1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 }; 49 50 /* The structure of the shared state of the rings are a simple 51 * circular buffer, as outlined in 52 * Documentation/core-api/circular-buffers.rst. For the Rx and 53 * completion ring, the kernel is the producer and user space is the 54 * consumer. For the Tx and fill rings, the kernel is the consumer and 55 * user space is the producer. 56 * 57 * producer consumer 58 * 59 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 60 * STORE $data LOAD $data 61 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 62 * } 63 * 64 * (A) pairs with (D), and (B) pairs with (C). 65 * 66 * Starting with (B), it protects the data from being written after 67 * the producer pointer. If this barrier was missing, the consumer 68 * could observe the producer pointer being set and thus load the data 69 * before the producer has written the new data. The consumer would in 70 * this case load the old data. 71 * 72 * (C) protects the consumer from speculatively loading the data before 73 * the producer pointer actually has been read. If we do not have this 74 * barrier, some architectures could load old data as speculative loads 75 * are not discarded as the CPU does not know there is a dependency 76 * between ->producer and data. 77 * 78 * (A) is a control dependency that separates the load of ->consumer 79 * from the stores of $data. In case ->consumer indicates there is no 80 * room in the buffer to store $data we do not. The dependency will 81 * order both of the stores after the loads. So no barrier is needed. 82 * 83 * (D) protects the load of the data to be observed to happen after the 84 * store of the consumer pointer. If we did not have this memory 85 * barrier, the producer could observe the consumer pointer being set 86 * and overwrite the data with a new value before the consumer got the 87 * chance to read the old value. The consumer would thus miss reading 88 * the old entry and very likely read the new entry twice, once right 89 * now and again after circling through the ring. 90 */ 91 92 /* The operations on the rings are the following: 93 * 94 * producer consumer 95 * 96 * RESERVE entries PEEK in the ring for entries 97 * WRITE data into the ring READ data from the ring 98 * SUBMIT entries RELEASE entries 99 * 100 * The producer reserves one or more entries in the ring. It can then 101 * fill in these entries and finally submit them so that they can be 102 * seen and read by the consumer. 103 * 104 * The consumer peeks into the ring to see if the producer has written 105 * any new entries. If so, the consumer can then read these entries 106 * and when it is done reading them release them back to the producer 107 * so that the producer can use these slots to fill in new entries. 108 * 109 * The function names below reflect these operations. 110 */ 111 112 /* Functions that read and validate content from consumer rings. */ 113 114 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 115 { 116 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 117 118 if (q->cached_cons != q->cached_prod) { 119 u32 idx = q->cached_cons & q->ring_mask; 120 121 *addr = ring->desc[idx]; 122 return true; 123 } 124 125 return false; 126 } 127 128 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 129 struct xdp_desc *desc) 130 { 131 u64 chunk, chunk_end; 132 133 chunk = xp_aligned_extract_addr(pool, desc->addr); 134 if (likely(desc->len)) { 135 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1); 136 if (chunk != chunk_end) 137 return false; 138 } 139 140 if (chunk >= pool->addrs_cnt) 141 return false; 142 143 if (desc->options) 144 return false; 145 return true; 146 } 147 148 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 149 struct xdp_desc *desc) 150 { 151 u64 addr, base_addr; 152 153 base_addr = xp_unaligned_extract_addr(desc->addr); 154 addr = xp_unaligned_add_offset_to_addr(desc->addr); 155 156 if (desc->len > pool->chunk_size) 157 return false; 158 159 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || 160 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 161 return false; 162 163 if (desc->options) 164 return false; 165 return true; 166 } 167 168 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 169 struct xdp_desc *desc) 170 { 171 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 172 xp_aligned_validate_desc(pool, desc); 173 } 174 175 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 176 struct xdp_desc *d, 177 struct xsk_buff_pool *pool) 178 { 179 if (!xp_validate_desc(pool, d)) { 180 q->invalid_descs++; 181 return false; 182 } 183 return true; 184 } 185 186 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 187 struct xdp_desc *desc, 188 struct xsk_buff_pool *pool) 189 { 190 while (q->cached_cons != q->cached_prod) { 191 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 192 u32 idx = q->cached_cons & q->ring_mask; 193 194 *desc = ring->desc[idx]; 195 if (xskq_cons_is_valid_desc(q, desc, pool)) 196 return true; 197 198 q->cached_cons++; 199 } 200 201 return false; 202 } 203 204 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, 205 struct xdp_desc *descs, 206 struct xsk_buff_pool *pool, u32 max) 207 { 208 u32 cached_cons = q->cached_cons, nb_entries = 0; 209 210 while (cached_cons != q->cached_prod && nb_entries < max) { 211 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 212 u32 idx = cached_cons & q->ring_mask; 213 214 descs[nb_entries] = ring->desc[idx]; 215 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) { 216 /* Skip the entry */ 217 cached_cons++; 218 continue; 219 } 220 221 nb_entries++; 222 cached_cons++; 223 } 224 225 return nb_entries; 