state_alloc(struct net *net) 482 { 483 struct xfrm_state *x; 484 485 x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC); 486 487 if (x) { 488 write_pnet(&x->xs_net, net); 489 atomic_set(&x->refcnt, 1); 490 atomic_set(&x->tunnel_users, 0); 491 INIT_LIST_HEAD(&x->km.all); 492 INIT_HLIST_NODE(&x->bydst); 493 INIT_HLIST_NODE(&x->bysrc); 494 INIT_HLIST_NODE(&x->byspi); 495 setup_timer(&x->timer, xfrm_timer_handler, (unsigned long)x); 496 setup_timer(&x->rtimer, xfrm_replay_timer_handler, 497 (unsigned long)x); 498 x->curlft.add_time = get_seconds(); 499 x->lft.soft_byte_limit = XFRM_INF; 500 x->lft.soft_packet_limit = XFRM_INF; 501 x->lft.hard_byte_limit = XFRM_INF; 502 x->lft.hard_packet_limit = XFRM_INF; 503 x->replay_maxage = 0; 504 x->replay_maxdiff = 0; 505 x->inner_mode = NULL; 506 x->inner_mode_iaf = NULL; 507 spin_lock_init(&x->lock); 508 } 509 return x; 510 } 511 EXPORT_SYMBOL(xfrm_state_alloc); 512 513 void __xfrm_state_destroy(struct xfrm_state *x) 514 { 515 struct net *net = xs_net(x); 516 517 WARN_ON(x->km.state != XFRM_STATE_DEAD); 518 519 spin_lock_bh(&xfrm_state_gc_lock); 520 hlist_add_head(&x->gclist, &net->xfrm.state_gc_list); 521 spin_unlock_bh(&xfrm_state_gc_lock); 522 schedule_work(&net->xfrm.state_gc_work); 523 } 524 EXPORT_SYMBOL(__xfrm_state_destroy); 525 526 int __xfrm_state_delete(struct xfrm_state *x) 527 { 528 struct net *net = xs_net(x); 529 int err = -ESRCH; 530 531 if (x->km.state != XFRM_STATE_DEAD) { 532 x->km.state = XFRM_STATE_DEAD; 533 spin_lock(&xfrm_state_lock); 534 list_del(&x->km.all); 535 hlist_del(&x->bydst); 536 hlist_del(&x->bysrc); 537 if (x->id.spi) 538 hlist_del(&x->byspi); 539 net->xfrm.state_num--; 540 spin_unlock(&xfrm_state_lock); 541 542 /* All xfrm_state objects are created by xfrm_state_alloc. 543 * The xfrm_state_alloc call gives a reference, and that 544 * is what we are dropping here. 545 */ 546 xfrm_state_put(x); 547 err = 0; 548 } 549 550 return err; 551 } 552 EXPORT_SYMBOL(__xfrm_state_delete); 553 554 int xfrm_state_delete(struct xfrm_state *x) 555 { 556 int err; 557 558 spin_lock_bh(&x->lock); 559 err = __xfrm_state_delete(x); 560 spin_unlock_bh(&x->lock); 561 562 return err; 563 } 564 EXPORT_SYMBOL(xfrm_state_delete); 565 566 #ifdef CONFIG_SECURITY_NETWORK_XFRM 567 static inline int 568 xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info) 569 { 570 int i, err = 0; 571 572 for (i = 0; i <= net->xfrm.state_hmask; i++) { 573 struct hlist_node *entry; 574 struct xfrm_state *x; 575 576 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) { 577 if (xfrm_id_proto_match(x->id.proto, proto) && 578 (err = security_xfrm_state_delete(x)) != 0) { 579 xfrm_audit_state_delete(x, 0, 580 audit_info->loginuid, 581 audit_info->sessionid, 582 audit_info->secid); 583 return err; 584 } 585 } 586 } 587 588 return err; 589 } 590 #else 591 static inline int 592 xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info) 593 { 594 return 0; 595 } 596 #endif 597 598 int xfrm_state_flush(struct net *net, u8 proto, struct xfrm_audit *audit_info) 599 { 600 int i, err = 0; 601 602 spin_lock_bh(&xfrm_state_lock); 603 err = xfrm_state_flush_secctx_check(net, proto, audit_info); 604 if (err) 605 goto out; 606 607 for (i = 0; i <= net->xfrm.state_hmask; i++) { 608 struct hlist_node *entry; 609 struct xfrm_state *x; 610 restart: 611 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) { 612 if (!xfrm_state_kern(x) && 613 xfrm_id_proto_match(x->id.proto, proto)) { 614 xfrm_state_hold(x); 615 spin_unlock_bh(&xfrm_state_lock); 616 617 err = xfrm_state_delete(x); 618 xfrm_audit_state_delete(x, err ? 0 : 1, 619 audit_info->loginuid, 620 audit_info->sessionid, 621 audit_info->secid); 622 xfrm_state_put(x); 623 624 spin_lock_bh(&xfrm_state_lock); 625 goto restart; 626 } 627 } 628 } 629 err = 0; 630 631 out: 632 spin_unlock_bh(&xfrm_state_lock); 633 wake_up(&net->xfrm.km_waitq); 634 return err; 635 } 636 EXPORT_SYMBOL(xfrm_state_flush); 637 638 void xfrm_sad_getinfo(struct xfrmk_sadinfo *si) 639 { 640 spin_lock_bh(&xfrm_state_lock); 641 si->sadcnt = init_net.xfrm.state_num; 642 si->sadhcnt = init_net.xfrm.state_hmask; 643 si->sadhmcnt = xfrm_state_hashmax; 644 spin_unlock_bh(&xfrm_state_lock); 645 } 646 EXPORT_SYMBOL(xfrm_sad_getinfo); 647 648 static int 649 xfrm_init_tempsel(struct xfrm_state *x, struct flowi *fl, 650 struct xfrm_tmpl *tmpl, 651 xfrm_address_t *daddr, xfrm_address_t *saddr, 652 unsigned short family) 653 { 654 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 655 if (!afinfo) 656 return -1; 657 afinfo->init_tempsel(x, fl, tmpl, daddr, saddr); 658 xfrm_state_put_afinfo(afinfo); 659 return 0; 660 } 661 662 static struct xfrm_state *__xfrm_state_lookup(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family) 663 { 664 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 665 struct xfrm_state *x; 666 struct hlist_node *entry; 667 668 hlist_for_each_entry(x, entry, net->xfrm.state_byspi+h, byspi) { 669 if (x->props.family != family || 670 x->id.spi != spi || 671 x->id.proto != proto) 672 continue; 673 674 switch (family) { 675 case AF_INET: 676 if (x->id.daddr.a4 != daddr->a4) 677 continue; 678 break; 679 case AF_INET6: 680 if (!ipv6_addr_equal((struct in6_addr *)daddr, 681 (struct in6_addr *) 682 x->id.daddr.a6)) 683 continue; 684 break; 685 } 686 687 xfrm_state_hold(x); 688 return x; 689 } 690 691 return NULL; 692 } 693 694 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto, unsigned short family) 695 { 696 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 697 struct xfrm_state *x; 698 struct hlist_node *entry; 699 700 hlist_for_each_entry(x, entry, net->xfrm.state_bysrc+h, bysrc) { 701 if (x->props.family != family || 702 x->id.proto != proto) 703 continue; 704 705 switch (family) { 706 case AF_INET: 707 if (x->id.daddr.a4 != daddr->a4 || 708 x->props.saddr.a4 != saddr->a4) 709 continue; 710 break; 711 case AF_INET6: 712 if (!ipv6_addr_equal((struct in6_addr *)daddr, 713 (struct in6_addr *) 714 x->id.daddr.a6) || 715 !ipv6_addr_equal((struct in6_addr *)saddr, 716 (struct in6_addr *) 717 x->props.saddr.a6)) 718 continue; 719 break; 720 } 721 722 xfrm_state_hold(x); 723 