1 /* 2 * xfrm_state.c 3 * 4 * Changes: 5 * Mitsuru KANDA @USAGI 6 * Kazunori MIYAZAWA @USAGI 7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 8 * IPv6 support 9 * YOSHIFUJI Hideaki @USAGI 10 * Split up af-specific functions 11 * Derek Atkins <derek@ihtfp.com> 12 * Add UDP Encapsulation 13 * 14 */ 15 16 #include <linux/workqueue.h> 17 #include <net/xfrm.h> 18 #include <linux/pfkeyv2.h> 19 #include <linux/ipsec.h> 20 #include <linux/module.h> 21 #include <linux/cache.h> 22 #include <linux/audit.h> 23 #include <linux/uaccess.h> 24 #include <linux/ktime.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/kernel.h> 28 29 #include "xfrm_hash.h" 30 31 #define xfrm_state_deref_prot(table, net) \ 32 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 33 34 static void xfrm_state_gc_task(struct work_struct *work); 35 36 /* Each xfrm_state may be linked to two tables: 37 38 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 39 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 40 destination/tunnel endpoint. (output) 41 */ 42 43 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 44 static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation); 45 static struct kmem_cache *xfrm_state_cache __ro_after_init; 46 47 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 48 static HLIST_HEAD(xfrm_state_gc_list); 49 50 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 51 { 52 return refcount_inc_not_zero(&x->refcnt); 53 } 54 55 static inline unsigned int xfrm_dst_hash(struct net *net, 56 const xfrm_address_t *daddr, 57 const xfrm_address_t *saddr, 58 u32 reqid, 59 unsigned short family) 60 { 61 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 62 } 63 64 static inline unsigned int xfrm_src_hash(struct net *net, 65 const xfrm_address_t *daddr, 66 const xfrm_address_t *saddr, 67 unsigned short family) 68 { 69 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 70 } 71 72 static inline unsigned int 73 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 74 __be32 spi, u8 proto, unsigned short family) 75 { 76 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 77 } 78 79 static void xfrm_hash_transfer(struct hlist_head *list, 80 struct hlist_head *ndsttable, 81 struct hlist_head *nsrctable, 82 struct hlist_head *nspitable, 83 unsigned int nhashmask) 84 { 85 struct hlist_node *tmp; 86 struct xfrm_state *x; 87 88 hlist_for_each_entry_safe(x, tmp, list, bydst) { 89 unsigned int h; 90 91 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 92 x->props.reqid, x->props.family, 93 nhashmask); 94 hlist_add_head_rcu(&x->bydst, ndsttable + h); 95 96 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 97 x->props.family, 98 nhashmask); 99 hlist_add_head_rcu(&x->bysrc, nsrctable + h); 100 101 if (x->id.spi) { 102 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 103 x->id.proto, x->props.family, 104 nhashmask); 105 hlist_add_head_rcu(&x->byspi, nspitable + h); 106 } 107 } 108 } 109 110 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 111 { 112 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 113 } 114 115 static void xfrm_hash_resize(struct work_struct *work) 116 { 117 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 118 struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; 119 unsigned long nsize, osize; 120 unsigned int nhashmask, ohashmask; 121 int i; 122 123 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 124 ndst = xfrm_hash_alloc(nsize); 125 if (!ndst) 126 return; 127 nsrc = xfrm_hash_alloc(nsize); 128 if (!nsrc) { 129 xfrm_hash_free(ndst, nsize); 130 return; 131 } 132 nspi = xfrm_hash_alloc(nsize); 133 if (!nspi) { 134 xfrm_hash_free(ndst, nsize); 135 xfrm_hash_free(nsrc, nsize); 136 return; 137 } 138 139 spin_lock_bh(&net->xfrm.xfrm_state_lock); 140 write_seqcount_begin(&xfrm_state_hash_generation); 141 142 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 143 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 144 for (i = net->xfrm.state_hmask; i >= 0; i--) 145 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask); 146 147 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 148 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 149 ohashmask = net->xfrm.state_hmask; 150 151 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 152 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 153 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 154 net->xfrm.state_hmask = nhashmask; 155 156 write_seqcount_end(&xfrm_state_hash_generation); 157 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 158 159 osize = (ohashmask + 1) * sizeof(struct hlist_head); 160 161 synchronize_rcu(); 162 163 xfrm_hash_free(odst, osize); 164 xfrm_hash_free(osrc, osize); 165 xfrm_hash_free(ospi, osize); 166 } 167 168 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 169 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 170 171 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 172 173 int __xfrm_state_delete(struct xfrm_state *x); 174 175 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 176 bool km_is_alive(const struct km_event *c); 177 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 178 179 static DEFINE_SPINLOCK(xfrm_type_lock); 180 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 181 { 182 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 183 const struct xfrm_type **typemap; 184 int err = 0; 185 186 if (unlikely(afinfo == NULL)) 187 return -EAFNOSUPPORT; 188 typemap = afinfo->type_map; 189 spin_lock_bh(&xfrm_type_lock); 190 191 if (likely(typemap[type->proto] == NULL)) 192 typemap[type->proto] = type; 193 else 194 err = -EEXIST; 195 spin_unlock_bh(&xfrm_type_lock); 196 rcu_read_unlock(); 197 return err; 198 } 199 EXPORT_SYMBOL(xfrm_register_type); 200 201 int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 202 { 203 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 204 const struct xfrm_type **typemap; 205 int err = 0; 206 207 if (unlikely(afinfo == NULL)) 208 return -EAFNOSUPPORT; 209 typemap = afinfo->type_map; 210 spin_lock_bh(&xfrm_type_lock); 211 212 if (unlikely(typemap[type->proto] != type)) 213 err = -ENOENT; 214 else 215 typemap[type->proto] = NULL; 216 spin_unlock_bh(&xfrm_type_lock); 217 rcu_read_unlock(); 218 return err; 219 } 220 EXPORT_SYMBOL(xfrm_unregister_type); 221 222 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 223 { 224 struct xfrm_state_afinfo *afinfo; 225 const struct xfrm_type **typemap; 226 const struct xfrm_type *type; 227 int modload_attempted = 0; 228 229 retry: 230 afinfo = xfrm_state_get_afinfo(family); 231 if (unlikely(afinfo == NULL)) 232 return NULL; 233 typemap = afinfo->type_map; 234 235 type = READ_ONCE(typemap[proto]); 236 if (unlikely(type && !try_module_get(type->owner))) 237 type = NULL; 238 239 rcu_read_unlock(); 240 241 if (!type && !modload_attempted) { 242 request_module("xfrm-type-%d-%d", family, proto); 243 modload_attempted = 1; 244 goto retry; 245 } 246 247 return type; 248 } 249 250 static void xfrm_put_type(const struct xfrm_type *type) 251 { 252 module_put(type->owner); 253 } 254 255 static DEFINE_SPINLOCK(xfrm_type_offload_lock); 256 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 257 unsigned short family) 258 { 259 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 260 const struct xfrm_type_offload **typemap; 261 int err = 0; 262 263 if (unlikely(afinfo == NULL)) 264 return -EAFNOSUPPORT; 265 typemap = afinfo->type_offload_map; 266 spin_lock_bh(&xfrm_type_offload_lock); 267 268 if (likely(typemap[type->proto] == NULL)) 269 typemap[type->proto] = type; 270 else 271 err = -EEXIST; 272 spin_unlock_bh(&xfrm_type_offload_lock); 273 rcu_read_unlock(); 274 return err; 275 } 276 EXPORT_SYMBOL(xfrm_register_type_offload); 277 278 int xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 279 unsigned short family) 280 { 281 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 282 const struct xfrm_type_offload **typemap; 283 int err = 0; 284 285 if (unlikely(afinfo == NULL)) 286 return -EAFNOSUPPORT; 287 typemap = afinfo->type_offload_map; 288 spin_lock_bh(&xfrm_type_offload_lock); 289 290 if (unlikely(typemap[type->proto] != type)) 291 err = -ENOENT; 292 else 293 typemap[type->proto] = NULL; 294 spin_unlock_bh(&xfrm_type_offload_lock); 295 rcu_read_unlock(); 296 return err; 297 } 298 EXPORT_SYMBOL(xfrm_unregister_type_offload); 299 300 static const struct xfrm_type_offload * 301 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 302 { 303 struct xfrm_state_afinfo *afinfo; 304 const struct