xref: /openbmc/linux/net/xfrm/xfrm_algo.c (revision b6dcefde)
1 /*
2  * xfrm algorithm interface
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24 
25 /*
26  * Algorithms supported by IPsec.  These entries contain properties which
27  * are used in key negotiation and xfrm processing, and are used to verify
28  * that instantiated crypto transforms have correct parameters for IPsec
29  * purposes.
30  */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33 	.name = "rfc4106(gcm(aes))",
34 
35 	.uinfo = {
36 		.aead = {
37 			.icv_truncbits = 64,
38 		}
39 	},
40 
41 	.desc = {
42 		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 		.sadb_alg_ivlen = 8,
44 		.sadb_alg_minbits = 128,
45 		.sadb_alg_maxbits = 256
46 	}
47 },
48 {
49 	.name = "rfc4106(gcm(aes))",
50 
51 	.uinfo = {
52 		.aead = {
53 			.icv_truncbits = 96,
54 		}
55 	},
56 
57 	.desc = {
58 		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 		.sadb_alg_ivlen = 8,
60 		.sadb_alg_minbits = 128,
61 		.sadb_alg_maxbits = 256
62 	}
63 },
64 {
65 	.name = "rfc4106(gcm(aes))",
66 
67 	.uinfo = {
68 		.aead = {
69 			.icv_truncbits = 128,
70 		}
71 	},
72 
73 	.desc = {
74 		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 		.sadb_alg_ivlen = 8,
76 		.sadb_alg_minbits = 128,
77 		.sadb_alg_maxbits = 256
78 	}
79 },
80 {
81 	.name = "rfc4309(ccm(aes))",
82 
83 	.uinfo = {
84 		.aead = {
85 			.icv_truncbits = 64,
86 		}
87 	},
88 
89 	.desc = {
90 		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 		.sadb_alg_ivlen = 8,
92 		.sadb_alg_minbits = 128,
93 		.sadb_alg_maxbits = 256
94 	}
95 },
96 {
97 	.name = "rfc4309(ccm(aes))",
98 
99 	.uinfo = {
100 		.aead = {
101 			.icv_truncbits = 96,
102 		}
103 	},
104 
105 	.desc = {
106 		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 		.sadb_alg_ivlen = 8,
108 		.sadb_alg_minbits = 128,
109 		.sadb_alg_maxbits = 256
110 	}
111 },
112 {
113 	.name = "rfc4309(ccm(aes))",
114 
115 	.uinfo = {
116 		.aead = {
117 			.icv_truncbits = 128,
118 		}
119 	},
120 
121 	.desc = {
122 		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 		.sadb_alg_ivlen = 8,
124 		.sadb_alg_minbits = 128,
125 		.sadb_alg_maxbits = 256
126 	}
127 },
128 };
129 
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132 	.name = "digest_null",
133 
134 	.uinfo = {
135 		.auth = {
136 			.icv_truncbits = 0,
137 			.icv_fullbits = 0,
138 		}
139 	},
140 
141 	.desc = {
142 		.sadb_alg_id = SADB_X_AALG_NULL,
143 		.sadb_alg_ivlen = 0,
144 		.sadb_alg_minbits = 0,
145 		.sadb_alg_maxbits = 0
146 	}
147 },
148 {
149 	.name = "hmac(md5)",
150 	.compat = "md5",
151 
152 	.uinfo = {
153 		.auth = {
154 			.icv_truncbits = 96,
155 			.icv_fullbits = 128,
156 		}
157 	},
158 
159 	.desc = {
160 		.sadb_alg_id = SADB_AALG_MD5HMAC,
161 		.sadb_alg_ivlen = 0,
162 		.sadb_alg_minbits = 128,
163 		.sadb_alg_maxbits = 128
164 	}
165 },
166 {
167 	.name = "hmac(sha1)",
168 	.compat = "sha1",
169 
170 	.uinfo = {
171 		.auth = {
172 			.icv_truncbits = 96,
173 			.icv_fullbits = 160,
174 		}
175 	},
176 
177 	.desc = {
178 		.sadb_alg_id = SADB_AALG_SHA1HMAC,
179 		.sadb_alg_ivlen = 0,
180 		.sadb_alg_minbits = 160,
181 		.sadb_alg_maxbits = 160
182 	}
183 },
184 {
185 	.name = "hmac(sha256)",
186 	.compat = "sha256",
187 
188 	.uinfo = {
189 		.auth = {
190 			.icv_truncbits = 96,
191 			.icv_fullbits = 256,
192 		}
193 	},
194 
195 	.desc = {
196 		.sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
197 		.sadb_alg_ivlen = 0,
198 		.sadb_alg_minbits = 256,
199 		.sadb_alg_maxbits = 256
200 	}
201 },
202 {
203 	.name = "hmac(sha384)",
204 
205 	.uinfo = {
206 		.auth = {
207 			.icv_truncbits = 192,
208 			.icv_fullbits = 384,
209 		}
210 	},
211 
212 	.desc = {
213 		.sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
214 		.sadb_alg_ivlen = 0,
215 		.sadb_alg_minbits = 384,
216 		.sadb_alg_maxbits = 384
217 	}
218 },
219 {
220 	.name = "hmac(sha512)",