return x; 724 } 725 726 return NULL; 727 } 728 729 static inline struct xfrm_state * 730 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 731 { 732 struct net *net = xs_net(x); 733 734 if (use_spi) 735 return __xfrm_state_lookup(net, &x->id.daddr, x->id.spi, 736 x->id.proto, family); 737 else 738 return __xfrm_state_lookup_byaddr(net, &x->id.daddr, 739 &x->props.saddr, 740 x->id.proto, family); 741 } 742 743 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 744 { 745 if (have_hash_collision && 746 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 747 net->xfrm.state_num > net->xfrm.state_hmask) 748 schedule_work(&net->xfrm.state_hash_work); 749 } 750 751 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 752 struct flowi *fl, unsigned short family, 753 xfrm_address_t *daddr, xfrm_address_t *saddr, 754 struct xfrm_state **best, int *acq_in_progress, 755 int *error) 756 { 757 /* Resolution logic: 758 * 1. There is a valid state with matching selector. Done. 759 * 2. Valid state with inappropriate selector. Skip. 760 * 761 * Entering area of "sysdeps". 762 * 763 * 3. If state is not valid, selector is temporary, it selects 764 * only session which triggered previous resolution. Key 765 * manager will do something to install a state with proper 766 * selector. 767 */ 768 if (x->km.state == XFRM_STATE_VALID) { 769 if ((x->sel.family && 770 !xfrm_selector_match(&x->sel, fl, x->sel.family)) || 771 !security_xfrm_state_pol_flow_match(x, pol, fl)) 772 return; 773 774 if (!*best || 775 (*best)->km.dying > x->km.dying || 776 ((*best)->km.dying == x->km.dying && 777 (*best)->curlft.add_time < x->curlft.add_time)) 778 *best = x; 779 } else if (x->km.state == XFRM_STATE_ACQ) { 780 *acq_in_progress = 1; 781 } else if (x->km.state == XFRM_STATE_ERROR || 782 x->km.state == XFRM_STATE_EXPIRED) { 783 if (xfrm_selector_match(&x->sel, fl, x->sel.family) && 784 security_xfrm_state_pol_flow_match(x, pol, fl)) 785 *error = -ESRCH; 786 } 787 } 788 789 struct xfrm_state * 790 xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr, 791 struct flowi *fl, struct xfrm_tmpl *tmpl, 792 struct xfrm_policy *pol, int *err, 793 unsigned short family) 794 { 795 static xfrm_address_t saddr_wildcard = { }; 796 struct net *net = xp_net(pol); 797 unsigned int h, h_wildcard; 798 struct hlist_node *entry; 799 struct xfrm_state *x, *x0, *to_put; 800 int acquire_in_progress = 0; 801 int error = 0; 802 struct xfrm_state *best = NULL; 803 804 to_put = NULL; 805 806 spin_lock_bh(&xfrm_state_lock); 807 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, family); 808 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) { 809 if (x->props.family == family && 810 x->props.reqid == tmpl->reqid && 811 !(x->props.flags & XFRM_STATE_WILDRECV) && 812 xfrm_state_addr_check(x, daddr, saddr, family) && 813 tmpl->mode == x->props.mode && 814 tmpl->id.proto == x->id.proto && 815 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 816 xfrm_state_look_at(pol, x, fl, family, daddr, saddr, 817 &best, &acquire_in_progress, &error); 818 } 819 if (best) 820 goto found; 821 822 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, family); 823 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h_wildcard, bydst) { 824 if (x->props.family == family && 825 x->props.reqid == tmpl->reqid && 826 !(x->props.flags & XFRM_STATE_WILDRECV) && 827 xfrm_state_addr_check(x, daddr, saddr, family) && 828 tmpl->mode == x->props.mode && 829 tmpl->id.proto == x->id.proto && 830 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 831 xfrm_state_look_at(pol, x, fl, family, daddr, saddr, 832 &best, &acquire_in_progress, &error); 833 } 834 835 found: 836 x = best; 837 if (!x && !error && !acquire_in_progress) { 838 if (tmpl->id.spi && 839 (x0 = __xfrm_state_lookup(net, daddr, tmpl->id.spi, 840 tmpl->id.proto, family)) != NULL) { 841 to_put = x0; 842 error = -EEXIST; 843 goto out; 844 } 845 x = xfrm_state_alloc(net); 846 if (x == NULL) { 847 error = -ENOMEM; 848 goto out; 849 } 850 /* Initialize temporary selector matching only 851 * to current session. */ 852 xfrm_init_tempsel(x, fl, tmpl, daddr, saddr, family); 853 854 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->secid); 855 if (error) { 856 x->km.state = XFRM_STATE_DEAD; 857 to_put = x; 858 x = NULL; 859 goto out; 860 } 861 862 if (km_query(x, tmpl, pol) == 0) { 863 x->km.state = XFRM_STATE_ACQ; 864 list_add(&x->km.all, &net->xfrm.state_all); 865 hlist_add_head(&x->bydst, net->xfrm.state_bydst+h); 866 h = xfrm_src_hash(net, daddr, saddr, family); 867 hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h); 868 if (x->id.spi) { 869 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, family); 870 hlist_add_head(&x->byspi, net->xfrm.state_byspi+h); 871 } 872 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 873 x->timer.expires = jiffies + net->xfrm.sysctl_acq_expires*HZ; 874 add_timer(&x->timer); 875 net->xfrm.state_num++; 876 xfrm_hash_grow_check(net, x->bydst.next != NULL); 877 } else { 878 x->km.state = XFRM_STATE_DEAD; 879 to_put = x; 880 x = NULL; 881 error = -ESRCH; 882 } 883 } 884 out: 885 if (x) 886 xfrm_state_hold(x); 887 else 888 *err = acquire_in_progress ? -EAGAIN : error; 889 spin_unlock_bh(&xfrm_state_lock); 890 if (to_put) 891 xfrm_state_put(to_put); 892 return x; 893 } 894 895 struct xfrm_state * 896 xfrm_stateonly_find(struct net *net, 897 xfrm_address_t *daddr, xfrm_address_t *saddr, 898 unsigned short family, u8 mode, u8 proto, u32 reqid) 899 { 900 unsigned int h; 901 struct xfrm_state *rx = NULL, *x = NULL; 902 struct hlist_node *entry; 903 904 spin_lock(&xfrm_state_lock); 905 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 906 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) { 907 if (x->props.family == family && 908 x->props.reqid == reqid && 909 !