1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * xfrm algorithm interface
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 */
7
8 #include <crypto/hash.h>
9 #include <crypto/skcipher.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/pfkeyv2.h>
13 #include <linux/crypto.h>
14 #include <linux/scatterlist.h>
15 #include <net/xfrm.h>
16 #if IS_ENABLED(CONFIG_INET_ESP) || IS_ENABLED(CONFIG_INET6_ESP)
17 #include <net/esp.h>
18 #endif
19
20 /*
21 * Algorithms supported by IPsec. These entries contain properties which
22 * are used in key negotiation and xfrm processing, and are used to verify
23 * that instantiated crypto transforms have correct parameters for IPsec
24 * purposes.
25 */
26 static struct xfrm_algo_desc aead_list[] = {
27 {
28 .name = "rfc4106(gcm(aes))",
29
30 .uinfo = {
31 .aead = {
32 .geniv = "seqiv",
33 .icv_truncbits = 64,
34 }
35 },
36
37 .pfkey_supported = 1,
38
39 .desc = {
40 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
41 .sadb_alg_ivlen = 8,
42 .sadb_alg_minbits = 128,
43 .sadb_alg_maxbits = 256
44 }
45 },
46 {
47 .name = "rfc4106(gcm(aes))",
48
49 .uinfo = {
50 .aead = {
51 .geniv = "seqiv",
52 .icv_truncbits = 96,
53 }
54 },
55
56 .pfkey_supported = 1,
57
58 .desc = {
59 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
60 .sadb_alg_ivlen = 8,
61 .sadb_alg_minbits = 128,
62 .sadb_alg_maxbits = 256
63 }
64 },
65 {
66 .name = "rfc4106(gcm(aes))",
67
68 .uinfo = {
69 .aead = {
70 .geniv = "seqiv",
71 .icv_truncbits = 128,
72 }
73 },
74
75 .pfkey_supported = 1,
76
77 .desc = {
78 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
79 .sadb_alg_ivlen = 8,
80 .sadb_alg_minbits = 128,
81 .sadb_alg_maxbits = 256
82 }
83 },
84 {
85 .name = "rfc4309(ccm(aes))",
86
87 .uinfo = {
88 .aead = {
89 .geniv = "seqiv",
90 .icv_truncbits = 64,
91 }
92 },
93
94 .pfkey_supported = 1,
95
96 .desc = {
97 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
98 .sadb_alg_ivlen = 8,
99 .sadb_alg_minbits = 128,
100 .sadb_alg_maxbits = 256
101 }
102 },
103 {
104 .name = "rfc4309(ccm(aes))",
105
106 .uinfo = {
107 .aead = {
108 .geniv = "seqiv",
109 .icv_truncbits = 96,
110 }
111 },
112
113 .pfkey_supported = 1,
114
115 .desc = {
116 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
117 .sadb_alg_ivlen = 8,
118 .sadb_alg_minbits = 128,
119 .sadb_alg_maxbits = 256
120 }
121 },
122 {
123 .name = "rfc4309(ccm(aes))",
124
125 .uinfo = {
126 .aead = {
127 .geniv = "seqiv",
128 .icv_truncbits = 128,
129 }
130 },
131
132 .pfkey_supported = 1,
133
134 .desc = {
135 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
136 .sadb_alg_ivlen = 8,
137 .sadb_alg_minbits = 128,
138 .sadb_alg_maxbits = 256
139 }
140 },
141 {
142 .name = "rfc4543(gcm(aes))",
143
144 .uinfo = {
145 .aead = {
146 .geniv = "seqiv",
147 .icv_truncbits = 128,
148 }
149 },
150
151 .pfkey_supported = 1,
152
153 .desc = {
154 .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
155 .sadb_alg_ivlen = 8,
156 .sadb_alg_minbits = 128,
157 .sadb_alg_maxbits = 256
158 }
159 },
160 {
161 .name = "rfc7539esp(chacha20,poly1305)",
162
163 .uinfo = {
164 .aead = {
165 .geniv = "seqiv",
166 .icv_truncbits = 128,
167 }
168 },
169
170 .pfkey_supported = 0,
171 },
172 };
173
174 static struct xfrm_algo_desc aalg_list[] = {
175 {
176 .name = "digest_null",
177
178 .uinfo = {
179 .auth = {
180 .icv_truncbits = 0,
181 .icv_fullbits = 0,
182 }
183 },
184
185 .pfkey_supported = 1,
186
187 .desc = {
188 .sadb_alg_id = SADB_X_AALG_NULL,
189 .sadb_alg_ivlen = 0,
190 .sadb_alg_minbits = 0,
191 .sadb_alg_maxbits = 0
192 }
193 },
194 {
195 .name = "hmac(md5)",
196 .compat = "md5",
197
198 .uinfo = {
