xref: /openbmc/linux/net/xdp/xsk_queue.h (revision dfc53baa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	u32 consumer ____cacheline_aligned_in_smp;
19 	u32 flags;
20 };
21 
22 /* Used for the RX and TX queues for packets */
23 struct xdp_rxtx_ring {
24 	struct xdp_ring ptrs;
25 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the fill and completion queues for buffers */
29 struct xdp_umem_ring {
30 	struct xdp_ring ptrs;
31 	u64 desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 struct xsk_queue {
35 	u32 ring_mask;
36 	u32 nentries;
37 	u32 cached_prod;
38 	u32 cached_cons;
39 	struct xdp_ring *ring;
40 	u64 invalid_descs;
41 	u64 queue_empty_descs;
42 };
43 
44 /* The structure of the shared state of the rings are the same as the
45  * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
46  * ring, the kernel is the producer and user space is the consumer. For
47  * the Tx and fill rings, the kernel is the consumer and user space is
48  * the producer.
49  *
50  * producer                         consumer
51  *
52  * if (LOAD ->consumer) {           LOAD ->producer
53  *                    (A)           smp_rmb()       (C)
54  *    STORE $data                   LOAD $data
55  *    smp_wmb()       (B)           smp_mb()        (D)
56  *    STORE ->producer              STORE ->consumer
57  * }
58  *
59  * (A) pairs with (D), and (B) pairs with (C).
60  *
61  * Starting with (B), it protects the data from being written after
62  * the producer pointer. If this barrier was missing, the consumer
63  * could observe the producer pointer being set and thus load the data
64  * before the producer has written the new data. The consumer would in
65  * this case load the old data.
66  *
67  * (C) protects the consumer from speculatively loading the data before
68  * the producer pointer actually has been read. If we do not have this
69  * barrier, some architectures could load old data as speculative loads
70  * are not discarded as the CPU does not know there is a dependency
71  * between ->producer and data.
72  *
73  * (A) is a control dependency that separates the load of ->consumer
74  * from the stores of $data. In case ->consumer indicates there is no
75  * room in the buffer to store $data we do not. So no barrier is needed.
76  *
77  * (D) protects the load of the data to be observed to happen after the
78  * store of the consumer pointer. If we did not have this memory
79  * barrier, the producer could observe the consumer pointer being set
80  * and overwrite the data with a new value before the consumer got the
81  * chance to read the old value. The consumer would thus miss reading
82  * the old entry and very likely read the new entry twice, once right
83  * now and again after circling through the ring.
84  */
85 
86 /* The operations on the rings are the following:
87  *
88  * producer                           consumer
89  *
90  * RESERVE entries                    PEEK in the ring for entries
91  * WRITE data into the ring           READ data from the ring
92  * SUBMIT entries                     RELEASE entries
93  *
94  * The producer reserves one or more entries in the ring. It can then
95  * fill in these entries and finally submit them so that they can be
96  * seen and read by the consumer.
97  *
98  * The consumer peeks into the ring to see if the producer has written
99  * any new entries. If so, the producer can then read these entries
100  * and when it is done reading them release them back to the producer
101  * so that the producer can use these slots to fill in new entries.
102  *
103  * The function names below reflect these operations.
104  */
105 
106 /* Functions that read and validate content from consumer rings. */
107 
108 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
109 {
110 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
111 
112 	if (q->cached_cons != q->cached_prod) {
113 		u32 idx = q->cached_cons & q->ring_mask;
114 
115 		*addr = ring->desc[idx];
116 		return true;
117 	}
118 
119 	return false;
120 }
121 
122 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
123 					    struct xdp_desc *desc)
124 {
125 	u64 chunk, chunk_end;
126 
127 	chunk = xp_aligned_extract_addr(pool, desc->addr);
128 	chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len);
129 	if (chunk != chunk_end)
130 		return false;
131 
132 	if (chunk >= pool->addrs_cnt)
133 		return false;
134 
135 	if (desc->options)
136 		return false;
137 	return true;
138 }
139 
140 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
141 					      struct xdp_desc *desc)
142 {
143 	u64 addr, base_addr;
144 
145 	base_addr = xp_unaligned_extract_addr(desc->addr);
146 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
147 
148 	if (desc->len > pool->chunk_size)
149 		return false;
150 
151 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
152 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
153 		return false;
154 
155 	if (desc->options)
156 		return false;
157 	return true;
158 }
159 
160 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
161 				    struct xdp_desc *desc)
162 {
163 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
164 		xp_aligned_validate_desc(pool, desc);