(x->props.flags & XFRM_STATE_WILDRECV) && 910 xfrm_state_addr_check(x, daddr, saddr, family) && 911 mode == x->props.mode && 912 proto == x->id.proto && 913 x->km.state == XFRM_STATE_VALID) { 914 rx = x; 915 break; 916 } 917 } 918 919 if (rx) 920 xfrm_state_hold(rx); 921 spin_unlock(&xfrm_state_lock); 922 923 924 return rx; 925 } 926 EXPORT_SYMBOL(xfrm_stateonly_find); 927 928 static void __xfrm_state_insert(struct xfrm_state *x) 929 { 930 struct net *net = xs_net(x); 931 unsigned int h; 932 933 x->genid = ++xfrm_state_genid; 934 935 list_add(&x->km.all, &net->xfrm.state_all); 936 937 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 938 x->props.reqid, x->props.family); 939 hlist_add_head(&x->bydst, net->xfrm.state_bydst+h); 940 941 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 942 hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h); 943 944 if (x->id.spi) { 945 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 946 x->props.family); 947 948 hlist_add_head(&x->byspi, net->xfrm.state_byspi+h); 949 } 950 951 mod_timer(&x->timer, jiffies + HZ); 952 if (x->replay_maxage) 953 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 954 955 wake_up(&net->xfrm.km_waitq); 956 957 net->xfrm.state_num++; 958 959 xfrm_hash_grow_check(net, x->bydst.next != NULL); 960 } 961 962 /* xfrm_state_lock is held */ 963 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 964 { 965 struct net *net = xs_net(xnew); 966 unsigned short family = xnew->props.family; 967 u32 reqid = xnew->props.reqid; 968 struct xfrm_state *x; 969 struct hlist_node *entry; 970 unsigned int h; 971 972 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 973 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) { 974 if (x->props.family == family && 975 x->props.reqid == reqid && 976 !xfrm_addr_cmp(&x->id.daddr, &xnew->id.daddr, family) && 977 !xfrm_addr_cmp(&x->props.saddr, &xnew->props.saddr, family)) 978 x->genid = xfrm_state_genid; 979 } 980 } 981 982 void xfrm_state_insert(struct xfrm_state *x) 983 { 984 spin_lock_bh(&xfrm_state_lock); 985 __xfrm_state_bump_genids(x); 986 __xfrm_state_insert(x); 987 spin_unlock_bh(&xfrm_state_lock); 988 } 989 EXPORT_SYMBOL(xfrm_state_insert); 990 991 /* xfrm_state_lock is held */ 992 static struct xfrm_state *__find_acq_core(struct net *net, unsigned short family, u8 mode, u32 reqid, u8 proto, xfrm_address_t *daddr, xfrm_address_t *saddr, int create) 993 { 994 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 995 struct hlist_node *entry; 996 struct xfrm_state *x; 997 998 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) { 999 if (x->props.reqid != reqid || 1000 x->props.mode != mode || 1001 x->props.family != family || 1002 x->km.state != XFRM_STATE_ACQ || 1003 x->id.spi != 0 || 1004 x->id.proto != proto) 1005 continue; 1006 1007 switch (family) { 1008 case AF_INET: 1009 if (x->id.daddr.a4 != daddr->a4 || 1010 x->props.saddr.a4 != saddr->a4) 1011 continue; 1012 break; 1013 case AF_INET6: 1014 if (!ipv6_addr_equal((struct in6_addr *)x->id.daddr.a6, 1015 (struct in6_addr *)daddr) || 1016 !ipv6_addr_equal((struct in6_addr *) 1017 x->props.saddr.a6, 1018 (struct in6_addr *)saddr)) 1019 continue; 1020 break; 1021 } 1022 1023 xfrm_state_hold(x); 1024 return x; 1025 } 1026 1027 if (!create) 1028 return NULL; 1029 1030 x = xfrm_state_alloc(net); 1031 if (likely(x)) { 1032 switch (family) { 1033 case AF_INET: 1034 x->sel.daddr.a4 = daddr->a4; 1035 x->sel.saddr.a4 = saddr->a4; 1036 x->sel.prefixlen_d = 32; 1037 x->sel.prefixlen_s = 32; 1038 x->props.saddr.a4 = saddr->a4; 1039 x->id.daddr.a4 = daddr->a4; 1040 break; 1041 1042 case AF_INET6: 1043 ipv6_addr_copy((struct in6_addr *)x->sel.daddr.a6, 1044 (struct in6_addr *)daddr); 1045 ipv6_addr_copy((struct in6_addr *)x->sel.saddr.a6, 1046 (struct in6_addr *)saddr); 1047 x->sel.prefixlen_d = 128; 1048 x->sel.prefixlen_s = 128; 1049 ipv6_addr_copy((struct in6_addr *)x->props.saddr.a6, 1050 (struct in6_addr *)saddr); 1051 ipv6_addr_copy((struct in6_addr *)x->id.daddr.a6, 1052 (struct in6_addr *)daddr); 1053 break; 1054 } 1055 1056 x->km.state = XFRM_STATE_ACQ; 1057 x->id.proto = proto; 1058 x->props.family = family; 1059 x->props.mode = mode; 1060 x->props.reqid = reqid; 1061 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1062 xfrm_state_hold(x); 1063 x->timer.expires = jiffies + net->xfrm.sysctl_acq_expires*HZ; 1064 add_timer(&x->timer); 1065 list_add(&x->km.all, &net->xfrm.state_all); 1066 hlist_add_head(&x->bydst, net->xfrm.state_bydst+h); 1067 h = xfrm_src_hash(net, daddr, saddr, family); 1068 hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h); 1069 1070 net->xfrm.state_num++; 1071 1072 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1073 } 1074 1075 return x; 1076 } 1077 1078 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 seq); 1079 1080 int xfrm_state_add(struct xfrm_state *x) 1081 { 1082 struct net *net = xs_net(x); 1083 struct xfrm_state *x1, *to_put; 1084 int family; 1085 int err; 1086 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1087 1088 family = x->props.family; 1089 1090 to_put = NULL; 1091 1092 spin_lock_bh(&xfrm_state_lock); 1093 1094 x1 = __xfrm_state_locate(x, use_spi, family); 1095 if (x1) { 1096 to_put = x1; 1097 x1 = NULL; 1098 err = -EEXIST; 1099 goto out; 1100 } 1101 1102 if (use_spi && x->km.seq) { 1103 x1 = __xfrm_find_acq_byseq(net, x->km.seq); 1104 if (x1 && ((x1->id.proto != x->id.proto) || 1105 xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family))) { 1106 to_put = x1; 1107 x1 = NULL; 1108 } 1109 } 1110 1111 if (use_spi && !x1) 1112 x1 = __find_acq_core(net, family, x->props.mode, x->props.reqid, 1113 x->id.proto, 1114 &x->id.daddr, &x->props.saddr, 0); 1115 1116 __xfrm_state_bump_genids(x); 1117 __xfrm_state_insert(x); 1118 err = 0; 1119 1120 out: 1121 spin_unlock_bh(&xfrm_state_lock); 1122 1123 if (x1) { 1124 xfrm_state_delete(x1); 1125 xfrm_state_put(x1); 1126 } 1127 1128 if (to_put) 1129 xfrm_state_put(to_put); 1130 1131 return err; 1132 } 1133 EXPORT_SYMBOL(xfrm_state_add); 1134 1135 #ifdef CONFIG_XFRM_MIGRATE 1136 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, int *errp) 1137 { 1138 struct net *net = xs_net(orig); 1139 int err = -ENOMEM; 1140 struct xfrm_state *x = xfrm_state_alloc(net); 1141 if (!x) 1142 goto error; 1143 1144 memcpy(&x->id, &orig->id, sizeof(x->id)); 1145 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1146 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1147 x->props.mode = orig->props.mode; 1148 x->props.replay_window = orig->props.replay_window; 1149 x->props.reqid = orig->props.reqid; 1150 x->props.family = orig->props.family; 1151 x->props.saddr = orig->props.saddr; 1152 1153 if (orig->aalg) { 1154 x->aalg = xfrm_algo_clone(orig->aalg); 1155 if (!x->aalg) 1156 goto error; 1157 } 1158 x->props.aalgo = orig->props.aalgo; 1159 1160 if (orig->ealg) { 1161 x->ealg = xfrm_algo_clone(orig->ealg); 1162 if (!x->ealg) 1163 goto error; 1164 } 1165 x->props.ealgo = orig->props.ealgo; 1166 1167 if (orig->calg) { 1168 x->calg = xfrm_algo_clone(orig->calg); 1169 if (!x->calg) 1170 goto error; 1171 } 1172 x->props.calgo = orig->props.calgo; 1173 1174 if (orig->encap) { 1175 x->encap = kmemdup(orig->encap, sizeof(*x->encap), GFP_KERNEL); 1176 if (!x->encap) 1177 goto error; 1178 } 1179 1180 if (orig->coaddr) { 1181 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1182 GFP_KERNEL); 1183 if (!x->coaddr) 1184 goto error; 1185 } 1186 1187 err = xfrm_init_state(x); 1188 if (err) 1189 goto error; 1190 1191 x->props.flags = orig->props.flags; 1192 1193 x->curlft.add_time = orig->curlft.add_time; 1194 x->km.state = orig->km.state; 1195 x->km.seq = orig->km.seq; 1196 1197 return x; 1198 1199 error: 1200 if (errp) 1201 *errp = err; 1202 if (x) { 1203 kfree(x->aalg); 1204 kfree(x->ealg); 1205 kfree(x->calg); 1206 kfree(x->encap); 1207 kfree(x->coaddr); 1208 } 1209 kfree(x); 1210 return NULL; 1211 } 1212 1213 /* xfrm_state_lock is held */ 1214 struct xfrm_state * xfrm_migrate_state_find(struct xfrm_migrate *m) 1215 { 1216 unsigned int h; 1217 struct xfrm_state *x; 1218 struct hlist_node *entry; 1219 1220 if (m->reqid) { 1221 h = xfrm_dst_hash(&init_net, &m->old_daddr, &m->old_saddr, 1222 m->reqid, m->old_family); 1223 hlist_for_each_entry(x, entry, init_net.xfrm.state_bydst+h, bydst) { 1224 if (x->props.mode != m->mode || 1225 x->id.proto != m->proto) 1226 continue; 1227 if (m->reqid && x->props.reqid != m->reqid) 1228 continue; 1229 if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr, 1230 m->old_family) || 1231 xfrm_addr_cmp(&x->props.saddr, &m->old_saddr, 1232 m->old_family)) 1233 continue; 1234 xfrm_state_hold(x); 1235 return x; 1236 } 1237 } else { 1238 h = xfrm_src_hash(&init_net, &m->old_daddr, &m->old_saddr, 1239 m->old_family); 1240 hlist_for_each_entry(x, entry, init_net.xfrm.state_bysrc+h, bysrc) { 1241 if (x->props.mode != m->mode || 1242 x->id.proto != m->proto) 1243 continue; 1244 if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr, 1245 m->old_family) || 1246 xfrm_addr_cmp(&x->props.saddr, &m->old_saddr, 1247 m->old_family)) 1248 continue; 1249 xfrm_state_hold(x); 1250 return x; 1251 } 1252 } 1253 1254 return NULL; 1255 } 1256 EXPORT_SYMBOL(xfrm_migrate_state_find); 1257 1258 struct xfrm_state * xfrm_state_migrate(struct xfrm_state *x, 1259 struct xfrm_migrate *m) 1260 { 1261 struct xfrm_state *xc; 1262 int err; 1263 1264 xc = xfrm_state_clone(x, &err); 1265 if (!xc) 1266 return NULL; 1267 1268 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1269 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1270 1271 /* add state */ 1272 if (!xfrm_addr_cmp(&x->id.daddr, &m->new_daddr, m->new_family)) { 1273 /* a care is needed when the destination address of the 1274 state is to be updated as it is a part of triplet */ 1275 xfrm_state_insert(xc); 1276 } else { 1277 if ((err = xfrm_state_add(xc)) < 0) 1278 goto error; 1279 } 1280 1281 return xc; 1282 error: 1283 kfree(xc); 1284 return NULL; 1285 } 1286 EXPORT_SYMBOL(xfrm_state_migrate); 1287 #endif 1288 1289 int xfrm_state_update(struct xfrm_state *x) 1290 { 1291 struct xfrm_state *x1, *to_put; 1292 int err; 1293 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1294 1295 to_put = NULL; 1296 1297 spin_lock_bh(&xfrm_state_lock); 1298 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1299 1300 err = -ESRCH; 1301 if (!x1) 1302 goto out; 1303 1304 if (xfrm_state_kern(x1)) { 1305 to_put = x1; 1306 err = -EEXIST; 1307 goto out; 1308 } 1309 1310 if (x1->km.state == XFRM_STATE_ACQ) { 1311 __xfrm_state_insert(x); 1312 x = NULL; 1313 } 1314 err = 0; 1315 1316 out: 1317 spin_unlock_bh(&xfrm_state_lock); 1318 1319 if (to_put) 1320 xfrm_state_put(to_put); 1321 1322 if (err) 1323 return err; 1324 1325 if (!x) { 1326 xfrm_state_delete(x1); 1327 xfrm_state_put(x1); 1328 return 0; 1329 } 1330 1331 err = -EINVAL; 1332 spin_lock_bh(&x1->lock); 1333 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1334 if (x->encap && x1->encap) 1335 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1336 if (x->coaddr && x1->coaddr) { 1337 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1338 } 1339 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1340 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1341 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1342 x1->km.dying = 0; 1343 1344 mod_timer(&x1->timer, jiffies + HZ); 1345 if (x1->curlft.use_time) 1346 xfrm_state_check_expire(x1); 1347 1348 err = 0; 1349 } 1350 spin_unlock_bh(&x1->lock); 1351 1352 xfrm_state_put(x1); 1353 1354 return err; 1355 } 1356 EXPORT_SYMBOL(xfrm_state_update); 1357 1358 int xfrm_state_check_expire(struct xfrm_state *x) 1359 { 1360 if (!x->curlft.use_time) 1361 x->curlft.use_time = get_seconds(); 1362 1363 if (x->km.state != XFRM_STATE_VALID) 1364 return -EINVAL; 1365 1366 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1367 x->curlft.packets >= x->lft.hard_packet_limit) { 1368 x->km.state = XFRM_STATE_EXPIRED; 1369 mod_timer(&x->timer, jiffies); 1370 return -EINVAL; 1371 } 1372 1373 if (!x->km.dying && 1374 (x->curlft.bytes >= x->lft.soft_byte_limit || 1375 x->curlft.packets >= x->lft.soft_packet_limit)) { 1376 x->km.dying = 1; 1377 km_state_expired(x, 0, 0); 1378 } 1379 return 0; 1380 } 1381 EXPORT_SYMBOL(xfrm_state_check_expire); 1382 1383 struct xfrm_state * 1384 xfrm_state_lookup(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto, 1385 unsigned short family) 1386 { 1387 struct xfrm_state *x; 1388 1389 spin_lock_bh(&xfrm_state_lock); 1390 x = __xfrm_state_lookup(net, daddr, spi, proto, family); 1391 spin_unlock_bh(&xfrm_state_lock); 1392 return x; 1393 } 1394 EXPORT_SYMBOL(xfrm_state_lookup); 1395 1396 