199 .auth = {
200 .icv_truncbits = 96,
201 .icv_fullbits = 128,
202 }
203 },
204
205 .pfkey_supported = 1,
206
207 .desc = {
208 .sadb_alg_id = SADB_AALG_MD5HMAC,
209 .sadb_alg_ivlen = 0,
210 .sadb_alg_minbits = 128,
211 .sadb_alg_maxbits = 128
212 }
213 },
214 {
215 .name = "hmac(sha1)",
216 .compat = "sha1",
217
218 .uinfo = {
219 .auth = {
220 .icv_truncbits = 96,
221 .icv_fullbits = 160,
222 }
223 },
224
225 .pfkey_supported = 1,
226
227 .desc = {
228 .sadb_alg_id = SADB_AALG_SHA1HMAC,
229 .sadb_alg_ivlen = 0,
230 .sadb_alg_minbits = 160,
231 .sadb_alg_maxbits = 160
232 }
233 },
234 {
235 .name = "hmac(sha256)",
236 .compat = "sha256",
237
238 .uinfo = {
239 .auth = {
240 .icv_truncbits = 96,
241 .icv_fullbits = 256,
242 }
243 },
244
245 .pfkey_supported = 1,
246
247 .desc = {
248 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
249 .sadb_alg_ivlen = 0,
250 .sadb_alg_minbits = 256,
251 .sadb_alg_maxbits = 256
252 }
253 },
254 {
255 .name = "hmac(sha384)",
256
257 .uinfo = {
258 .auth = {
259 .icv_truncbits = 192,
260 .icv_fullbits = 384,
261 }
262 },
263
264 .pfkey_supported = 1,
265
266 .desc = {
267 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
268 .sadb_alg_ivlen = 0,
269 .sadb_alg_minbits = 384,
270 .sadb_alg_maxbits = 384
271 }
272 },
273 {
274 .name = "hmac(sha512)",
275
276 .uinfo = {
277 .auth = {
278 .icv_truncbits = 256,
279 .icv_fullbits = 512,
280 }
281 },
282
283 .pfkey_supported = 1,
284
285 .desc = {
286 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
287 .sadb_alg_ivlen = 0,
288 .sadb_alg_minbits = 512,
289 .sadb_alg_maxbits = 512
290 }
291 },
292 {
293 .name = "hmac(rmd160)",
294 .compat = "rmd160",
295
296 .uinfo = {
297 .auth = {
298 .icv_truncbits = 96,
299 .icv_fullbits = 160,
300 }
301 },
302
303 .pfkey_supported = 1,
304
305 .desc = {
306 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
307 .sadb_alg_ivlen = 0,
308 .sadb_alg_minbits = 160,
309 .sadb_alg_maxbits = 160
310 }
311 },
312 {
313 .name = "xcbc(aes)",
314
315 .uinfo = {
316 .auth = {
317 .icv_truncbits = 96,
318 .icv_fullbits = 128,
319 }
320 },
321
322 .pfkey_supported = 1,
323
324 .desc = {
325 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
326 .sadb_alg_ivlen = 0,
327 .sadb_alg_minbits = 128,
328 .sadb_alg_maxbits = 128
329 }
330 },
331 {
332 /* rfc4494 */
333 .name = "cmac(aes)",
334
335 .uinfo = {
336 .auth = {
337 .icv_truncbits = 96,
338 .icv_fullbits = 128,
339 }
340 },
341
342 .pfkey_supported = 0,
343 },
344 {
345 .name = "hmac(sm3)",
346 .compat = "sm3",
347
348 .uinfo = {
349 .auth = {
350 .icv_truncbits = 256,
351 .icv_fullbits = 256,
352 }
353 },
354
355 .pfkey_supported = 1,
356
357 .desc = {
358 .sadb_alg_id = SADB_X_AALG_SM3_256HMAC,
359 .sadb_alg_ivlen = 0,
360 .sadb_alg_minbits = 256,
361 .sadb_alg_maxbits = 256
362 }
363 },
364 };
365
366 static struct xfrm_algo_desc ealg_list[] = {
367 {
368 .name = "ecb(cipher_null)",
369 .compat = "cipher_null",
370
371 .uinfo = {
372 .encr = {
373 .blockbits = 8,
374 .defkeybits = 0,
375 }
376 },
377
378 .pfkey_supported = 1,
379
380 .desc = {
381 .sadb_alg_id = SADB_EALG_NULL,
382 .sadb_alg_ivlen = 0,
383 .sadb_alg_minbits = 0,
384 .sadb_alg_maxbits = 0
385 }
386 },
387 {
388 .name = "cbc(des)",
389 .compat = "des",
390
391 .uinfo = {
392 .encr = {
393 .geniv = "echainiv",
394 .blockbits = 64,
395 .defkeybits = 64,
396 }
397 },
398
399 .pfkey_supported = 1,
400
401 .desc = {
402 .sadb_alg_id = SADB_EALG_DESCBC,
403 .sadb_alg_ivlen = 8,
404 .sadb_alg_minbits = 64,
405 .sadb_alg_maxbits = 64
406 }
407 },
408 {
409 .name = "cbc(des3_ede)",
410 .compat = "des3_ede",
411
412 .uinfo = {