221 
222 	.uinfo = {
223 		.auth = {
224 			.icv_truncbits = 256,
225 			.icv_fullbits = 512,
226 		}
227 	},
228 
229 	.desc = {
230 		.sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
231 		.sadb_alg_ivlen = 0,
232 		.sadb_alg_minbits = 512,
233 		.sadb_alg_maxbits = 512
234 	}
235 },
236 {
237 	.name = "hmac(rmd160)",
238 	.compat = "rmd160",
239 
240 	.uinfo = {
241 		.auth = {
242 			.icv_truncbits = 96,
243 			.icv_fullbits = 160,
244 		}
245 	},
246 
247 	.desc = {
248 		.sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
249 		.sadb_alg_ivlen = 0,
250 		.sadb_alg_minbits = 160,
251 		.sadb_alg_maxbits = 160
252 	}
253 },
254 {
255 	.name = "xcbc(aes)",
256 
257 	.uinfo = {
258 		.auth = {
259 			.icv_truncbits = 96,
260 			.icv_fullbits = 128,
261 		}
262 	},
263 
264 	.desc = {
265 		.sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
266 		.sadb_alg_ivlen = 0,
267 		.sadb_alg_minbits = 128,
268 		.sadb_alg_maxbits = 128
269 	}
270 },
271 };
272 
273 static struct xfrm_algo_desc ealg_list[] = {
274 {
275 	.name = "ecb(cipher_null)",
276 	.compat = "cipher_null",
277 
278 	.uinfo = {
279 		.encr = {
280 			.blockbits = 8,
281 			.defkeybits = 0,
282 		}
283 	},
284 
285 	.desc = {
286 		.sadb_alg_id =	SADB_EALG_NULL,
287 		.sadb_alg_ivlen = 0,
288 		.sadb_alg_minbits = 0,
289 		.sadb_alg_maxbits = 0
290 	}
291 },
292 {
293 	.name = "cbc(des)",
294 	.compat = "des",
295 
296 	.uinfo = {
297 		.encr = {
298 			.blockbits = 64,
299 			.defkeybits = 64,
300 		}
301 	},
302 
303 	.desc = {
304 		.sadb_alg_id = SADB_EALG_DESCBC,
305 		.sadb_alg_ivlen = 8,
306 		.sadb_alg_minbits = 64,
307 		.sadb_alg_maxbits = 64
308 	}
309 },
310 {
311 	.name = "cbc(des3_ede)",
312 	.compat = "des3_ede",
313 
314 	.uinfo = {
315 		.encr = {
316 			.blockbits = 64,
317 			.defkeybits = 192,
318 		}
319 	},
320 
321 	.desc = {
322 		.sadb_alg_id = SADB_EALG_3DESCBC,
323 		.sadb_alg_ivlen = 8,
324 		.sadb_alg_minbits = 192,
325 		.sadb_alg_maxbits = 192
326 	}
327 },
328 {
329 	.name = "cbc(cast5)",
330 	.compat = "cast5",
331 
332 	.uinfo = {
333 		.encr = {
334 			.blockbits = 64,
335 			.defkeybits = 128,
336 		}
337 	},
338 
339 	.desc = {
340 		.sadb_alg_id = SADB_X_EALG_CASTCBC,
341 		.sadb_alg_ivlen = 8,
342 		.sadb_alg_minbits = 40,
343 		.sadb_alg_maxbits = 128
344 	}
345 },
346 {
347 	.name = "cbc(blowfish)",
348 	.compat = "blowfish",
349 
350 	.uinfo = {
351 		.encr = {
352 			.blockbits = 64,
353 			.defkeybits = 128,
354 		}
355 	},
356 
357 	.desc = {
358 		.sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
359 		.sadb_alg_ivlen = 8,
360 		.sadb_alg_minbits = 40,
361 		.sadb_alg_maxbits = 448
362 	}
363 },
364 {
365 	.name = "cbc(aes)",
366 	.compat = "aes",
367 
368 	.uinfo = {
369 		.encr = {
370 			.blockbits = 128,
371 			.defkeybits = 128,
372 		}
373 	},
374 
375 	.desc = {
376 		.sadb_alg_id = SADB_X_EALG_AESCBC,
377 		.sadb_alg_ivlen = 8,
378 		.sadb_alg_minbits = 128,
379 		.sadb_alg_maxbits = 256
380 	}
381 },
382 {
383 	.name = "cbc(serpent)",
384 	.compat = "serpent",
385 
386 	.uinfo = {
387 		.encr = {
388 			.blockbits = 128,
389 			.defkeybits = 128,
390 		}
391 	},
392 
393 	.desc = {
394 		.sadb_alg_id = SADB_X_EALG_SERPENTCBC,
395 		.sadb_alg_ivlen = 8,
396 		.sadb_alg_minbits = 128,
397 		.sadb_alg_maxbits = 256,
398 	}
399 },
400 {
401 	.name = "cbc(camellia)",
402 	.compat = "camellia",
403 
404 	.uinfo = {
405 		.encr = {
406 			.blockbits = 128,
407 			.defkeybits = 128,
408 		}
409 	},
410 
411 	.desc = {
412 		.sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
413 		.sadb_alg_ivlen = 8,
414 		.sadb_alg_minbits = 128,
415 		.sadb_alg_maxbits = 256
416 	}
417 },
418 {
419 	.name = "cbc(twofish)",
420 	.compat = "twofish",
421 
422 	.uinfo = {
423 		.encr = {
424 			.blockbits = 128,
425 			.defkeybits = 128,
426 		}
427 	},
428 
429 	.desc = {
430 		.sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