xfrm_type_offload **typemap; 305 const struct xfrm_type_offload *type; 306 307 retry: 308 afinfo = xfrm_state_get_afinfo(family); 309 if (unlikely(afinfo == NULL)) 310 return NULL; 311 typemap = afinfo->type_offload_map; 312 313 type = typemap[proto]; 314 if ((type && !try_module_get(type->owner))) 315 type = NULL; 316 317 rcu_read_unlock(); 318 319 if (!type && try_load) { 320 request_module("xfrm-offload-%d-%d", family, proto); 321 try_load = false; 322 goto retry; 323 } 324 325 return type; 326 } 327 328 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 329 { 330 module_put(type->owner); 331 } 332 333 static DEFINE_SPINLOCK(xfrm_mode_lock); 334 int xfrm_register_mode(struct xfrm_mode *mode, int family) 335 { 336 struct xfrm_state_afinfo *afinfo; 337 struct xfrm_mode **modemap; 338 int err; 339 340 if (unlikely(mode->encap >= XFRM_MODE_MAX)) 341 return -EINVAL; 342 343 afinfo = xfrm_state_get_afinfo(family); 344 if (unlikely(afinfo == NULL)) 345 return -EAFNOSUPPORT; 346 347 err = -EEXIST; 348 modemap = afinfo->mode_map; 349 spin_lock_bh(&xfrm_mode_lock); 350 if (modemap[mode->encap]) 351 goto out; 352 353 err = -ENOENT; 354 if (!try_module_get(afinfo->owner)) 355 goto out; 356 357 mode->afinfo = afinfo; 358 modemap[mode->encap] = mode; 359 err = 0; 360 361 out: 362 spin_unlock_bh(&xfrm_mode_lock); 363 rcu_read_unlock(); 364 return err; 365 } 366 EXPORT_SYMBOL(xfrm_register_mode); 367 368 int xfrm_unregister_mode(struct xfrm_mode *mode, int family) 369 { 370 struct xfrm_state_afinfo *afinfo; 371 struct xfrm_mode **modemap; 372 int err; 373 374 if (unlikely(mode->encap >= XFRM_MODE_MAX)) 375 return -EINVAL; 376 377 afinfo = xfrm_state_get_afinfo(family); 378 if (unlikely(afinfo == NULL)) 379 return -EAFNOSUPPORT; 380 381 err = -ENOENT; 382 modemap = afinfo->mode_map; 383 spin_lock_bh(&xfrm_mode_lock); 384 if (likely(modemap[mode->encap] == mode)) { 385 modemap[mode->encap] = NULL; 386 module_put(mode->afinfo->owner); 387 err = 0; 388 } 389 390 spin_unlock_bh(&xfrm_mode_lock); 391 rcu_read_unlock(); 392 return err; 393 } 394 EXPORT_SYMBOL(xfrm_unregister_mode); 395 396 static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 397 { 398 struct xfrm_state_afinfo *afinfo; 399 struct xfrm_mode *mode; 400 int modload_attempted = 0; 401 402 if (unlikely(encap >= XFRM_MODE_MAX)) 403 return NULL; 404 405 retry: 406 afinfo = xfrm_state_get_afinfo(family); 407 if (unlikely(afinfo == NULL)) 408 return NULL; 409 410 mode = READ_ONCE(afinfo->mode_map[encap]); 411 if (unlikely(mode && !try_module_get(mode->owner))) 412 mode = NULL; 413 414 rcu_read_unlock(); 415 if (!mode && !modload_attempted) { 416 request_module("xfrm-mode-%d-%d", family, encap); 417 modload_attempted = 1; 418 goto retry; 419 } 420 421 return mode; 422 } 423 424 static void xfrm_put_mode(struct xfrm_mode *mode) 425 { 426 module_put(mode->owner); 427 } 428 429 static void xfrm_state_gc_destroy(struct xfrm_state *x) 430 { 431 tasklet_hrtimer_cancel(&x->mtimer); 432 del_timer_sync(&x->rtimer); 433 kfree(x->aead); 434 kfree(x->aalg); 435 kfree(x->ealg); 436 kfree(x->calg); 437 kfree(x->encap); 438 kfree(x->coaddr); 439 kfree(x->replay_esn); 440 kfree(x->preplay_esn); 441 if (x->inner_mode) 442 xfrm_put_mode(x->inner_mode); 443 if (x->inner_mode_iaf) 444 xfrm_put_mode(x->inner_mode_iaf); 445 if (x->outer_mode) 446 xfrm_put_mode(x->outer_mode); 447 if (x->type_offload) 448 xfrm_put_type_offload(x->type_offload); 449 if (x->type) { 450 x->type->destructor(x); 451 xfrm_put_type(x->type); 452 } 453 xfrm_dev_state_free(x); 454 security_xfrm_state_free(x); 455 kmem_cache_free(xfrm_state_cache, x); 456 } 457 458 static void xfrm_state_gc_task(struct work_struct *work) 459 { 460 struct xfrm_state *x; 461 struct hlist_node *tmp; 462 struct hlist_head gc_list; 463 464 spin_lock_bh(&xfrm_state_gc_lock); 465 hlist_move_list(&xfrm_state_gc_list, &gc_list); 466 spin_unlock_bh(&xfrm_state_gc_lock); 467 468 synchronize_rcu(); 469 470 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 471 xfrm_state_gc_destroy(x); 472 } 473 474 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 475 { 476 struct tasklet_hrtimer *thr = container_of(me, struct tasklet_hrtimer, timer); 477 struct xfrm_state *x = container_of(thr, struct xfrm_state, mtimer); 478 time64_t now = ktime_get_real_seconds(); 479 time64_t next = TIME64_MAX; 480 int warn = 0; 481 int err = 0; 482 483 spin_lock(&x->lock); 484 if (x->km.state == XFRM_STATE_DEAD) 485 goto out; 486 if (x->km.state == XFRM_STATE_EXPIRED) 487 goto expired; 488 if (x->lft.hard_add_expires_seconds) { 489 long tmo = x->lft.hard_add_expires_seconds + 490 x->curlft.add_time - now; 491 if (tmo <= 0) { 492 if (x->xflags & XFRM_SOFT_EXPIRE) { 493 /* enter hard expire without soft expire first?! 494 * setting a new date could trigger this. 495 * workaround: fix x->curflt.add_time by below: 496 */ 497 x->curlft.add_time = now - x->saved_tmo - 1; 498 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 499 } else 500 goto expired; 501 } 502 if (tmo < next) 503 next = tmo; 504 } 505 if (x->lft.hard_use_expires_seconds) { 506 long tmo = x->lft.hard_use_expires_seconds + 507 (x->curlft.use_time ? : now) - now; 508 if (tmo <= 0) 509 goto expired; 510 if (tmo < next) 511 next = tmo; 512 } 513 if (x->km.dying) 514 goto resched; 515 if (x->lft.soft_add_expires_seconds) { 516 long tmo = x->lft.soft_add_expires_seconds + 517 x->curlft.add_time - now; 518 if (tmo <= 0) { 519 warn = 1; 520 x->xflags &= ~XFRM_SOFT_EXPIRE; 521 } else if (tmo < next) { 522 next = tmo; 523 x->xflags |= XFRM_SOFT_EXPIRE; 524 x->saved_tmo = tmo; 525 } 526 } 527 if (x->lft.soft_use_expires_seconds) { 528 long tmo = x->lft.soft_use_expires_seconds + 529 (x->curlft.use_time ? : now) - now; 530 if (tmo <= 0) 531 warn = 1; 532 else if (tmo < next) 533 next = tmo; 534 } 535 536 x->km.dying = warn; 537 if (warn) 538 km_state_expired(x, 0, 0); 539 resched: 540 if (next != TIME64_MAX) { 541 tasklet_hrtimer_start(&x->mtimer, ktime_set(next, 0), HRTIMER_MODE_REL); 542 } 543 544 goto out; 545 546 expired: 547 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 548 x->km.state = XFRM_STATE_EXPIRED; 549 550 err = __xfrm_state_delete(x); 551 if (!err) 552 km_state_expired(x, 1, 0); 553 554 xfrm_audit_state_delete(x, err ? 0 : 1, true); 555 556 out: 557 spin_unlock(&x->lock); 558 return HRTIMER_NORESTART; 559 } 560 561 static void xfrm_replay_timer_handler(struct timer_list *t); 562 563 struct xfrm_state *xfrm_state_alloc(struct net *net) 564 { 565 struct xfrm_state *x; 566 567 x = kmem_cache_alloc(xfrm_state_cache, GFP_ATOMIC | __GFP_ZERO); 568 569 if (x) { 570 write_pnet(&x->xs_net, net); 571 refcount_set(&x->refcnt, 1); 572 atomic_set(&x->tunnel_users, 0); 573 INIT_LIST_HEAD(&x->km.all); 574 INIT_HLIST_NODE(&x->bydst); 575 INIT_HLIST_NODE(&x->bysrc); 576 INIT_HLIST_NODE(&x->byspi); 577 tasklet_hrtimer_init(&x->mtimer, xfrm_timer_handler, 578 CLOCK_BOOTTIME, HRTIMER_MODE_ABS); 579 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 580 x->curlft.add_time = ktime_get_real_seconds(); 581 x->lft.soft_byte_limit = XFRM_INF; 582 x->lft.soft_packet_limit = XFRM_INF; 583 x->lft.hard_byte_limit = XFRM_INF; 584 x->lft.hard_packet_limit = XFRM_INF; 585 x->replay_maxage = 0; 586 x->replay_maxdiff = 0; 587 x->inner_mode = NULL; 588 x->inner_mode_iaf = NULL; 589 spin_lock_init(&x->lock); 590 } 591 return x; 592 } 593 EXPORT_SYMBOL(xfrm_state_alloc); 594 595 void __xfrm_state_destroy(struct xfrm_state *x) 596 { 597 WARN_ON(x->km.state != XFRM_STATE_DEAD); 598 599 spin_lock_bh(&xfrm_state_gc_lock); 600 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 601 spin_unlock_bh(&xfrm_state_gc_lock); 602 schedule_work(&xfrm_state_gc_work); 603 } 604 EXPORT_SYMBOL(__xfrm_state_destroy); 605 606 int __xfrm_state_delete(struct xfrm_state *x) 607 { 608 struct net *net = xs_net(x); 609 int err = -ESRCH; 610 611 if (x->km.state != XFRM_STATE_DEAD) { 612 x->km.state = XFRM_STATE_DEAD; 613 spin_lock(&net->xfrm.xfrm_state_lock); 614 list_del(&x->km.all); 615 hlist_del_rcu(&x->bydst); 616 hlist_del_rcu(&x->bysrc); 617 if (x->id.spi) 618 hlist_del_rcu(&x->byspi); 619 net->xfrm.state_num--; 620 spin_unlock(&net->xfrm.xfrm_state_lock); 621 622 xfrm_dev_state_delete(x); 623 624 /* All xfrm_state objects are created by xfrm_state_alloc. 