struct xfrm_state * 1397 xfrm_state_lookup_byaddr(struct net *net, 1398 xfrm_address_t *daddr, xfrm_address_t *saddr, 1399 u8 proto, unsigned short family) 1400 { 1401 struct xfrm_state *x; 1402 1403 spin_lock_bh(&xfrm_state_lock); 1404 x = __xfrm_state_lookup_byaddr(net, daddr, saddr, proto, family); 1405 spin_unlock_bh(&xfrm_state_lock); 1406 return x; 1407 } 1408 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1409 1410 struct xfrm_state * 1411 xfrm_find_acq(struct net *net, u8 mode, u32 reqid, u8 proto, 1412 xfrm_address_t *daddr, xfrm_address_t *saddr, 1413 int create, unsigned short family) 1414 { 1415 struct xfrm_state *x; 1416 1417 spin_lock_bh(&xfrm_state_lock); 1418 x = __find_acq_core(net, family, mode, reqid, proto, daddr, saddr, create); 1419 spin_unlock_bh(&xfrm_state_lock); 1420 1421 return x; 1422 } 1423 EXPORT_SYMBOL(xfrm_find_acq); 1424 1425 #ifdef CONFIG_XFRM_SUB_POLICY 1426 int 1427 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1428 unsigned short family) 1429 { 1430 int err = 0; 1431 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 1432 if (!afinfo) 1433 return -EAFNOSUPPORT; 1434 1435 spin_lock_bh(&xfrm_state_lock); 1436 if (afinfo->tmpl_sort) 1437 err = afinfo->tmpl_sort(dst, src, n); 1438 spin_unlock_bh(&xfrm_state_lock); 1439 xfrm_state_put_afinfo(afinfo); 1440 return err; 1441 } 1442 EXPORT_SYMBOL(xfrm_tmpl_sort); 1443 1444 int 1445 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1446 unsigned short family) 1447 { 1448 int err = 0; 1449 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 1450 if (!afinfo) 1451 return -EAFNOSUPPORT; 1452 1453 spin_lock_bh(&xfrm_state_lock); 1454 if (afinfo->state_sort) 1455 err = afinfo->state_sort(dst, src, n); 1456 spin_unlock_bh(&xfrm_state_lock); 1457 xfrm_state_put_afinfo(afinfo); 1458 return err; 1459 } 1460 EXPORT_SYMBOL(xfrm_state_sort); 1461 #endif 1462 1463 /* Silly enough, but I'm lazy to build resolution list */ 1464 1465 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 seq) 1466 { 1467 int i; 1468 1469 for (i = 0; i <= net->xfrm.state_hmask; i++) { 1470 struct hlist_node *entry; 1471 struct xfrm_state *x; 1472 1473 hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) { 1474 if (x->km.seq == seq && 1475 x->km.state == XFRM_STATE_ACQ) { 1476 xfrm_state_hold(x); 1477 return x; 1478 } 1479 } 1480 } 1481 return NULL; 1482 } 1483 1484 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 seq) 1485 { 1486 struct xfrm_state *x; 1487 1488 spin_lock_bh(&xfrm_state_lock); 1489 x = __xfrm_find_acq_byseq(net, seq); 1490 spin_unlock_bh(&xfrm_state_lock); 1491 return x; 1492 } 1493 EXPORT_SYMBOL(xfrm_find_acq_byseq); 1494 1495 u32 xfrm_get_acqseq(void) 1496 { 1497 u32 res; 1498 static u32 acqseq; 1499 static DEFINE_SPINLOCK(acqseq_lock); 1500 1501 spin_lock_bh(&acqseq_lock); 1502 res = (++acqseq ? : ++acqseq); 1503 spin_unlock_bh(&acqseq_lock); 1504 return res; 1505 } 1506 EXPORT_SYMBOL(xfrm_get_acqseq); 1507 1508 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) 1509 { 1510 struct net *net = xs_net(x); 1511 unsigned int h; 1512 struct xfrm_state *x0; 1513 int err = -ENOENT; 1514 __be32 minspi = htonl(low); 1515 __be32 maxspi = htonl(high); 1516 1517 spin_lock_bh(&x->lock); 1518 if (x->km.state == XFRM_STATE_DEAD) 1519 goto unlock; 1520 1521 err = 0; 1522 if (x->id.spi) 1523 goto unlock; 1524 1525 err = -ENOENT; 1526 1527 if (minspi == maxspi) { 1528 x0 = xfrm_state_lookup(net, &x->id.daddr, minspi, x->id.proto, x->props.family); 1529 if (x0) { 1530 xfrm_state_put(x0); 1531 goto unlock; 1532 } 1533 x->id.spi = minspi; 1534 } else { 1535 u32 spi = 0; 1536 for (h=0; h<high-low+1; h++) { 1537 spi = low + net_random()%(high-low+1); 1538 x0 = xfrm_state_lookup(net, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 1539 if (x0 == NULL) { 1540 x->id.spi = htonl(spi); 1541 break; 1542 } 1543 xfrm_state_put(x0); 1544 } 1545 } 1546 if (x->id.spi) { 1547 spin_lock_bh(&xfrm_state_lock); 1548 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 1549 hlist_add_head(&x->byspi, net->xfrm.state_byspi+h); 1550 spin_unlock_bh(&xfrm_state_lock); 1551 1552 err = 0; 1553 } 1554 1555 unlock: 1556 spin_unlock_bh(&x->lock); 1557 1558 return err; 1559 } 1560 EXPORT_SYMBOL(xfrm_alloc_spi); 1561 1562 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 1563 int (*func)(struct xfrm_state *, int, void*), 1564 void *data) 1565 { 1566 struct xfrm_state *state; 1567 struct xfrm_state_walk *x; 1568 int err = 0; 1569 1570 if (walk->seq != 0 && list_empty(&walk->all)) 1571 return 0; 1572 1573 spin_lock_bh(&xfrm_state_lock); 1574 if (list_empty(&walk->all)) 1575 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 1576 else 1577 x = list_entry(&walk->all, struct xfrm_state_walk, all); 1578 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 1579 if (x->state == XFRM_STATE_DEAD) 1580 continue; 1581 state = container_of(x, struct xfrm_state, km); 1582 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 1583 continue; 1584 err = func(state, walk->seq, data); 1585 if (err) { 1586 list_move_tail(&walk->all, &x->all); 1587 goto out; 1588 } 1589 walk->seq++; 1590 } 1591 if (walk->seq == 0) { 1592 err = -ENOENT; 1593 goto out; 1594 } 1595 list_del_init(&walk->all); 1596 out: 1597 spin_unlock_bh(&xfrm_state_lock); 1598 return err; 1599 } 1600 EXPORT_SYMBOL(xfrm_state_walk); 1601 1602 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto) 1603 { 1604 INIT_LIST_HEAD(&walk->all); 1605 walk->proto = proto; 1606 walk->state = XFRM_STATE_DEAD; 1607 walk->seq = 0; 1608 } 1609 EXPORT_SYMBOL(xfrm_state_walk_init); 1610 1611 void xfrm_state_walk_done(struct xfrm_state_walk *walk) 1612 { 1613 if (list_empty(&walk->all)) 1614 return; 1615 1616 spin_lock_bh(&xfrm_state_lock); 1617 list_del(&walk->all); 1618 spin_unlock_bh(&xfrm_state_lock); 1619 } 1620 EXPORT_SYMBOL(xfrm_state_walk_done); 1621 1622 1623 void xfrm_replay_notify(struct xfrm_state *x, int event) 1624 { 1625 struct km_event c; 1626 /* we send notify messages in case 1627 * 1. we updated on of the sequence numbers, and the seqno difference 1628 * is at least x->replay_maxdiff, in this case we also update the 1629 * timeout of our timer function 1630 * 2. if x->replay_maxage has elapsed since last update, 1631 * and there were changes 1632 * 1633 * The state structure must be locked! 