431 		.sadb_alg_ivlen = 8,
432 		.sadb_alg_minbits = 128,
433 		.sadb_alg_maxbits = 256
434 	}
435 },
436 {
437 	.name = "rfc3686(ctr(aes))",
438 
439 	.uinfo = {
440 		.encr = {
441 			.blockbits = 128,
442 			.defkeybits = 160, /* 128-bit key + 32-bit nonce */
443 		}
444 	},
445 
446 	.desc = {
447 		.sadb_alg_id = SADB_X_EALG_AESCTR,
448 		.sadb_alg_ivlen	= 8,
449 		.sadb_alg_minbits = 128,
450 		.sadb_alg_maxbits = 256
451 	}
452 },
453 };
454 
455 static struct xfrm_algo_desc calg_list[] = {
456 {
457 	.name = "deflate",
458 	.uinfo = {
459 		.comp = {
460 			.threshold = 90,
461 		}
462 	},
463 	.desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
464 },
465 {
466 	.name = "lzs",
467 	.uinfo = {
468 		.comp = {
469 			.threshold = 90,
470 		}
471 	},
472 	.desc = { .sadb_alg_id = SADB_X_CALG_LZS }
473 },
474 {
475 	.name = "lzjh",
476 	.uinfo = {
477 		.comp = {
478 			.threshold = 50,
479 		}
480 	},
481 	.desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
482 },
483 };
484 
485 static inline int aead_entries(void)
486 {
487 	return ARRAY_SIZE(aead_list);
488 }
489 
490 static inline int aalg_entries(void)
491 {
492 	return ARRAY_SIZE(aalg_list);
493 }
494 
495 static inline int ealg_entries(void)
496 {
497 	return ARRAY_SIZE(ealg_list);
498 }
499 
500 static inline int calg_entries(void)
501 {
502 	return ARRAY_SIZE(calg_list);
503 }
504 
505 struct xfrm_algo_list {
506 	struct xfrm_algo_desc *algs;
507 	int entries;
508 	u32 type;
509 	u32 mask;
510 };
511 
512 static const struct xfrm_algo_list xfrm_aead_list = {
513 	.algs = aead_list,
514 	.entries = ARRAY_SIZE(aead_list),
515 	.type = CRYPTO_ALG_TYPE_AEAD,
516 	.mask = CRYPTO_ALG_TYPE_MASK,
517 };
518 
519 static const struct xfrm_algo_list xfrm_aalg_list = {
520 	.algs = aalg_list,
521 	.entries = ARRAY_SIZE(aalg_list),
522 	.type = CRYPTO_ALG_TYPE_HASH,
523 	.mask = CRYPTO_ALG_TYPE_HASH_MASK,
524 };
525 
526 static const struct xfrm_algo_list xfrm_ealg_list = {
527 	.algs = ealg_list,
528 	.entries = ARRAY_SIZE(ealg_list),
529 	.type = CRYPTO_ALG_TYPE_BLKCIPHER,
530 	.mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
531 };
532 
533 static const struct xfrm_algo_list xfrm_calg_list = {
534 	.algs = calg_list,
535 	.entries = ARRAY_SIZE(calg_list),
536 	.type = CRYPTO_ALG_TYPE_COMPRESS,
537 	.mask = CRYPTO_ALG_TYPE_MASK,
538 };
539 
540 static struct xfrm_algo_desc *xfrm_find_algo(
541 	const struct xfrm_algo_list *algo_list,
542 	int match(const struct xfrm_algo_desc *entry, const void *data),
543 	const void *data, int probe)
544 {
545 	struct xfrm_algo_desc *list = algo_list->algs;
546 	int i, status;
547 
548 	for (i = 0; i < algo_list->entries; i++) {
549 		if (!match(list + i, data))
550 			continue;
551 
552 		if (list[i].available)
553 			return &list[i];
554 
555 		if (!probe)
556 			break;
557 
558 		status = crypto_has_alg(list[i].name, algo_list->type,
559 					algo_list->mask);
560 		if (!status)
561 			break;
562 
563 		list[i].available = status;
564 		return &list[i];
565 	}
566 	return NULL;
567 }
568 
569 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
570 			     const void *data)
571 {
572 	return entry->desc.sadb_alg_id == (unsigned long)data;
573 }
574 
575 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
576 {
577 	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
578 			      (void *)(unsigned long)alg_id, 1);
579 }
580 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
581 
582 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
583 {
584 	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
585 			      (void *)(unsigned long)alg_id, 1);
586 }
587 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
588 
589 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
590 {
591 	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
592 			      (void *)(unsigned long)alg_id, 1);
593 }