625 * The xfrm_state_alloc call gives a reference, and that 626 * is what we are dropping here. 627 */ 628 xfrm_state_put(x); 629 err = 0; 630 } 631 632 return err; 633 } 634 EXPORT_SYMBOL(__xfrm_state_delete); 635 636 int xfrm_state_delete(struct xfrm_state *x) 637 { 638 int err; 639 640 spin_lock_bh(&x->lock); 641 err = __xfrm_state_delete(x); 642 spin_unlock_bh(&x->lock); 643 644 return err; 645 } 646 EXPORT_SYMBOL(xfrm_state_delete); 647 648 #ifdef CONFIG_SECURITY_NETWORK_XFRM 649 static inline int 650 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 651 { 652 int i, err = 0; 653 654 for (i = 0; i <= net->xfrm.state_hmask; i++) { 655 struct xfrm_state *x; 656 657 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 658 if (xfrm_id_proto_match(x->id.proto, proto) && 659 (err = security_xfrm_state_delete(x)) != 0) { 660 xfrm_audit_state_delete(x, 0, task_valid); 661 return err; 662 } 663 } 664 } 665 666 return err; 667 } 668 669 static inline int 670 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 671 { 672 int i, err = 0; 673 674 for (i = 0; i <= net->xfrm.state_hmask; i++) { 675 struct xfrm_state *x; 676 struct xfrm_state_offload *xso; 677 678 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 679 xso = &x->xso; 680 681 if (xso->dev == dev && 682 (err = security_xfrm_state_delete(x)) != 0) { 683 xfrm_audit_state_delete(x, 0, task_valid); 684 return err; 685 } 686 } 687 } 688 689 return err; 690 } 691 #else 692 static inline int 693 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 694 { 695 return 0; 696 } 697 698 static inline int 699 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 700 { 701 return 0; 702 } 703 #endif 704 705 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid) 706 { 707 int i, err = 0, cnt = 0; 708 709 spin_lock_bh(&net->xfrm.xfrm_state_lock); 710 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 711 if (err) 712 goto out; 713 714 err = -ESRCH; 715 for (i = 0; i <= net->xfrm.state_hmask; i++) { 716 struct xfrm_state *x; 717 restart: 718 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 719 if (!xfrm_state_kern(x) && 720 xfrm_id_proto_match(x->id.proto, proto)) { 721 xfrm_state_hold(x); 722 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 723 724 err = xfrm_state_delete(x); 725 xfrm_audit_state_delete(x, err ? 0 : 1, 726 task_valid); 727 xfrm_state_put(x); 728 if (!err) 729 cnt++; 730 731 spin_lock_bh(&net->xfrm.xfrm_state_lock); 732 goto restart; 733 } 734 } 735 } 736 out: 737 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 738 if (cnt) 739 err = 0; 740 741 return err; 742 } 743 EXPORT_SYMBOL(xfrm_state_flush); 744 745 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 746 { 747 int i, err = 0, cnt = 0; 748 749 spin_lock_bh(&net->xfrm.xfrm_state_lock); 750 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 751 if (err) 752 goto out; 753 754 err = -ESRCH; 755 for (i = 0; i <= net->xfrm.state_hmask; i++) { 756 struct xfrm_state *x; 757 struct xfrm_state_offload *xso; 758 restart: 759 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 760 xso = &x->xso; 761 762 if (!xfrm_state_kern(x) && xso->dev == dev) { 763 xfrm_state_hold(x); 764 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 765 766 err = xfrm_state_delete(x); 767 xfrm_audit_state_delete(x, err ? 0 : 1, 768 task_valid); 769 xfrm_state_put(x); 770 if (!err) 771 cnt++; 772 773 spin_lock_bh(&net->xfrm.xfrm_state_lock); 774 goto restart; 775 } 776 } 777 } 778 if (cnt) 779 err = 0; 780 781 out: 782 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 783 return err; 784 } 785 EXPORT_SYMBOL(xfrm_dev_state_flush); 786 787 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 788 { 789 spin_lock_bh(&net->xfrm.xfrm_state_lock); 790 si->sadcnt = net->xfrm.state_num; 791 si->sadhcnt = net->xfrm.state_hmask; 792 si->sadhmcnt = xfrm_state_hashmax; 793 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 794 } 795 EXPORT_SYMBOL(xfrm_sad_getinfo); 796 797 static void 798 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 799 const struct xfrm_tmpl *tmpl, 800 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 801 unsigned short family) 802 { 803 struct xfrm_state_afinfo *afinfo = xfrm_state_afinfo_get_rcu(family); 804 805 if (!afinfo) 806 return; 807 808 afinfo->init_tempsel(&x->sel, fl); 809 810 if (family != tmpl->encap_family) { 811 afinfo = xfrm_state_afinfo_get_rcu(tmpl->encap_family); 812 if (!afinfo) 813 return; 814 } 815 afinfo->init_temprop(x, tmpl, daddr, saddr); 816 } 817 818 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 819 const xfrm_address_t *daddr, 820 __be32 spi, u8 proto, 821 unsigned short family) 822 { 823 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 824 struct xfrm_state *x; 825 826 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 827 if (x->props.family != family || 828 x->id.spi != spi || 829 x->id.proto != proto || 830 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 831 continue; 832 833 if ((mark & x->mark.m) != x->mark.v) 834 continue; 835 if (!xfrm_state_hold_rcu(x)) 836 continue; 837 return x; 838 } 839 840 return NULL; 841 } 842 843 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 844 const xfrm_address_t *daddr, 845 const xfrm_address_t *saddr, 846 u8 proto, unsigned short family) 847 { 848 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 849 struct xfrm_state *x; 850 851 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 852 if (x->props.family != family || 853 x->id.proto != proto || 854 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 855 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 856 continue; 857 858 if ((mark & x->mark.m) != x->mark.v) 859 continue; 860 if (!xfrm_state_hold_rcu(x)) 861 continue; 862 return x; 863 } 864 865 return NULL; 866 } 867 868 static inline struct xfrm_state * 869 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 870 { 871 struct net *net = xs_net(x); 872 u32 mark = x->mark.v & x->mark.m; 873 874 if (use_spi) 875 return __xfrm_state_lookup(net, mark, &x->id.daddr, 876 x->id.spi, x->id.proto, family); 877 else 878 return __xfrm_state_lookup_byaddr(net, mark, 879 &x->id.daddr, 880 &x->props.saddr, 881 x->id.proto, family); 882 } 883 884 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 885 { 886 if (have_hash_collision && 887 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 888 net->xfrm.state_num > net->xfrm.state_hmask) 889 schedule_work(&net->xfrm.state_hash_work); 890 } 891 892 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 893 const struct flowi *fl, unsigned short family, 894 struct xfrm_state **best, int *acq_in_progress, 895 int *error) 896 { 897 /* Resolution logic: 898 * 1. There is a valid state with matching selector. Done. 899 * 2. Valid state with inappropriate selector. Skip. 900 * 901 * Entering area of "sysdeps". 902 * 903 * 3. If state is not valid, selector is temporary, it selects 904 * only session which triggered previous resolution. Key 905 * manager will do something to install a state with proper 906 * selector. 907 */ 908 if (x->km.state == XFRM_STATE_VALID) { 909 if ((x->sel.family && 910 !xfrm_selector_match(&x->sel, fl, x->sel.family)) || 911 !security_xfrm_state_pol_flow_match(x, pol, fl)) 912 return; 913 914 if (!*best || 915 (*best)->km.dying > x->km.dying || 916 ((*best)->km.dying == x->km.dying && 917 (*best)->curlft.add_time < x->curlft.add_time)) 918 *best = x; 919 } else if (x->km.state == XFRM_STATE_ACQ) { 920 *acq_in_progress = 1; 921 } else if (x->km.state == XFRM_STATE_ERROR || 922 x->km.state == XFRM_STATE_EXPIRED) { 923 if (xfrm_selector_match(&x->sel, fl, x->sel.family) && 924 security_xfrm_state_pol_flow_match(x, pol, fl)) 925 *error = -ESRCH; 926 } 927 } 928 929 struct xfrm_state * 930 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 931 const struct flowi *fl, struct xfrm_tmpl *tmpl, 932 struct xfrm_policy *pol, int *err, 933 unsigned short family, u32 if_id) 934 { 935 static xfrm_address_t saddr_wildcard = { }; 936 struct net *net = xp_net(pol); 937 unsigned int h, h_wildcard; 938 struct xfrm_state *x, *x0, *to_put; 939 int acquire_in_progress = 0; 940 int error = 0; 941 struct xfrm_state *best = NULL; 942 u32 mark = pol->mark.v & pol->mark.m; 943 unsigned short encap_family = tmpl->encap_family; 944 unsigned int sequence; 945 struct km_event c; 946 947 to_put = NULL; 948 949 sequence = read_seqcount_begin(&xfrm_state_hash_generation); 950 951 rcu_read_lock(); 952 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 953 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 954 if (x->props.family == encap_family && 955 x->props.reqid == tmpl->reqid && 956 (mark & x->mark.m) == x->mark.v && 957 x->if_id == if_id && 958 !