165 }
166 
167 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
168 					   struct xdp_desc *d,
169 					   struct xdp_umem *umem)
170 {
171 	if (!xp_validate_desc(umem->pool, d)) {
172 		q->invalid_descs++;
173 		return false;
174 	}
175 	return true;
176 }
177 
178 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
179 				       struct xdp_desc *desc,
180 				       struct xdp_umem *umem)
181 {
182 	while (q->cached_cons != q->cached_prod) {
183 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
184 		u32 idx = q->cached_cons & q->ring_mask;
185 
186 		*desc = ring->desc[idx];
187 		if (xskq_cons_is_valid_desc(q, desc, umem))
188 			return true;
189 
190 		q->cached_cons++;
191 	}
192 
193 	return false;
194 }
195 
196 /* Functions for consumers */
197 
198 static inline void __xskq_cons_release(struct xsk_queue *q)
199 {
200 	smp_mb(); /* D, matches A */
201 	WRITE_ONCE(q->ring->consumer, q->cached_cons);
202 }
203 
204 static inline void __xskq_cons_peek(struct xsk_queue *q)
205 {
206 	/* Refresh the local pointer */
207 	q->cached_prod = READ_ONCE(q->ring->producer);
208 	smp_rmb(); /* C, matches B */
209 }
210 
211 static inline void xskq_cons_get_entries(struct xsk_queue *q)
212 {
213 	__xskq_cons_release(q);
214 	__xskq_cons_peek(q);
215 }
216 
217 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
218 {
219 	u32 entries = q->cached_prod - q->cached_cons;
220 
221 	if (entries >= cnt)
222 		return true;
223 
224 	__xskq_cons_peek(q);
225 	entries = q->cached_prod - q->cached_cons;
226 
227 	return entries >= cnt;
228 }
229 
230 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
231 {
232 	if (q->cached_prod == q->cached_cons)
233 		xskq_cons_get_entries(q);
234 	return xskq_cons_read_addr_unchecked(q, addr);
235 }
236 
237 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
238 				       struct xdp_desc *desc,
239 				       struct xdp_umem *umem)
240 {
241 	if (q->cached_prod == q->cached_cons)
242 		xskq_cons_get_entries(q);
243 	return xskq_cons_read_desc(q, desc, umem);
244 }
245 
246 static inline void xskq_cons_release(struct xsk_queue *q)
247 {
248 	/* To improve performance, only update local state here.
249 	 * Reflect this to global state when we get new entries
250 	 * from the ring in xskq_cons_get_entries() and whenever
251 	 * Rx or Tx processing are completed in the NAPI loop.
252 	 */
253 	q->cached_cons++;
254 }
255 
256 static inline bool xskq_cons_is_full(struct xsk_queue *q)
257 {
258 	/* No barriers needed since data is not accessed */
259 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
260 		q->nentries;
261 }
262 
263 /* Functions for producers */
264 
265 static inline bool xskq_prod_is_full(struct xsk_queue *q)
266 {
267 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
268 
269 	if (free_entries)
270 		return false;
271 
272 	/* Refresh the local tail pointer */
273 	q->cached_cons = READ_ONCE(q->ring->consumer);
274 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
275 
276 	return !free_entries;
277 }
278 
279 static inline int xskq_prod_reserve(struct xsk_queue *q)
280 {
281 	if (xskq_prod_is_full(q))
282 		return -ENOSPC;
283 
284 	/* A, matches D */
285 	q->cached_prod++;
286 	return 0;
287 }
288 
289 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
290 {
291 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
292 
293 	if (xskq_prod_is_full(q))
294 		return -ENOSPC;
295 
296 	/* A, matches D */
297 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
298 	return 0;
299 }
300 
301 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
302 					 u64 addr, u32 len)
303 {
304 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
305 	u32 idx;
306 
307 	if (xskq_prod_is_full(q))
308 		return -ENOSPC;
309 
310 	/* A, matches D */
311 	idx = q->cached_prod++ & q->ring_mask;
312 	ring->desc[idx].addr = addr;
313 	ring->desc[idx].len = len;
314 
315 	return 0;
316 }
317 
318 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
319 {
320 	smp_wmb(); /* B, matches C */
321 
322 	WRITE_ONCE(q->ring->producer, idx);
323 }
324 
325 static inline void xskq_prod_submit(struct xsk_queue *q)
326 {
327 	__xskq_prod_submit(q, q->cached_prod);
328 }
329 
330 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
331 {
332 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
333 	u32 idx = q->ring->producer;
334 
335 	ring->desc[idx++ & q->ring_mask] = addr;
336 
337 	__xskq_prod_submit(q, idx);
338 }
339 
340 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
341 {
342 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
343 }
344 
345 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
346 {
347 	/* No barriers needed since data is not accessed */
348 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
349 }
350 
351 /* For both producers and consumers */
352 
353 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
354 {
355 	return q ? q->invalid_descs : 0;
356 }
357 
358 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
359 {
360 	return q ? q->queue_empty_descs : 0;
361 }
362 
363 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
364 void xskq_destroy(struct xsk_queue *q_ops);
365 
366 #endif /* _LINUX_XSK_QUEUE_H */
367