1634 */ 1635 1636 switch (event) { 1637 case XFRM_REPLAY_UPDATE: 1638 if (x->replay_maxdiff && 1639 (x->replay.seq - x->preplay.seq < x->replay_maxdiff) && 1640 (x->replay.oseq - x->preplay.oseq < x->replay_maxdiff)) { 1641 if (x->xflags & XFRM_TIME_DEFER) 1642 event = XFRM_REPLAY_TIMEOUT; 1643 else 1644 return; 1645 } 1646 1647 break; 1648 1649 case XFRM_REPLAY_TIMEOUT: 1650 if ((x->replay.seq == x->preplay.seq) && 1651 (x->replay.bitmap == x->preplay.bitmap) && 1652 (x->replay.oseq == x->preplay.oseq)) { 1653 x->xflags |= XFRM_TIME_DEFER; 1654 return; 1655 } 1656 1657 break; 1658 } 1659 1660 memcpy(&x->preplay, &x->replay, sizeof(struct xfrm_replay_state)); 1661 c.event = XFRM_MSG_NEWAE; 1662 c.data.aevent = event; 1663 km_state_notify(x, &c); 1664 1665 if (x->replay_maxage && 1666 !mod_timer(&x->rtimer, jiffies + x->replay_maxage)) 1667 x->xflags &= ~XFRM_TIME_DEFER; 1668 } 1669 1670 static void xfrm_replay_timer_handler(unsigned long data) 1671 { 1672 struct xfrm_state *x = (struct xfrm_state*)data; 1673 1674 spin_lock(&x->lock); 1675 1676 if (x->km.state == XFRM_STATE_VALID) { 1677 if (xfrm_aevent_is_on(xs_net(x))) 1678 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); 1679 else 1680 x->xflags |= XFRM_TIME_DEFER; 1681 } 1682 1683 spin_unlock(&x->lock); 1684 } 1685 1686 int xfrm_replay_check(struct xfrm_state *x, 1687 struct sk_buff *skb, __be32 net_seq) 1688 { 1689 u32 diff; 1690 u32 seq = ntohl(net_seq); 1691 1692 if (unlikely(seq == 0)) 1693 goto err; 1694 1695 if (likely(seq > x->replay.seq)) 1696 return 0; 1697 1698 diff = x->replay.seq - seq; 1699 if (diff >= min_t(unsigned int, x->props.replay_window, 1700 sizeof(x->replay.bitmap) * 8)) { 1701 x->stats.replay_window++; 1702 goto err; 1703 } 1704 1705 if (x->replay.bitmap & (1U << diff)) { 1706 x->stats.replay++; 1707 goto err; 1708 } 1709 return 0; 1710 1711 err: 1712 xfrm_audit_state_replay(x, skb, net_seq); 1713 return -EINVAL; 1714 } 1715 1716 void xfrm_replay_advance(struct xfrm_state *x, __be32 net_seq) 1717 { 1718 u32 diff; 1719 u32 seq = ntohl(net_seq); 1720 1721 if (seq > x->replay.seq) { 1722 diff = seq - x->replay.seq; 1723 if (diff < x->props.replay_window) 1724 x->replay.bitmap = ((x->replay.bitmap) << diff) | 1; 1725 else 1726 x->replay.bitmap = 1; 1727 x->replay.seq = seq; 1728 } else { 1729 diff = x->replay.seq - seq; 1730 x->replay.bitmap |= (1U << diff); 1731 } 1732 1733 if (xfrm_aevent_is_on(xs_net(x))) 1734 xfrm_replay_notify(x, XFRM_REPLAY_UPDATE); 1735 } 1736 1737 static LIST_HEAD(xfrm_km_list); 1738 static DEFINE_RWLOCK(xfrm_km_lock); 1739 1740 void km_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) 1741 { 1742 struct xfrm_mgr *km; 1743 1744 read_lock(&xfrm_km_lock); 1745 list_for_each_entry(km, &xfrm_km_list, list) 1746 if (km->notify_policy) 1747 km->notify_policy(xp, dir, c); 1748 read_unlock(&xfrm_km_lock); 1749 } 1750 1751 void km_state_notify(struct xfrm_state *x, struct km_event *c) 1752 { 1753 struct xfrm_mgr *km; 1754 read_lock(&xfrm_km_lock); 1755 list_for_each_entry(km, &xfrm_km_list, list) 1756 if (km->notify) 1757 km->notify(x, c); 1758 read_unlock(&xfrm_km_lock); 1759 } 1760 1761 EXPORT_SYMBOL(km_policy_notify); 1762 EXPORT_SYMBOL(km_state_notify); 1763 1764 void km_state_expired(struct xfrm_state *x, int hard, u32 pid) 1765 { 1766 struct net *net = xs_net(x); 1767 struct km_event c; 1768 1769 c.data.hard = hard; 1770 c.pid = pid; 1771 c.event = XFRM_MSG_EXPIRE; 1772 km_state_notify(x, &c); 1773 1774 if (hard) 1775 wake_up(&net->xfrm.km_waitq); 1776 } 1777 1778 EXPORT_SYMBOL(km_state_expired); 1779 /* 1780 * We send to all registered managers regardless of failure 1781 * We are happy with one success 1782 */ 1783 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 1784 { 1785 int err = -EINVAL, acqret; 1786 struct xfrm_mgr *km; 1787 1788 read_lock(&xfrm_km_lock); 1789 list_for_each_entry(km, &xfrm_km_list, list) { 1790 acqret = km->acquire(x, t, pol, XFRM_POLICY_OUT); 1791 if (!acqret) 1792 err = acqret; 1793 } 1794 read_unlock(&xfrm_km_lock); 1795 return err; 1796 } 1797 EXPORT_SYMBOL(km_query); 1798 1799 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 1800 { 1801 int err = -EINVAL; 1802 struct xfrm_mgr *km; 1803 1804 read_lock(&xfrm_km_lock); 1805 list_for_each_entry(km, &xfrm_km_list, list) { 1806 if (km->new_mapping) 1807 err = km->new_mapping(x, ipaddr, sport); 1808 if (!err) 1809 break; 1810 } 1811 read_unlock(&xfrm_km_lock); 1812 return err; 1813 } 1814 EXPORT_SYMBOL(km_new_mapping); 1815 1816 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 pid) 1817 { 1818 struct net *net = xp_net(pol); 1819 struct km_event c; 1820 1821 c.data.hard = hard; 1822 c.pid = pid; 1823 c.event = XFRM_MSG_POLEXPIRE; 1824 km_policy_notify(pol, dir, &c); 1825 1826 if (hard) 1827 wake_up(&net->xfrm.km_waitq); 1828 } 1829 EXPORT_SYMBOL(km_policy_expired); 1830 1831 #ifdef CONFIG_XFRM_MIGRATE 1832 int km_migrate(struct xfrm_selector *sel, u8 dir, u8 type, 1833 struct xfrm_migrate *m, int num_migrate, 1834 struct xfrm_kmaddress *k) 1835 { 1836 int err = -EINVAL; 1837 int ret; 1838 struct xfrm_mgr *km; 1839 1840 read_lock(&xfrm_km_lock); 1841 list_for_each_entry(km, &xfrm_km_list, list) { 1842 if (km->migrate) { 1843 ret = km->migrate(sel, dir, type, m, num_migrate, k); 1844 if (!ret) 1845 err = ret; 1846 } 1847 } 1848 read_unlock(&xfrm_km_lock); 1849 return err; 1850 } 1851 EXPORT_SYMBOL(km_migrate); 1852 #endif 1853 1854 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 1855 { 1856 int err = -EINVAL; 1857 int ret; 1858 struct xfrm_mgr *km; 1859 1860 read_lock(&xfrm_km_lock); 1861 list_for_each_entry(km, &xfrm_km_list, list) { 1862 if (km->report) { 1863 ret = km->report(net, proto, sel, addr); 1864 if (!ret) 1865 err = ret; 1866 } 1867 } 1868 read_unlock(&xfrm_km_lock); 1869 return err; 1870 } 1871 EXPORT_SYMBOL(km_report); 1872 1873 int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 1874 { 1875 int err; 1876 u8 *data; 1877 struct xfrm_mgr *km; 1878 struct xfrm_policy *pol = NULL; 1879 1880 if (optlen <= 0 || optlen > PAGE_SIZE) 1881 return -EMSGSIZE; 1882 1883 data = kmalloc(optlen, GFP_KERNEL); 1884 if (!data) 1885 return -ENOMEM; 1886 1887 err = -EFAULT; 1888 if (copy_from_user(data, optval, optlen)) 1889 goto out; 1890 1891 err = -EINVAL; 1892 read_lock(&xfrm_km_lock); 1893 list_for_each_entry(km, &xfrm_km_list, list) { 1894 pol = km->compile_policy(sk, optname, data, 1895 optlen, &err); 1896 if (err >= 0) 1897 break; 1898 } 1899 read_unlock(&xfrm_km_lock); 1900 1901 if (err >= 0) { 1902 xfrm_sk_policy_insert(sk, err, pol); 1903 xfrm_pol_put(pol); 1904 err = 0; 1905 } 1906 1907 out: 1908 kfree(data); 1909 return err; 1910 } 1911 EXPORT_SYMBOL(xfrm_user_policy); 1912 1913 int xfrm_register_km(struct xfrm_mgr *km) 1914 { 1915 write_lock_bh(&xfrm_km_lock); 1916 list_add_tail(&km->list, &xfrm_km_list); 1917 write_unlock_bh(&xfrm_km_lock); 1918 return 0; 1919 } 1920 EXPORT_SYMBOL(xfrm_register_km); 1921 1922 int xfrm_unregister_km(struct xfrm_mgr *km) 1923 { 1924 write_lock_bh(&xfrm_km_lock); 1925 list_del(&km->list); 1926 write_unlock_bh(&xfrm_km_lock); 1927 return 0; 1928 } 1929 EXPORT_SYMBOL(xfrm_unregister_km); 1930 1931 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 1932 { 1933 int err = 0; 1934 if (unlikely(afinfo == NULL)) 1935 return -EINVAL; 1936 if (unlikely(afinfo->family >= NPROTO)) 1937 return -EAFNOSUPPORT; 1938 write_lock_bh(&xfrm_state_afinfo_lock); 1939 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 1940 err = -ENOBUFS; 1941 else 1942 xfrm_state_afinfo[afinfo->family] = afinfo; 1943 write_unlock_bh(&xfrm_state_afinfo_lock); 1944 return err; 1945 } 1946 EXPORT_SYMBOL(xfrm_state_register_afinfo); 1947 1948 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 1949 { 1950 int err = 0; 1951 if (unlikely(afinfo == NULL)) 1952 return -EINVAL; 1953 if (unlikely(afinfo->family >= NPROTO)) 1954 return -EAFNOSUPPORT; 1955 write_lock_bh(&xfrm_state_afinfo_lock); 1956 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 1957 if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo)) 1958 err = -EINVAL; 1959 else 1960 xfrm_state_afinfo[afinfo->family] = NULL; 1961 } 1962 write_unlock_bh(&xfrm_state_afinfo_lock); 1963 return err; 1964 } 1965 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 1966 1967 static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 1968 { 1969 struct xfrm_state_afinfo *afinfo; 1970 if (unlikely(family >= NPROTO)) 1971 return NULL; 1972 read_lock(&xfrm_state_afinfo_lock); 1973 afinfo = xfrm_state_afinfo[family]; 1974 if (unlikely(!afinfo)) 1975 read_unlock(&xfrm_state_afinfo_lock); 1976 return afinfo; 1977 } 1978 1979 static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo) 1980 __releases(xfrm_state_afinfo_lock) 1981 { 1982 read_unlock(&xfrm_state_afinfo_lock); 1983 } 1984 1985 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 1986 void xfrm_state_delete_tunnel(struct xfrm_state *x) 1987 { 1988 if (x->tunnel) { 1989 struct xfrm_state *t = x->tunnel; 1990 1991 if (atomic_read(&t->tunnel_users) == 2) 1992 xfrm_state_delete(t); 1993 atomic_dec(&t->tunnel_users); 1994 xfrm_state_put(t); 1995 x->tunnel = NULL; 1996 } 1997 } 1998 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 1999 2000 int xfrm_state_mtu(struct xfrm_state *x, int mtu) 2001 { 2002 int res; 2003 2004 spin_lock_bh(&x->lock); 2005 if (x->km.state == XFRM_STATE_VALID && 2006 x->type && x->type->get_mtu) 2007 res = x->type->get_mtu(x, mtu); 2008 else 2009 res = mtu - x->props.header_len; 2010 spin_unlock_bh(&x->lock); 2011 return res; 2012 } 2013 2014 int xfrm_init_state(struct xfrm_state *x) 2015 { 2016 struct xfrm_state_afinfo *afinfo; 2017 struct xfrm_mode *inner_mode; 2018 int family = x->props.family; 2019 int err; 2020 2021 err = -EAFNOSUPPORT; 2022 afinfo = xfrm_state_get_afinfo(family); 2023 if (!afinfo) 2024 goto error; 2025 2026 err = 0; 2027 if (afinfo->init_flags) 2028 err = afinfo->init_flags(x); 2029 2030 xfrm_state_put_afinfo(afinfo); 2031 2032 if (err) 2033 goto error; 2034 2035 err = -EPROTONOSUPPORT; 2036 2037 if (x->sel.family != AF_UNSPEC) { 2038 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2039 if (inner_mode == NULL) 2040 goto error; 2041 2042 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2043 family != x->sel.family) { 2044 xfrm_put_mode(inner_mode); 2045 goto error; 2046 } 2047 2048 x->inner_mode = inner_mode; 2049 } else { 2050 struct xfrm_mode *inner_mode_iaf; 2051 int iafamily = AF_INET; 2052 2053 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2054 if (inner_mode == NULL) 2055 goto error; 2056 2057 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) { 2058 xfrm_put_mode(inner_mode); 2059 goto error; 2060 } 2061 x->inner_mode = inner_mode; 2062 2063 if (x->props.family == AF_INET) 2064 iafamily = AF_INET6; 2065 2066 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2067 if (inner_mode_iaf) { 2068 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2069 x->inner_mode_iaf = inner_mode_iaf; 2070 else 2071 xfrm_put_mode(inner_mode_iaf); 2072 } 2073 } 2074 2075 x->type = xfrm_get_type(x->id.proto, family); 2076 if (x->type == NULL) 2077 goto error; 2078 2079 err = x->type->init_state(x); 2080 if (err) 2081 goto error; 2082 2083 x->outer_mode = xfrm_get_mode(x->props.mode, family); 2084 if (x->outer_mode == NULL) 2085 goto error; 2086 2087 x->km.state = XFRM_STATE_VALID; 2088 2089 error: 2090 return err; 2091 } 2092 2093 EXPORT_SYMBOL(xfrm_init_state); 2094 2095 int __net_init xfrm_state_init(struct net *net) 2096 { 2097 unsigned int sz; 2098 2099 INIT_LIST_HEAD(&net->xfrm.state_all); 2100 2101 sz = sizeof(struct hlist_head) * 8; 2102 2103 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2104 if (!net->xfrm.state_bydst) 2105 goto out_bydst; 2106 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2107 if (!net->xfrm.state_bysrc) 2108 goto out_bysrc; 2109 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2110 if (!net->xfrm.state_byspi) 2111 goto out_byspi; 2112 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2113 2114 net->xfrm.state_num = 0; 2115 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2116 