(x->props.flags & XFRM_STATE_WILDRECV) && 959 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 960 tmpl->mode == x->props.mode && 961 tmpl->id.proto == x->id.proto && 962 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 963 xfrm_state_look_at(pol, x, fl, encap_family, 964 &best, &acquire_in_progress, &error); 965 } 966 if (best || acquire_in_progress) 967 goto found; 968 969 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 970 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 971 if (x->props.family == encap_family && 972 x->props.reqid == tmpl->reqid && 973 (mark & x->mark.m) == x->mark.v && 974 x->if_id == if_id && 975 !(x->props.flags & XFRM_STATE_WILDRECV) && 976 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 977 tmpl->mode == x->props.mode && 978 tmpl->id.proto == x->id.proto && 979 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 980 xfrm_state_look_at(pol, x, fl, encap_family, 981 &best, &acquire_in_progress, &error); 982 } 983 984 found: 985 x = best; 986 if (!x && !error && !acquire_in_progress) { 987 if (tmpl->id.spi && 988 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi, 989 tmpl->id.proto, encap_family)) != NULL) { 990 to_put = x0; 991 error = -EEXIST; 992 goto out; 993 } 994 995 c.net = net; 996 /* If the KMs have no listeners (yet...), avoid allocating an SA 997 * for each and every packet - garbage collection might not 998 * handle the flood. 999 */ 1000 if (!km_is_alive(&c)) { 1001 error = -ESRCH; 1002 goto out; 1003 } 1004 1005 x = xfrm_state_alloc(net); 1006 if (x == NULL) { 1007 error = -ENOMEM; 1008 goto out; 1009 } 1010 /* Initialize temporary state matching only 1011 * to current session. */ 1012 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1013 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1014 x->if_id = if_id; 1015 1016 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1017 if (error) { 1018 x->km.state = XFRM_STATE_DEAD; 1019 to_put = x; 1020 x = NULL; 1021 goto out; 1022 } 1023 1024 if (km_query(x, tmpl, pol) == 0) { 1025 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1026 x->km.state = XFRM_STATE_ACQ; 1027 list_add(&x->km.all, &net->xfrm.state_all); 1028 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1029 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1030 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1031 if (x->id.spi) { 1032 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1033 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1034 } 1035 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1036 tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL); 1037 net->xfrm.state_num++; 1038 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1039 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1040 } else { 1041 x->km.state = XFRM_STATE_DEAD; 1042 to_put = x; 1043 x = NULL; 1044 error = -ESRCH; 1045 } 1046 } 1047 out: 1048 if (x) { 1049 if (!xfrm_state_hold_rcu(x)) { 1050 *err = -EAGAIN; 1051 x = NULL; 1052 } 1053 } else { 1054 *err = acquire_in_progress ? -EAGAIN : error; 1055 } 1056 rcu_read_unlock(); 1057 if (to_put) 1058 xfrm_state_put(to_put); 1059 1060 if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) { 1061 *err = -EAGAIN; 1062 if (x) { 1063 xfrm_state_put(x); 1064 x = NULL; 1065 } 1066 } 1067 1068 return x; 1069 } 1070 1071 struct xfrm_state * 1072 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1073 xfrm_address_t *daddr, xfrm_address_t *saddr, 1074 unsigned short family, u8 mode, u8 proto, u32 reqid) 1075 { 1076 unsigned int h; 1077 struct xfrm_state *rx = NULL, *x = NULL; 1078 1079 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1080 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1081 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1082 if (x->props.family == family && 1083 x->props.reqid == reqid && 1084 (mark & x->mark.m) == x->mark.v && 1085 x->if_id == if_id && 1086 !(x->props.flags & XFRM_STATE_WILDRECV) && 1087 xfrm_state_addr_check(x, daddr, saddr, family) && 1088 mode == x->props.mode && 1089 proto == x->id.proto && 1090 x->km.state == XFRM_STATE_VALID) { 1091 rx = x; 1092 break; 1093 } 1094 } 1095 1096 if (rx) 1097 xfrm_state_hold(rx); 1098 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1099 1100 1101 return rx; 1102 } 1103 EXPORT_SYMBOL(xfrm_stateonly_find); 1104 1105 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1106 unsigned short family) 1107 { 1108 struct xfrm_state *x; 1109 struct xfrm_state_walk *w; 1110 1111 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1112 list_for_each_entry(w, &net->xfrm.state_all, all) { 1113 x = container_of(w, struct xfrm_state, km); 1114 if (x->props.family != family || 1115 x->id.spi != spi) 1116 continue; 1117 1118 xfrm_state_hold(x); 1119 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1120 return x; 1121 } 1122 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1123 return NULL; 1124 } 1125 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1126 1127 static void __xfrm_state_insert(struct xfrm_state *x) 1128 { 1129 struct net *net = xs_net(x); 1130 unsigned int h; 1131 1132 list_add(&x->km.all, &net->xfrm.state_all); 1133 1134 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1135 x->props.reqid, x->props.family); 1136 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1137 1138 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1139 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1140 1141 if (x->id.spi) { 1142 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1143 x->props.family); 1144 1145 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1146 } 1147 1148 tasklet_hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL); 1149 if (x->replay_maxage) 1150 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1151 1152 net->xfrm.state_num++; 1153 1154 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1155 } 1156 1157 /* net->xfrm.xfrm_state_lock is held */ 1158 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1159 { 1160 struct net *net = xs_net(xnew); 1161 unsigned short family = xnew->props.family; 1162 u32 reqid = xnew->props.reqid; 1163 struct xfrm_state *x; 1164 unsigned int h; 1165 u32 mark = xnew->mark.v & xnew->mark.m; 1166 u32 if_id = xnew->if_id; 1167 1168 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1169 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1170 if (x->props.family == family && 1171 x->props.reqid == reqid && 1172 x->if_id == if_id && 1173 (mark & x->mark.m) == x->mark.v && 1174 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1175 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1176 x->genid++; 1177 } 1178 } 1179 1180 void xfrm_state_insert(struct xfrm_state *x) 1181 { 1182 struct net *net = xs_net(x); 1183 1184 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1185 __xfrm_state_bump_genids(x); 1186 __xfrm_state_insert(x); 1187 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1188 } 1189 EXPORT_SYMBOL(xfrm_state_insert); 1190 1191 /* net->xfrm.xfrm_state_lock is held */ 1192 static struct xfrm_state *__find_acq_core(struct net *net, 1193 const struct xfrm_mark *m, 1194 unsigned short family, u8 mode, 1195 u32 reqid, u32 if_id, u8 proto, 1196 const xfrm_address_t *daddr, 1197 const xfrm_address_t *saddr, 1198 int create) 1199 { 1200 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1201 struct xfrm_state *x; 1202 u32 mark = m->v & m->m; 1203 1204 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1205 if (x->props.reqid != reqid || 1206 x->props.mode != mode || 1207 x->props.family != family || 1208 x->km.state != XFRM_STATE_ACQ || 1209 x->id.spi != 0 || 1210 x->id.proto != proto || 1211 (mark & x->mark.m) != x->mark.v || 1212 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1213 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1214 continue; 1215 1216 xfrm_state_hold(x); 1217 return x; 1218 } 1219 1220 if (!create) 1221 return NULL; 1222 1223 x = xfrm_state_alloc(net); 1224 if (likely(x)) { 1225 switch (family) { 1226 case AF_INET: 1227 x->sel.daddr.a4 = daddr->a4; 1228 x->sel.saddr.a4 = saddr->a4; 1229 x->sel.prefixlen_d = 32; 1230 x->sel.prefixlen_s = 32; 1231 x->props.saddr.a4 = saddr->a4; 1232 x->id.daddr.a4 = daddr->a4; 1233 break; 1234 1235 case AF_INET6: 1236 x->sel.daddr.in6 = daddr->in6; 1237 x->sel.saddr.in6 = saddr->in6; 1238 x->sel.prefixlen_d = 128; 1239 x->sel.prefixlen_s = 128; 1240 x->props.saddr.in6 = saddr->in6; 1241 x->id.daddr.in6 = daddr->in6; 1242 break; 1243 } 1244 1245 x->km.state = XFRM_STATE_ACQ; 1246 