226 } 227 228 /* Functions for consumers */ 229 230 static inline void __xskq_cons_release(struct xsk_queue *q) 231 { 232 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 233 } 234 235 static inline void __xskq_cons_peek(struct xsk_queue *q) 236 { 237 /* Refresh the local pointer */ 238 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 239 } 240 241 static inline void xskq_cons_get_entries(struct xsk_queue *q) 242 { 243 __xskq_cons_release(q); 244 __xskq_cons_peek(q); 245 } 246 247 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 248 { 249 u32 entries = q->cached_prod - q->cached_cons; 250 251 if (entries >= max) 252 return max; 253 254 __xskq_cons_peek(q); 255 entries = q->cached_prod - q->cached_cons; 256 257 return entries >= max ? max : entries; 258 } 259 260 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 261 { 262 return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false; 263 } 264 265 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 266 { 267 if (q->cached_prod == q->cached_cons) 268 xskq_cons_get_entries(q); 269 return xskq_cons_read_addr_unchecked(q, addr); 270 } 271 272 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 273 struct xdp_desc *desc, 274 struct xsk_buff_pool *pool) 275 { 276 if (q->cached_prod == q->cached_cons) 277 xskq_cons_get_entries(q); 278 return xskq_cons_read_desc(q, desc, pool); 279 } 280 281 static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs, 282 struct xsk_buff_pool *pool, u32 max) 283 { 284 u32 entries = xskq_cons_nb_entries(q, max); 285 286 return xskq_cons_read_desc_batch(q, descs, pool, entries); 287 } 288 289 /* To improve performance in the xskq_cons_release functions, only update local state here. 290 * Reflect this to global state when we get new entries from the ring in 291 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 292 */ 293 static inline void xskq_cons_release(struct xsk_queue *q) 294 { 295 q->cached_cons++; 296 } 297 298 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 299 { 300 q->cached_cons += cnt; 301 } 302 303 static inline bool xskq_cons_is_full(struct xsk_queue *q) 304 { 305 /* No barriers needed since data is not accessed */ 306 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) == 307 q->nentries; 308 } 309 310 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 311 { 312 /* No barriers needed since data is not accessed */ 313 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 314 } 315 316 /* Functions for producers */ 317 318 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 319 { 320 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 321 322 if (free_entries >= max) 323 return max; 324 325 /* Refresh the local tail pointer */ 326 q->cached_cons = READ_ONCE(q->ring->consumer); 327 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 328 329 return free_entries >= max ? max : free_entries; 330 } 331 332 static inline bool xskq_prod_is_full(struct xsk_queue *q) 333 { 334 return xskq_prod_nb_free(q, 1) ? false : true; 335 } 336 337 static inline void xskq_prod_cancel(struct xsk_queue *q) 338 { 339 q->cached_prod--; 340 } 341 342 static inline int xskq_prod_reserve(struct xsk_queue *q) 343 { 344 if (xskq_prod_is_full(q)) 345 return -ENOSPC; 346 347 /* A, matches D */ 348 q->cached_prod++; 349 return 0; 350 } 351 352 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 353 { 354 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 355 356 if (xskq_prod_is_full(q)) 357 return -ENOSPC; 358 359 /* A, matches D */ 360 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 361 return 0; 362 } 363 364 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 365 u32 max) 366 { 367 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 368 u32 nb_entries, i, cached_prod; 369 370 nb_entries = xskq_prod_nb_free(q, max); 371 372 /* A, matches D */ 373 cached_prod = q->cached_prod; 374 for (i = 0; i < nb_entries; i++) 375 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 376 q->cached_prod = cached_prod; 377 378 return nb_entries; 379 } 380 381 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 382 u64 addr, u32 len) 383 { 384 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 385 u32 idx; 386 387 if (xskq_prod_is_full(q)) 388 return -ENOSPC; 389 390 /* A, matches D */ 391 idx = q->cached_prod++ & q->ring_mask; 392 ring->desc[idx].addr = addr; 393 ring->desc[idx].len = len; 394 395 return 0; 396 } 397 398 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 399 { 400 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 401 } 402 403 static inline void xskq_prod_submit(struct xsk_queue *q) 404 { 405 __xskq_prod_submit(q, q->cached_prod); 406 } 407 408 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) 409 { 410 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 411 u32 idx = q->ring->producer; 412 413 ring->desc[idx++ & q->ring_mask] = addr; 414 415 __xskq_prod_submit(q, idx); 416 } 417 418 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 419 { 420 __xskq_prod_submit(q, q->ring->producer + nb_entries); 421 } 422 423 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 424 { 425 /* No barriers needed since data is not accessed */ 426 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 427 } 428 429 /* For both producers and consumers */ 430 431 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 432 { 433 return q ? q->invalid_descs : 0; 434 } 435 436 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 437 { 438 return q ? q->queue_empty_descs : 0; 439 } 440 441 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 442 void xskq_destroy(struct xsk_queue *q_ops); 443 444 #endif /* _LINUX_XSK_QUEUE_H */ 445