413 .encr = {
414 .geniv = "echainiv",
415 .blockbits = 64,
416 .defkeybits = 192,
417 }
418 },
419
420 .pfkey_supported = 1,
421
422 .desc = {
423 .sadb_alg_id = SADB_EALG_3DESCBC,
424 .sadb_alg_ivlen = 8,
425 .sadb_alg_minbits = 192,
426 .sadb_alg_maxbits = 192
427 }
428 },
429 {
430 .name = "cbc(cast5)",
431 .compat = "cast5",
432
433 .uinfo = {
434 .encr = {
435 .geniv = "echainiv",
436 .blockbits = 64,
437 .defkeybits = 128,
438 }
439 },
440
441 .pfkey_supported = 1,
442
443 .desc = {
444 .sadb_alg_id = SADB_X_EALG_CASTCBC,
445 .sadb_alg_ivlen = 8,
446 .sadb_alg_minbits = 40,
447 .sadb_alg_maxbits = 128
448 }
449 },
450 {
451 .name = "cbc(blowfish)",
452 .compat = "blowfish",
453
454 .uinfo = {
455 .encr = {
456 .geniv = "echainiv",
457 .blockbits = 64,
458 .defkeybits = 128,
459 }
460 },
461
462 .pfkey_supported = 1,
463
464 .desc = {
465 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
466 .sadb_alg_ivlen = 8,
467 .sadb_alg_minbits = 40,
468 .sadb_alg_maxbits = 448
469 }
470 },
471 {
472 .name = "cbc(aes)",
473 .compat = "aes",
474
475 .uinfo = {
476 .encr = {
477 .geniv = "echainiv",
478 .blockbits = 128,
479 .defkeybits = 128,
480 }
481 },
482
483 .pfkey_supported = 1,
484
485 .desc = {
486 .sadb_alg_id = SADB_X_EALG_AESCBC,
487 .sadb_alg_ivlen = 8,
488 .sadb_alg_minbits = 128,
489 .sadb_alg_maxbits = 256
490 }
491 },
492 {
493 .name = "cbc(serpent)",
494 .compat = "serpent",
495
496 .uinfo = {
497 .encr = {
498 .geniv = "echainiv",
499 .blockbits = 128,
500 .defkeybits = 128,
501 }
502 },
503
504 .pfkey_supported = 1,
505
506 .desc = {
507 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
508 .sadb_alg_ivlen = 8,
509 .sadb_alg_minbits = 128,
510 .sadb_alg_maxbits = 256,
511 }
512 },
513 {
514 .name = "cbc(camellia)",
515 .compat = "camellia",
516
517 .uinfo = {
518 .encr = {
519 .geniv = "echainiv",
520 .blockbits = 128,
521 .defkeybits = 128,
522 }
523 },
524
525 .pfkey_supported = 1,
526
527 .desc = {
528 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
529 .sadb_alg_ivlen = 8,
530 .sadb_alg_minbits = 128,
531 .sadb_alg_maxbits = 256
532 }
533 },
534 {
535 .name = "cbc(twofish)",
536 .compat = "twofish",
537
538 .uinfo = {
539 .encr = {
540 .geniv = "echainiv",
541 .blockbits = 128,
542 .defkeybits = 128,
543 }
544 },
545
546 .pfkey_supported = 1,
547
548 .desc = {
549 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
550 .sadb_alg_ivlen = 8,
551 .sadb_alg_minbits = 128,
552 .sadb_alg_maxbits = 256
553 }
554 },
555 {
556 .name = "rfc3686(ctr(aes))",
557
558 .uinfo = {
559 .encr = {
560 .geniv = "seqiv",
561 .blockbits = 128,
562 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
563 }
564 },
565
566 .pfkey_supported = 1,
567
568 .desc = {
569 .sadb_alg_id = SADB_X_EALG_AESCTR,
570 .sadb_alg_ivlen = 8,
571 .sadb_alg_minbits = 160,
572 .sadb_alg_maxbits = 288
573 }
574 },
575 {
576 .name = "cbc(sm4)",
577 .compat = "sm4",
578
579 .uinfo = {
580 .encr = {
581 .geniv = "echainiv",
582 .blockbits = 128,
583 .defkeybits = 128,
584 }
585 },
586
587 .pfkey_supported = 1,
588
589 .desc = {
590 .sadb_alg_id = SADB_X_EALG_SM4CBC,
591 .sadb_alg_ivlen = 16,
592 .sadb_alg_minbits = 128,
593 .sadb_alg_maxbits = 256
594 }
595 },
596 };
597
598 static struct xfrm_algo_desc calg_list[] = {
599 {
600 .name = "deflate",
601 .uinfo = {
602 .comp = {
603 .threshold = 90,
604 }
605 },
606 .pfkey_supported = 1,
607 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
608 },
609 {
610 .name = "lzs",
611 .uinfo = {
612 .comp = {
613 .threshold = 90,
614 }
615 },
616 .pfkey_supported = 1,
617 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
618 },