x->id.proto = proto; 1247 x->props.family = family; 1248 x->props.mode = mode; 1249 x->props.reqid = reqid; 1250 x->if_id = if_id; 1251 x->mark.v = m->v; 1252 x->mark.m = m->m; 1253 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1254 xfrm_state_hold(x); 1255 tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL); 1256 list_add(&x->km.all, &net->xfrm.state_all); 1257 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1258 h = xfrm_src_hash(net, daddr, saddr, family); 1259 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1260 1261 net->xfrm.state_num++; 1262 1263 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1264 } 1265 1266 return x; 1267 } 1268 1269 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1270 1271 int xfrm_state_add(struct xfrm_state *x) 1272 { 1273 struct net *net = xs_net(x); 1274 struct xfrm_state *x1, *to_put; 1275 int family; 1276 int err; 1277 u32 mark = x->mark.v & x->mark.m; 1278 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1279 1280 family = x->props.family; 1281 1282 to_put = NULL; 1283 1284 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1285 1286 x1 = __xfrm_state_locate(x, use_spi, family); 1287 if (x1) { 1288 to_put = x1; 1289 x1 = NULL; 1290 err = -EEXIST; 1291 goto out; 1292 } 1293 1294 if (use_spi && x->km.seq) { 1295 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1296 if (x1 && ((x1->id.proto != x->id.proto) || 1297 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1298 to_put = x1; 1299 x1 = NULL; 1300 } 1301 } 1302 1303 if (use_spi && !x1) 1304 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1305 x->props.reqid, x->if_id, x->id.proto, 1306 &x->id.daddr, &x->props.saddr, 0); 1307 1308 __xfrm_state_bump_genids(x); 1309 __xfrm_state_insert(x); 1310 err = 0; 1311 1312 out: 1313 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1314 1315 if (x1) { 1316 xfrm_state_delete(x1); 1317 xfrm_state_put(x1); 1318 } 1319 1320 if (to_put) 1321 xfrm_state_put(to_put); 1322 1323 return err; 1324 } 1325 EXPORT_SYMBOL(xfrm_state_add); 1326 1327 #ifdef CONFIG_XFRM_MIGRATE 1328 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1329 struct xfrm_encap_tmpl *encap) 1330 { 1331 struct net *net = xs_net(orig); 1332 struct xfrm_state *x = xfrm_state_alloc(net); 1333 if (!x) 1334 goto out; 1335 1336 memcpy(&x->id, &orig->id, sizeof(x->id)); 1337 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1338 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1339 x->props.mode = orig->props.mode; 1340 x->props.replay_window = orig->props.replay_window; 1341 x->props.reqid = orig->props.reqid; 1342 x->props.family = orig->props.family; 1343 x->props.saddr = orig->props.saddr; 1344 1345 if (orig->aalg) { 1346 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1347 if (!x->aalg) 1348 goto error; 1349 } 1350 x->props.aalgo = orig->props.aalgo; 1351 1352 if (orig->aead) { 1353 x->aead = xfrm_algo_aead_clone(orig->aead); 1354 x->geniv = orig->geniv; 1355 if (!x->aead) 1356 goto error; 1357 } 1358 if (orig->ealg) { 1359 x->ealg = xfrm_algo_clone(orig->ealg); 1360 if (!x->ealg) 1361 goto error; 1362 } 1363 x->props.ealgo = orig->props.ealgo; 1364 1365 if (orig->calg) { 1366 x->calg = xfrm_algo_clone(orig->calg); 1367 if (!x->calg) 1368 goto error; 1369 } 1370 x->props.calgo = orig->props.calgo; 1371 1372 if (encap || orig->encap) { 1373 if (encap) 1374 x->encap = kmemdup(encap, sizeof(*x->encap), 1375 GFP_KERNEL); 1376 else 1377 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1378 GFP_KERNEL); 1379 1380 if (!x->encap) 1381 goto error; 1382 } 1383 1384 if (orig->coaddr) { 1385 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1386 GFP_KERNEL); 1387 if (!x->coaddr) 1388 goto error; 1389 } 1390 1391 if (orig->replay_esn) { 1392 if (xfrm_replay_clone(x, orig)) 1393 goto error; 1394 } 1395 1396 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1397 1398 if (xfrm_init_state(x) < 0) 1399 goto error; 1400 1401 x->props.flags = orig->props.flags; 1402 x->props.extra_flags = orig->props.extra_flags; 1403 1404 x->if_id = orig->if_id; 1405 x->tfcpad = orig->tfcpad; 1406 x->replay_maxdiff = orig->replay_maxdiff; 1407 x->replay_maxage = orig->replay_maxage; 1408 x->curlft.add_time = orig->curlft.add_time; 1409 x->km.state = orig->km.state; 1410 x->km.seq = orig->km.seq; 1411 x->replay = orig->replay; 1412 x->preplay = orig->preplay; 1413 1414 return x; 1415 1416 error: 1417 xfrm_state_put(x); 1418 out: 1419 return NULL; 1420 } 1421 1422 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net) 1423 { 1424 unsigned int h; 1425 struct xfrm_state *x = NULL; 1426 1427 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1428 1429 if (m->reqid) { 1430 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1431 m->reqid, m->old_family); 1432 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1433 if (x->props.mode != m->mode || 1434 x->id.proto != m->proto) 1435 continue; 1436 if (m->reqid && x->props.reqid != m->reqid) 1437 continue; 1438 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1439 m->old_family) || 1440 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1441 m->old_family)) 1442 continue; 1443 xfrm_state_hold(x); 1444 break; 1445 } 1446 } else { 1447 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1448 m->old_family); 1449 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1450 if (x->props.mode != m->mode || 1451 x->id.proto != m->proto) 1452 continue; 1453 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1454 m->old_family) || 1455 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1456 m->old_family)) 1457 continue; 1458 xfrm_state_hold(x); 1459 break; 1460 } 1461 } 1462 1463 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1464 1465 return x; 1466 } 1467 EXPORT_SYMBOL(xfrm_migrate_state_find); 1468 1469 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1470 struct xfrm_migrate *m, 1471 struct xfrm_encap_tmpl *encap) 1472 { 1473 struct xfrm_state *xc; 1474 1475 xc = xfrm_state_clone(x, encap); 1476 if (!xc) 1477 return NULL; 1478 1479 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1480 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1481 1482 /* add state */ 1483 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1484 /* a care is needed when the destination address of the 1485 state is to be updated as it is a part of triplet */ 1486 xfrm_state_insert(xc); 1487 } else { 1488 if (xfrm_state_add(xc) < 0) 1489 goto error; 1490 } 1491 1492 return xc; 1493 error: 1494 xfrm_state_put(xc); 1495 return NULL; 1496 } 1497 EXPORT_SYMBOL(xfrm_state_migrate); 1498 #endif 1499 1500 int xfrm_state_update(struct xfrm_state *x) 1501 { 1502 struct xfrm_state *x1, *to_put; 1503 int err; 1504 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1505 struct net *net = xs_net(x); 1506 1507 to_put = NULL; 1508 1509 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1510 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1511 1512 err = -ESRCH; 1513 if (!x1) 1514 goto out; 1515 1516 if (xfrm_state_kern(x1)) { 1517 to_put = x1; 1518 err = -EEXIST; 1519 goto out; 1520 } 1521 1522 if (x1->km.state == XFRM_STATE_ACQ) { 1523 __xfrm_state_insert(x); 1524 x = NULL; 1525 } 1526 err = 0; 1527 1528 out: 1529 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1530 1531 if (to_put) 1532 xfrm_state_put(to_put); 1533 1534 if (err) 1535 return err; 1536 1537 if (!x) { 1538 xfrm_state_delete(x1); 1539 xfrm_state_put(x1); 1540 return 0; 1541 } 1542 1543 err = -EINVAL; 1544 spin_lock_bh(&x1->lock); 1545 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1546 if (x->encap && x1->encap && 1547 x->encap->encap_type == x1->encap->encap_type) 1548 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1549 else if (x->encap || x1->encap) 1550 goto fail; 1551 1552 if (x->coaddr && x1->coaddr) { 1553 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1554 } 1555 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1556 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1557 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1558 x1->km.dying = 0; 1559 1560 tasklet_hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL); 1561 if (x1->curlft.use_time) 1562 xfrm_state_check_expire(x1); 1563 1564 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1565 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1566 1567 if (x->props.smark.m || x->props.smark.v) 1568 x1->props.smark = x->props.smark; 1569 1570 if (x->if_id) 1571 x1->if_id = x->if_id; 1572 1573 __xfrm_state_bump_genids(x1); 1574 