594 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
595 
596 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
597 			       const void *data)
598 {
599 	const char *name = data;
600 
601 	return name && (!strcmp(name, entry->name) ||
602 			(entry->compat && !strcmp(name, entry->compat)));
603 }
604 
605 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
606 {
607 	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
608 			      probe);
609 }
610 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
611 
612 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
613 {
614 	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
615 			      probe);
616 }
617 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
618 
619 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
620 {
621 	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
622 			      probe);
623 }
624 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
625 
626 struct xfrm_aead_name {
627 	const char *name;
628 	int icvbits;
629 };
630 
631 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
632 				const void *data)
633 {
634 	const struct xfrm_aead_name *aead = data;
635 	const char *name = aead->name;
636 
637 	return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
638 	       !strcmp(name, entry->name);
639 }
640 
641 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
642 {
643 	struct xfrm_aead_name data = {
644 		.name = name,
645 		.icvbits = icv_len,
646 	};
647 
648 	return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
649 			      probe);
650 }
651 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
652 
653 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
654 {
655 	if (idx >= aalg_entries())
656 		return NULL;
657 
658 	return &aalg_list[idx];
659 }
660 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
661 
662 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
663 {
664 	if (idx >= ealg_entries())
665 		return NULL;
666 
667 	return &ealg_list[idx];
668 }
669 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
670 
671 /*
672  * Probe for the availability of crypto algorithms, and set the available
673  * flag for any algorithms found on the system.  This is typically called by
674  * pfkey during userspace SA add, update or register.
675  */
676 void xfrm_probe_algs(void)
677 {
678 	int i, status;
679 
680 	BUG_ON(in_softirq());
681 
682 	for (i = 0; i < aalg_entries(); i++) {
683 		status = crypto_has_hash(aalg_list[i].name, 0,
684 					 CRYPTO_ALG_ASYNC);
685 		if (aalg_list[i].available != status)
686 			aalg_list[i].available = status;
687 	}
688 
689 	for (i = 0; i < ealg_entries(); i++) {
690 		status = crypto_has_blkcipher(ealg_list[i].name, 0,
691 					      CRYPTO_ALG_ASYNC);
692 		if (ealg_list[i].available != status)
693 			ealg_list[i].available = status;
694 	}
695 
696 	for (i = 0; i < calg_entries(); i++) {
697 		status = crypto_has_comp(calg_list[i].name, 0,
698 					 CRYPTO_ALG_ASYNC);
699 		if (calg_list[i].available != status)
700 			calg_list[i].available = status;
701 	}
702 }
703 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
704 
705 int xfrm_count_auth_supported(void)
706 {
707 	int i, n;
708 
709 	for (i = 0, n = 0; i < aalg_entries(); i++)
710 		if (aalg_list[i].available)
711 			n++;
712 	return n;
713 }
714 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
715 
716 int xfrm_count_enc_supported(void)
717 {
718 	int i, n;
719 
720 	for (i = 0, n = 0; i < ealg_entries(); i++)
721 		if (ealg_list[i].available)
722 			n++;
723 	return n;
724 }
725 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
726 
727 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
728 
729 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
730 {
731 	if (tail != skb) {
732 		skb->data_len += len;
733 		skb->len += len;
734 	}
735 	return skb_put(tail, len);
736 }
737 EXPORT_SYMBOL_GPL(pskb_put);
738 #endif
739