619 {
620 .name = "lzjh",
621 .uinfo = {
622 .comp = {
623 .threshold = 50,
624 }
625 },
626 .pfkey_supported = 1,
627 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
628 },
629 };
630
aalg_entries(void)631 static inline int aalg_entries(void)
632 {
633 return ARRAY_SIZE(aalg_list);
634 }
635
ealg_entries(void)636 static inline int ealg_entries(void)
637 {
638 return ARRAY_SIZE(ealg_list);
639 }
640
calg_entries(void)641 static inline int calg_entries(void)
642 {
643 return ARRAY_SIZE(calg_list);
644 }
645
646 struct xfrm_algo_list {
647 struct xfrm_algo_desc *algs;
648 int entries;
649 u32 type;
650 u32 mask;
651 };
652
653 static const struct xfrm_algo_list xfrm_aead_list = {
654 .algs = aead_list,
655 .entries = ARRAY_SIZE(aead_list),
656 .type = CRYPTO_ALG_TYPE_AEAD,
657 .mask = CRYPTO_ALG_TYPE_MASK,
658 };
659
660 static const struct xfrm_algo_list xfrm_aalg_list = {
661 .algs = aalg_list,
662 .entries = ARRAY_SIZE(aalg_list),
663 .type = CRYPTO_ALG_TYPE_HASH,
664 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
665 };
666
667 static const struct xfrm_algo_list xfrm_ealg_list = {
668 .algs = ealg_list,
669 .entries = ARRAY_SIZE(ealg_list),
670 .type = CRYPTO_ALG_TYPE_SKCIPHER,
671 .mask = CRYPTO_ALG_TYPE_MASK,
672 };
673
674 static const struct xfrm_algo_list xfrm_calg_list = {
675 .algs = calg_list,
676 .entries = ARRAY_SIZE(calg_list),
677 .type = CRYPTO_ALG_TYPE_COMPRESS,
678 .mask = CRYPTO_ALG_TYPE_MASK,
679 };
680
xfrm_find_algo(const struct xfrm_algo_list * algo_list,int match (const struct xfrm_algo_desc * entry,const void * data),const void * data,int probe)681 static struct xfrm_algo_desc *xfrm_find_algo(
682 const struct xfrm_algo_list *algo_list,
683 int match(const struct xfrm_algo_desc *entry, const void *data),
684 const void *data, int probe)
685 {
686 struct xfrm_algo_desc *list = algo_list->algs;
687 int i, status;
688
689 for (i = 0; i < algo_list->entries; i++) {
690 if (!match(list + i, data))
691 continue;
692
693 if (list[i].available)
694 return &list[i];
695
696 if (!probe)
697 break;
698
699 status = crypto_has_alg(list[i].name, algo_list->type,
700 algo_list->mask);
701 if (!status)
702 break;
703
704 list[i].available = status;
705 return &list[i];
706 }
707 return NULL;
708 }
709
xfrm_alg_id_match(const struct xfrm_algo_desc * entry,const void * data)710 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
711 const void *data)
712 {
713 return entry->desc.sadb_alg_id == (unsigned long)data;
714 }
715
xfrm_aalg_get_byid(int alg_id)716 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
717 {
718 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
719 (void *)(unsigned long)alg_id, 1);
720 }
721 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
722
xfrm_ealg_get_byid(int alg_id)723 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
724 {
725 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
726 (void *)(unsigned long)alg_id, 1);
727 }
728 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
729
xfrm_calg_get_byid(int alg_id)730 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
731 {
732 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
733 (void *)(unsigned long)alg_id, 1);
734 }
735 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
736
xfrm_alg_name_match(const struct xfrm_algo_desc * entry,const void * data)737 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
738 const void *data)
739 {
740 const char *name = data;
741
742 return name && (!strcmp(name, entry->name) ||
743 (entry->compat && !strcmp(name, entry->compat)));
744 }
745