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1575 } 1576 1577 err = 0; 1578 x->km.state = XFRM_STATE_DEAD; 1579 __xfrm_state_put(x); 1580 } 1581 1582 fail: 1583 spin_unlock_bh(&x1->lock); 1584 1585 xfrm_state_put(x1); 1586 1587 return err; 1588 } 1589 EXPORT_SYMBOL(xfrm_state_update); 1590 1591 int xfrm_state_check_expire(struct xfrm_state *x) 1592 { 1593 if (!x->curlft.use_time) 1594 x->curlft.use_time = ktime_get_real_seconds(); 1595 1596 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1597 x->curlft.packets >= x->lft.hard_packet_limit) { 1598 x->km.state = XFRM_STATE_EXPIRED; 1599 tasklet_hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL); 1600 return -EINVAL; 1601 } 1602 1603 if (!x->km.dying && 1604 (x->curlft.bytes >= x->lft.soft_byte_limit || 1605 x->curlft.packets >= x->lft.soft_packet_limit)) { 1606 x->km.dying = 1; 1607 km_state_expired(x, 0, 0); 1608 } 1609 return 0; 1610 } 1611 EXPORT_SYMBOL(xfrm_state_check_expire); 1612 1613 struct xfrm_state * 1614 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1615 u8 proto, unsigned short family) 1616 { 1617 struct xfrm_state *x; 1618 1619 rcu_read_lock(); 1620 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1621 rcu_read_unlock(); 1622 return x; 1623 } 1624 EXPORT_SYMBOL(xfrm_state_lookup); 1625 1626 struct xfrm_state * 1627 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1628 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1629 u8 proto, unsigned short family) 1630 { 1631 struct xfrm_state *x; 1632 1633 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1634 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1635 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1636 return x; 1637 } 1638 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1639 1640 struct xfrm_state * 1641 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1642 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1643 const xfrm_address_t *saddr, int create, unsigned short family) 1644 { 1645 struct xfrm_state *x; 1646 1647 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1648 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 1649 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1650 1651 return x; 1652 } 1653 EXPORT_SYMBOL(xfrm_find_acq); 1654 1655 #ifdef CONFIG_XFRM_SUB_POLICY 1656 int 1657 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1658 unsigned short family, struct net *net) 1659 { 1660 int i; 1661 int err = 0; 1662 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 1663 if (!afinfo) 1664 return -EAFNOSUPPORT; 1665 1666 spin_lock_bh(&net->xfrm.xfrm_state_lock); /*FIXME*/ 1667 if (afinfo->tmpl_sort) 1668 err = afinfo->tmpl_sort(dst, src, n); 1669 else 1670 for (i = 0; i < n; i++) 1671 dst[i] = src[i]; 1672 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1673 rcu_read_unlock(); 1674 return err; 1675 } 1676 EXPORT_SYMBOL(xfrm_tmpl_sort); 1677 1678 int 1679 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1680 unsigned short family) 1681 { 1682 int i; 1683 int err = 0; 1684 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 1685 struct net *net = xs_net(*src); 1686 1687 if (!afinfo) 1688 return -EAFNOSUPPORT; 1689 1690 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1691 if (afinfo->state_sort) 1692 err = afinfo->state_sort(dst, src, n); 1693 else 1694 for (i = 0; i < n; i++) 1695 dst[i] = src[i]; 1696 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1697 rcu_read_unlock(); 1698 return err; 1699 } 1700 EXPORT_SYMBOL(xfrm_state_sort); 1701 #endif 1702 1703 /* Silly enough, but I'm lazy to build resolution list */ 1704 1705 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1706 { 1707 int i; 1708 1709 for (i = 0; i <= net->xfrm.state_hmask; i++) { 1710 struct xfrm_state *x; 1711 1712 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 1713 if (x->km.seq == seq && 1714 (mark & x->mark.m) == x->mark.v && 1715 x->km.state == XFRM_STATE_ACQ) { 1716 xfrm_state_hold(x); 1717 return x; 1718 } 1719 } 1720 } 1721 return NULL; 1722 } 1723 1724 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1725 { 1726 struct xfrm_state *x; 1727 1728 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1729 x = __xfrm_find_acq_byseq(net, mark, seq); 1730 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1731 return x; 1732 } 1733 EXPORT_SYMBOL(xfrm_find_acq_byseq); 1734 1735 u32 xfrm_get_acqseq(void) 1736 { 1737 u32 res; 1738 static atomic_t acqseq; 1739 1740 do { 1741 res = atomic_inc_return(&acqseq); 1742 } while (!res); 1743 1744 return res; 1745 } 1746 EXPORT_SYMBOL(xfrm_get_acqseq); 1747 1748 int verify_spi_info(u8 proto, u32 min, u32 max) 1749 { 1750 switch (proto) { 1751 case IPPROTO_AH: 1752 case IPPROTO_ESP: 1753 break; 1754 1755 case IPPROTO_COMP: 1756 /* IPCOMP spi is 16-bits. */ 1757 if (max >= 0x10000) 1758 return -EINVAL; 1759 break; 1760 1761 default: 1762 return -EINVAL; 1763 } 1764 1765 if (min > max) 1766 return -EINVAL; 1767 1768 return 0; 1769 } 1770 EXPORT_SYMBOL(verify_spi_info); 1771 1772 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) 1773 { 1774 struct net *net = xs_net(x); 1775 unsigned int h; 1776 struct xfrm_state *x0; 1777 int err = -ENOENT; 1778 __be32 minspi = htonl(low); 1779 __be32 maxspi = htonl(high); 1780 u32 mark = x->mark.v & x->mark.m; 1781 1782 spin_lock_bh(&x->lock); 1783 if (x->km.state == XFRM_STATE_DEAD) 1784 goto unlock; 1785 1786 err = 0; 1787 if (x->id.spi) 1788 goto unlock; 1789 1790 err = -ENOENT; 1791 1792 if (minspi == maxspi) { 1793 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 1794 if (x0) { 1795 xfrm_state_put(x0); 1796 goto unlock; 1797 } 1798 x->id.spi = minspi; 1799 } else { 1800 u32 spi = 0; 1801 for (h = 0; h < high-low+1; h++) { 1802 spi = low + prandom_u32()%(high-low+1); 1803 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 1804 if (x0 == NULL) { 1805 x->id.spi = htonl(spi); 1806 break; 1807 } 1808 xfrm_state_put(x0); 1809 } 1810 } 1811 if (x->id.spi) { 1812 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1813 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 1814 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1815 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1816 1817 err = 0; 1818 } 1819 1820 unlock: 1821 spin_unlock_bh(&x->lock); 1822 1823 return err; 1824 } 1825 EXPORT_SYMBOL(xfrm_alloc_spi); 1826 1827 static bool __xfrm_state_filter_match(struct xfrm_state *x, 1828 struct xfrm_address_filter *filter) 1829 { 1830 if (filter) { 1831 if ((filter->family == AF_INET || 1832 filter->family == AF_INET6) && 1833 x->props.family != filter->family) 1834 return false; 1835 1836 return addr_match(&x->props.saddr, &filter->saddr, 1837 filter->splen) && 1838 addr_match(&x->id.daddr, &filter->daddr, 1839 filter->dplen); 1840 } 1841 return true; 1842 } 1843 1844 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 1845 int (*func)(struct xfrm_state *, int, void*), 1846 void *data) 1847 { 1848 struct xfrm_state *state; 1849 struct xfrm_state_walk *x; 1850 int err = 0; 1851 1852 if (walk->seq != 0 && list_empty(&walk->all)) 1853 return 0; 1854 1855 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1856 if (list_empty(&walk->all)) 1857 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 1858 else 1859 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 1860 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 1861 if (x->state == XFRM_STATE_DEAD) 1862 continue; 1863 state = container_of(x, struct xfrm_state, km); 1864 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 1865 continue; 1866 if (!