INIT_HLIST_HEAD(&net->xfrm.state_gc_list); 2117 INIT_WORK(&net->xfrm.state_gc_work, xfrm_state_gc_task); 2118 init_waitqueue_head(&net->xfrm.km_waitq); 2119 return 0; 2120 2121 out_byspi: 2122 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2123 out_bysrc: 2124 xfrm_hash_free(net->xfrm.state_bydst, sz); 2125 out_bydst: 2126 return -ENOMEM; 2127 } 2128 2129 void xfrm_state_fini(struct net *net) 2130 { 2131 struct xfrm_audit audit_info; 2132 unsigned int sz; 2133 2134 flush_work(&net->xfrm.state_hash_work); 2135 audit_info.loginuid = -1; 2136 audit_info.sessionid = -1; 2137 audit_info.secid = 0; 2138 xfrm_state_flush(net, IPSEC_PROTO_ANY, &audit_info); 2139 flush_work(&net->xfrm.state_gc_work); 2140 2141 WARN_ON(!list_empty(&net->xfrm.state_all)); 2142 2143 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2144 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2145 xfrm_hash_free(net->xfrm.state_byspi, sz); 2146 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2147 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2148 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2149 xfrm_hash_free(net->xfrm.state_bydst, sz); 2150 } 2151 2152 #ifdef CONFIG_AUDITSYSCALL 2153 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2154 struct audit_buffer *audit_buf) 2155 { 2156 struct xfrm_sec_ctx *ctx = x->security; 2157 u32 spi = ntohl(x->id.spi); 2158 2159 if (ctx) 2160 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2161 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2162 2163 switch(x->props.family) { 2164 case AF_INET: 2165 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2166 &x->props.saddr.a4, &x->id.daddr.a4); 2167 break; 2168 case AF_INET6: 2169 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2170 x->props.saddr.a6, x->id.daddr.a6); 2171 break; 2172 } 2173 2174 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2175 } 2176 2177 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2178 struct audit_buffer *audit_buf) 2179 { 2180 struct iphdr *iph4; 2181 struct ipv6hdr *iph6; 2182 2183 switch (family) { 2184 case AF_INET: 2185 iph4 = ip_hdr(skb); 2186 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2187 &iph4->saddr, &iph4->daddr); 2188 break; 2189 case AF_INET6: 2190 iph6 = ipv6_hdr(skb); 2191 audit_log_format(audit_buf, 2192 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2193 &iph6->saddr,&iph6->daddr, 2194 iph6->flow_lbl[0] & 0x0f, 2195 iph6->flow_lbl[1], 2196 iph6->flow_lbl[2]); 2197 break; 2198 } 2199 } 2200 2201 void xfrm_audit_state_add(struct xfrm_state *x, int result, 2202 uid_t auid, u32 sessionid, u32 secid) 2203 { 2204 struct audit_buffer *audit_buf; 2205 2206 audit_buf = xfrm_audit_start("SAD-add"); 2207 if (audit_buf == NULL) 2208 return; 2209 xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf); 2210 xfrm_audit_helper_sainfo(x, audit_buf); 2211 audit_log_format(audit_buf, " res=%u", result); 2212 audit_log_end(audit_buf); 2213 } 2214 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2215 2216 void xfrm_audit_state_delete(struct xfrm_state *x, int result, 2217 uid_t auid, u32 sessionid, u32 secid) 2218 { 2219 struct audit_buffer *audit_buf; 2220 2221 audit_buf = xfrm_audit_start("SAD-delete"); 2222 if (audit_buf == NULL) 2223 return; 2224 xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf); 2225 xfrm_audit_helper_sainfo(x, audit_buf); 2226 audit_log_format(audit_buf, " res=%u", result); 2227 audit_log_end(audit_buf); 2228 } 2229 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 2230 2231 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 2232 struct sk_buff *skb) 2233 { 2234 struct audit_buffer *audit_buf; 2235 u32 spi; 2236 2237 audit_buf = xfrm_audit_start("SA-replay-overflow"); 2238 if (audit_buf == NULL) 2239 return; 2240 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2241 /* don't record the sequence number because it's inherent in this kind 2242 * of audit message */ 2243 spi = ntohl(x->id.spi); 2244 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2245 audit_log_end(audit_buf); 2246 } 2247 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 2248 2249 static void xfrm_audit_state_replay(struct xfrm_state *x, 2250 struct sk_buff *skb, __be32 net_seq) 2251 { 2252 struct audit_buffer *audit_buf; 2253 u32 spi; 2254 2255 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 2256 if (audit_buf == NULL) 2257 return; 2258 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2259 spi = ntohl(x->id.spi); 2260 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2261 spi, spi, ntohl(net_seq)); 2262 audit_log_end(audit_buf); 2263 } 2264 2265 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 2266 { 2267 struct audit_buffer *audit_buf; 2268 2269 audit_buf = xfrm_audit_start("SA-notfound"); 2270 if (audit_buf == NULL) 2271 return; 2272 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2273 audit_log_end(audit_buf); 2274 } 2275 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 2276 2277 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 2278 __be32 net_spi, __be32 net_seq) 2279 { 2280 struct audit_buffer *audit_buf; 2281 u32 spi; 2282 2283 audit_buf = xfrm_audit_start("SA-notfound"); 2284 if (audit_buf == NULL) 2285 return; 2286 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2287 spi = ntohl(net_spi); 2288 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2289 spi, spi, ntohl(net_seq)); 2290 audit_log_end(audit_buf); 2291 } 2292 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 2293 2294 void xfrm_audit_state_icvfail(struct xfrm_state *x, 2295 struct sk_buff *skb, u8 proto) 2296 { 2297 struct audit_buffer *audit_buf; 2298 __be32 net_spi; 2299 __be32 net_seq; 2300 2301 audit_buf = xfrm_audit_start("SA-icv-failure"); 2302 if (audit_buf == NULL) 2303 return; 2304 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2305 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 2306 u32 spi = ntohl(net_spi); 2307 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2308 spi, spi, ntohl(net_seq)); 2309 } 2310 audit_log_end(audit_buf); 2311 } 2312 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 2313 #endif /* CONFIG_AUDITSYSCALL */ 2314