xfrm_aalg_get_byname(const char * name,int probe)746 struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
747 {
748 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
749 probe);
750 }
751 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
752
xfrm_ealg_get_byname(const char * name,int probe)753 struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
754 {
755 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
756 probe);
757 }
758 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
759
xfrm_calg_get_byname(const char * name,int probe)760 struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
761 {
762 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
763 probe);
764 }
765 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
766
767 struct xfrm_aead_name {
768 const char *name;
769 int icvbits;
770 };
771
xfrm_aead_name_match(const struct xfrm_algo_desc * entry,const void * data)772 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
773 const void *data)
774 {
775 const struct xfrm_aead_name *aead = data;
776 const char *name = aead->name;
777
778 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
779 !strcmp(name, entry->name);
780 }
781
xfrm_aead_get_byname(const char * name,int icv_len,int probe)782 struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
783 {
784 struct xfrm_aead_name data = {
785 .name = name,
786 .icvbits = icv_len,
787 };
788
789 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
790 probe);
791 }
792 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
793
xfrm_aalg_get_byidx(unsigned int idx)794 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
795 {
796 if (idx >= aalg_entries())
797 return NULL;
798
799 return &aalg_list[idx];
800 }
801 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
802
xfrm_ealg_get_byidx(unsigned int idx)803 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
804 {
805 if (idx >= ealg_entries())
806 return NULL;
807
808 return &ealg_list[idx];
809 }
810 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
811
812 /*
813 * Probe for the availability of crypto algorithms, and set the available
814 * flag for any algorithms found on the system. This is typically called by
815 * pfkey during userspace SA add, update or register.
816 */
xfrm_probe_algs(void)817 void xfrm_probe_algs(void)
818 {
819 int i, status;
820
821 BUG_ON(in_softirq());
822
823 for (i = 0; i < aalg_entries(); i++) {
824 status = crypto_has_ahash(aalg_list[i].name, 0, 0);
825 if (aalg_list[i].available != status)
826 aalg_list[i].available = status;
827 }
828
829 for (i = 0; i < ealg_entries(); i++) {
830 status = crypto_has_skcipher(ealg_list[i].name, 0, 0);
831 if (ealg_list[i].available != status)
832 ealg_list[i].available = status;
833 }
834
835 for (i = 0; i < calg_entries(); i++) {
836 status = crypto_has_comp(calg_list[i].name, 0,
837 CRYPTO_ALG_ASYNC);
838 if (calg_list[i].available != status)
839 calg_list[i].available = status;
840 }
841 }
842 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
843
xfrm_count_pfkey_auth_supported(void)844 int xfrm_count_pfkey_auth_supported(void)
845 {
846 int i, n;
847
848 for (i = 0, n = 0; i < aalg_entries(); i++)
849 if (aalg_list[i].available && aalg_list[i].pfkey_supported)
850 n++;
851 return n;
852 }
853 EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
854
xfrm_count_pfkey_enc_supported(void)855 int xfrm_count_pfkey_enc_supported(void)
856 {
857 int i, n;
858
859 for (i = 0, n = 0; i < ealg_entries(); i++)
860 if (ealg_list[i].available && ealg_list[i].pfkey_supported)
861 n++;
862 return n;
863 }
864 EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
865
866 MODULE_LICENSE("GPL");
867