__xfrm_state_filter_match(state, walk->filter)) 1867 continue; 1868 err = func(state, walk->seq, data); 1869 if (err) { 1870 list_move_tail(&walk->all, &x->all); 1871 goto out; 1872 } 1873 walk->seq++; 1874 } 1875 if (walk->seq == 0) { 1876 err = -ENOENT; 1877 goto out; 1878 } 1879 list_del_init(&walk->all); 1880 out: 1881 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1882 return err; 1883 } 1884 EXPORT_SYMBOL(xfrm_state_walk); 1885 1886 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 1887 struct xfrm_address_filter *filter) 1888 { 1889 INIT_LIST_HEAD(&walk->all); 1890 walk->proto = proto; 1891 walk->state = XFRM_STATE_DEAD; 1892 walk->seq = 0; 1893 walk->filter = filter; 1894 } 1895 EXPORT_SYMBOL(xfrm_state_walk_init); 1896 1897 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 1898 { 1899 kfree(walk->filter); 1900 1901 if (list_empty(&walk->all)) 1902 return; 1903 1904 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1905 list_del(&walk->all); 1906 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1907 } 1908 EXPORT_SYMBOL(xfrm_state_walk_done); 1909 1910 static void xfrm_replay_timer_handler(struct timer_list *t) 1911 { 1912 struct xfrm_state *x = from_timer(x, t, rtimer); 1913 1914 spin_lock(&x->lock); 1915 1916 if (x->km.state == XFRM_STATE_VALID) { 1917 if (xfrm_aevent_is_on(xs_net(x))) 1918 x->repl->notify(x, XFRM_REPLAY_TIMEOUT); 1919 else 1920 x->xflags |= XFRM_TIME_DEFER; 1921 } 1922 1923 spin_unlock(&x->lock); 1924 } 1925 1926 static LIST_HEAD(xfrm_km_list); 1927 1928 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 1929 { 1930 struct xfrm_mgr *km; 1931 1932 rcu_read_lock(); 1933 list_for_each_entry_rcu(km, &xfrm_km_list, list) 1934 if (km->notify_policy) 1935 km->notify_policy(xp, dir, c); 1936 rcu_read_unlock(); 1937 } 1938 1939 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 1940 { 1941 struct xfrm_mgr *km; 1942 rcu_read_lock(); 1943 list_for_each_entry_rcu(km, &xfrm_km_list, list) 1944 if (km->notify) 1945 km->notify(x, c); 1946 rcu_read_unlock(); 1947 } 1948 1949 EXPORT_SYMBOL(km_policy_notify); 1950 EXPORT_SYMBOL(km_state_notify); 1951 1952 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 1953 { 1954 struct km_event c; 1955 1956 c.data.hard = hard; 1957 c.portid = portid; 1958 c.event = XFRM_MSG_EXPIRE; 1959 km_state_notify(x, &c); 1960 } 1961 1962 EXPORT_SYMBOL(km_state_expired); 1963 /* 1964 * We send to all registered managers regardless of failure 1965 * We are happy with one success 1966 */ 1967 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 1968 { 1969 int err = -EINVAL, acqret; 1970 struct xfrm_mgr *km; 1971 1972 rcu_read_lock(); 1973 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 1974 acqret = km->acquire(x, t, pol); 1975 if (!acqret) 1976 err = acqret; 1977 } 1978 rcu_read_unlock(); 1979 return err; 1980 } 1981 EXPORT_SYMBOL(km_query); 1982 1983 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 1984 { 1985 int err = -EINVAL; 1986 struct xfrm_mgr *km; 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 1990 if (km->new_mapping) 1991 err = km->new_mapping(x, ipaddr, sport); 1992 if (!err) 1993 break; 1994 } 1995 rcu_read_unlock(); 1996 return err; 1997 } 1998 EXPORT_SYMBOL(km_new_mapping); 1999 2000 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2001 { 2002 struct km_event c; 2003 2004 c.data.hard = hard; 2005 c.portid = portid; 2006 c.event = XFRM_MSG_POLEXPIRE; 2007 km_policy_notify(pol, dir, &c); 2008 } 2009 EXPORT_SYMBOL(km_policy_expired); 2010 2011 #ifdef CONFIG_XFRM_MIGRATE 2012 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2013 const struct xfrm_migrate *m, int num_migrate, 2014 const struct xfrm_kmaddress *k, 2015 const struct xfrm_encap_tmpl *encap) 2016 { 2017 int err = -EINVAL; 2018 int ret; 2019 struct xfrm_mgr *km; 2020 2021 rcu_read_lock(); 2022 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2023 if (km->migrate) { 2024 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2025 encap); 2026 if (!ret) 2027 err = ret; 2028 } 2029 } 2030 rcu_read_unlock(); 2031 return err; 2032 } 2033 EXPORT_SYMBOL(km_migrate); 2034 #endif 2035 2036 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2037 { 2038 int err = -EINVAL; 2039 int ret; 2040 struct xfrm_mgr *km; 2041 2042 rcu_read_lock(); 2043 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2044 if (km->report) { 2045 ret = km->report(net, proto, sel, addr); 2046 if (!ret) 2047 err = ret; 2048 } 2049 } 2050 rcu_read_unlock(); 2051 return err; 2052 } 2053 EXPORT_SYMBOL(km_report); 2054 2055 bool km_is_alive(const struct km_event *c) 2056 { 2057 struct xfrm_mgr *km; 2058 bool is_alive = false; 2059 2060 rcu_read_lock(); 2061 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2062 if (km->is_alive && km->is_alive(c)) { 2063 is_alive = true; 2064 break; 2065 } 2066 } 2067 rcu_read_unlock(); 2068 2069 return is_alive; 2070 } 2071 EXPORT_SYMBOL(km_is_alive); 2072 2073 int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 2074 { 2075 int err; 2076 u8 *data; 2077 struct xfrm_mgr *km; 2078 struct xfrm_policy *pol = NULL; 2079 2080 #ifdef CONFIG_COMPAT 2081 if (in_compat_syscall()) 2082 return -EOPNOTSUPP; 2083 #endif 2084 2085 if (!optval && !optlen) { 2086 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2087 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2088 __sk_dst_reset(sk); 2089 return 0; 2090 } 2091 2092 if (optlen <= 0 || optlen > PAGE_SIZE) 2093 return -EMSGSIZE; 2094 2095 data = memdup_user(optval, optlen); 2096 if (IS_ERR(data)) 2097 return PTR_ERR(data); 2098 2099 err = -EINVAL; 2100 rcu_read_lock(); 2101 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2102 pol = km->compile_policy(sk, optname, data, 2103 optlen, &err); 2104 if (err >= 0) 2105 break; 2106 } 2107 rcu_read_unlock(); 2108 2109 if (err >= 0) { 2110 xfrm_sk_policy_insert(sk, err, pol); 2111 xfrm_pol_put(pol); 2112 __sk_dst_reset(sk); 2113 err = 0; 2114 } 2115 2116 kfree(data); 2117 return err; 2118 } 2119 EXPORT_SYMBOL(xfrm_user_policy); 2120 2121 static DEFINE_SPINLOCK(xfrm_km_lock); 2122 2123 int xfrm_register_km(struct xfrm_mgr *km) 2124 { 2125 spin_lock_bh(&xfrm_km_lock); 2126 list_add_tail_rcu(&km->list, &xfrm_km_list); 2127 spin_unlock_bh(&xfrm_km_lock); 2128 return 0; 2129 } 2130 EXPORT_SYMBOL(xfrm_register_km); 2131 2132 int xfrm_unregister_km(struct xfrm_mgr *km) 2133 { 2134 spin_lock_bh(&xfrm_km_lock); 2135 list_del_rcu(&km->list); 2136 spin_unlock_bh(&xfrm_km_lock); 2137 synchronize_rcu(); 2138 return 0; 2139 } 2140 EXPORT_SYMBOL(xfrm_unregister_km); 2141 2142 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2143 { 2144 int err = 0; 2145 2146 if (WARN_ON(afinfo->family >= NPROTO)) 2147 return -EAFNOSUPPORT; 2148 2149 spin_lock_bh(&xfrm_state_afinfo_lock); 2150 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2151 err = -EEXIST; 2152 else 2153 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2154 spin_unlock_bh(&xfrm_state_afinfo_lock); 2155 return err; 2156 } 2157 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2158 2159 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2160 { 2161 int err = 0, family = afinfo->family; 2162 2163 if (WARN_ON(family >= NPROTO)) 2164 return -EAFNOSUPPORT; 2165 2166 spin_lock_bh(&xfrm_state_afinfo_lock); 2167 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2168 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2169 err = -EINVAL; 2170 else 2171 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2172 } 2173 spin_unlock_bh(&xfrm_state_afinfo_lock); 2174 synchronize_rcu(); 2175 return err; 2176 } 2177 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2178 2179 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2180 { 2181 if (unlikely(family >= NPROTO)) 2182 return NULL; 2183 2184 return rcu_dereference(xfrm_state_afinfo[family]); 2185 } 2186 2187 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2188 { 2189 struct xfrm_state_afinfo *afinfo; 2190 if (unlikely(family >= NPROTO)) 2191 return NULL; 2192 rcu_read_lock(); 2193 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2194 if (unlikely(!afinfo)) 2195 rcu_read_unlock(); 2196 return afinfo; 2197 } 2198 2199 void xfrm_flush_gc(void) 2200 { 2201 flush_work(&xfrm_state_gc_work); 2202 } 2203 EXPORT_SYMBOL(xfrm_flush_gc); 2204 2205 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2206 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2207 { 2208 if (x->tunnel) { 2209 struct xfrm_state *t = x->tunnel; 2210 2211 if (atomic_read(&t->tunnel_users) == 2) 2212 xfrm_state_delete(t); 2213 atomic_dec(&t->tunnel_users); 2214 xfrm_state_put(t); 2215 x->tunnel = NULL; 2216 } 2217 } 2218 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2219 2220 int xfrm_state_mtu(struct xfrm_state *x, int mtu) 2221 { 2222 const struct xfrm_type *type = READ_ONCE(x->type); 2223 2224 if (x->km.state == XFRM_STATE_VALID && 2225 type && type->get_mtu) 2226 return type->get_mtu(x, mtu); 2227 2228 return mtu - x->props.header_len; 2229 } 2230 2231 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload) 2232 { 2233 struct xfrm_state_afinfo *afinfo; 2234 struct xfrm_mode *inner_mode; 2235 int family = x->props.family; 2236 int err; 2237 2238 err = -EAFNOSUPPORT; 2239 afinfo = xfrm_state_get_afinfo(family); 2240 if (!afinfo) 2241 goto error; 2242 2243 err = 0; 2244 if (afinfo->init_flags) 2245 err = afinfo->init_flags(x); 2246 2247 rcu_read_unlock(); 2248 2249 if (err) 2250 goto error; 2251 2252 err = -EPROTONOSUPPORT; 2253 2254 if (x->sel.family != AF_UNSPEC) { 2255 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2256 if (inner_mode == NULL) 2257 goto error; 2258 2259 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2260 family != x->sel.family) { 2261 xfrm_put_mode(inner_mode); 2262 goto error; 2263 } 2264 2265 x->inner_mode = inner_mode; 2266 } else { 2267 struct xfrm_mode *inner_mode_iaf; 2268 int iafamily = AF_INET; 2269 2270 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2271 if (inner_mode == NULL) 2272 goto error; 2273 2274 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) { 2275 xfrm_put_mode(inner_mode); 2276 goto error; 2277 } 2278 x->inner_mode = inner_mode; 2279 2280 if (x->props.family == AF_INET) 2281 iafamily = AF_INET6; 2282 2283 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2284 if (inner_mode_iaf) { 2285 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2286 x->inner_mode_iaf = inner_mode_iaf; 2287 else 2288 xfrm_put_mode(inner_mode_iaf); 2289 } 2290 } 2291 2292 x->type = xfrm_get_type(x->id.proto, family); 2293 if (x->type == NULL) 2294 goto error; 2295 2296 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2297 2298 err = x->type->init_state(x); 2299 if (err) 2300 goto error; 2301 2302 x->outer_mode = xfrm_get_mode(x->props.mode, family); 2303 if (x->outer_mode == NULL) { 2304 err = -EPROTONOSUPPORT; 2305 goto error; 2306 } 2307 2308 if (init_replay) { 2309 err = xfrm_init_replay(x); 2310 if (err) 2311 goto error; 2312 } 2313 2314 error: 2315 return err; 2316 } 2317 2318 EXPORT_SYMBOL(__xfrm_init_state); 2319 2320 int xfrm_init_state(struct xfrm_state *x) 2321 { 2322 int err; 2323 2324 err = __xfrm_init_state(x, true, false); 2325 if (!err) 2326 x->km.state = XFRM_STATE_VALID; 2327 2328 return err; 2329 } 2330 2331 EXPORT_SYMBOL(xfrm_init_state); 2332 2333 int __net_init xfrm_state_init(struct net *net) 2334 { 2335 unsigned int sz; 2336 2337 if (net_eq(net, &init_net)) 2338 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2339 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2340 2341 INIT_LIST_HEAD(&net->xfrm.state_all); 2342 2343 sz = sizeof(struct hlist_head) * 8; 2344 2345 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2346 if (!net->xfrm.state_bydst) 2347 goto out_bydst; 2348 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2349 if (!net->xfrm.state_bysrc) 2350 goto out_bysrc; 2351 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2352 if (!net->xfrm.state_byspi) 2353 goto out_byspi; 2354 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2355 2356 net->xfrm.state_num = 0; 2357 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2358 spin_lock_init(&net->xfrm.xfrm_state_lock); 2359 return 0; 2360 2361 out_byspi: 2362 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2363 out_bysrc: 2364 xfrm_hash_free(net->xfrm.state_bydst, sz); 2365 out_bydst: 2366 return -ENOMEM; 2367 } 2368 2369 void xfrm_state_fini(struct net *net) 2370 { 2371 unsigned int sz; 2372 2373 flush_work(&net->xfrm.state_hash_work); 2374 xfrm_state_flush(net, IPSEC_PROTO_ANY, false); 2375 flush_work(&xfrm_state_gc_work); 2376 2377 WARN_ON(!list_empty(&net->xfrm.state_all)); 2378 2379 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2380 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2381 xfrm_hash_free(net->xfrm.state_byspi, sz); 2382 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2383 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2384 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2385 xfrm_hash_free(net->xfrm.state_bydst, sz); 2386 } 2387 2388 #ifdef CONFIG_AUDITSYSCALL 2389 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2390 struct audit_buffer *audit_buf) 2391 { 2392 struct xfrm_sec_ctx *ctx = x->security; 2393 u32 spi = ntohl(x->id.spi); 2394 2395 if (ctx) 2396 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2397 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2398 2399 switch (x->props.family) { 2400 case AF_INET: 2401 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2402 &x->props.saddr.a4, &x->id.daddr.a4); 2403 break; 2404 case AF_INET6: 2405 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2406 x->props.saddr.a6, x->id.daddr.a6); 2407 break; 2408 } 2409 2410 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2411 } 2412 2413 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2414 struct audit_buffer *audit_buf) 2415 { 2416 const struct iphdr *iph4; 2417 const struct ipv6hdr *iph6; 2418 2419 switch (family) { 2420 case AF_INET: 2421 iph4 = ip_hdr(skb); 2422 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2423 &iph4->saddr, &iph4->daddr); 2424 break; 2425 case AF_INET6: 2426 iph6 = ipv6_hdr(skb); 2427 audit_log_format(audit_buf, 2428 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2429 &iph6->saddr, &iph6->daddr, 2430 iph6->flow_lbl[0] & 0x0f, 2431 iph6->flow_lbl[1], 2432 iph6->flow_lbl[2]); 2433 break; 2434 } 2435 } 2436 2437 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2438 { 2439 struct audit_buffer *audit_buf; 2440 2441 audit_buf = xfrm_audit_start("SAD-add"); 2442 if (audit_buf == NULL) 2443 return; 2444 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2445 xfrm_audit_helper_sainfo(x, audit_buf); 2446 audit_log_format(audit_buf, " res=%u", result); 2447 audit_log_end(audit_buf); 2448 } 2449 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2450 2451 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 2452 { 2453 struct audit_buffer *audit_buf; 2454 2455 audit_buf = xfrm_audit_start("SAD-delete"); 2456 if (audit_buf == NULL) 2457 return; 2458 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2459 xfrm_audit_helper_sainfo(x, audit_buf); 2460 audit_log_format(audit_buf, " res=%u", result); 2461 audit_log_end(audit_buf); 2462 } 2463 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 2464 2465 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 2466 struct sk_buff *skb) 2467 { 2468 struct audit_buffer *audit_buf; 2469 u32 spi; 2470 2471 audit_buf = xfrm_audit_start("SA-replay-overflow"); 2472 if (audit_buf == NULL) 2473 return; 2474 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2475 /* don't record the sequence number because it's inherent in this kind 2476 * of audit message */ 2477 spi = ntohl(x->id.spi); 2478 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2479 audit_log_end(audit_buf); 2480 } 2481 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 2482 2483 void xfrm_audit_state_replay(struct xfrm_state *x, 2484 struct sk_buff *skb, __be32 net_seq) 2485 { 2486 struct audit_buffer *audit_buf; 2487 u32 spi; 2488 2489 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 2490 if (audit_buf == NULL) 2491 return; 2492 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2493 spi = ntohl(x->id.spi); 2494 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2495 spi, spi, ntohl(net_seq)); 2496 audit_log_end(audit_buf); 2497 } 2498 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 2499 2500 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 2501 { 2502 struct audit_buffer *audit_buf; 2503 2504 audit_buf = xfrm_audit_start("SA-notfound"); 2505 if (audit_buf == NULL) 2506 return; 2507 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2508 audit_log_end(audit_buf); 2509 } 2510 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 2511 2512 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 2513 __be32 net_spi, __be32 net_seq) 2514 { 2515 struct audit_buffer *audit_buf; 2516 u32 spi; 2517 2518 audit_buf = xfrm_audit_start("SA-notfound"); 2519 if (audit_buf == NULL) 2520 return; 2521 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2522 spi = ntohl(net_spi); 2523 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2524 spi, spi, ntohl(net_seq)); 2525 audit_log_end(audit_buf); 2526 } 2527 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 2528 2529 void xfrm_audit_state_icvfail(struct xfrm_state *x, 2530 struct sk_buff *skb, u8 proto) 2531 { 2532 struct audit_buffer *audit_buf; 2533 __be32 net_spi; 2534 __be32 net_seq; 2535 2536 audit_buf = xfrm_audit_start("SA-icv-failure"); 2537 if (audit_buf == NULL) 2538 return; 2539 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2540 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 2541 u32 spi = ntohl(net_spi); 2542 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2543 spi, spi, ntohl(net_seq)); 2544 } 2545 audit_log_end(audit_buf); 2546 } 2547 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 2548 #endif /* CONFIG_AUDITSYSCALL */ 2549