xref: /openbmc/linux/net/xdp/xsk_queue.h (revision aa0dc6a7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 };
49 
50 /* The structure of the shared state of the rings are a simple
51  * circular buffer, as outlined in
52  * Documentation/core-api/circular-buffers.rst. For the Rx and
53  * completion ring, the kernel is the producer and user space is the
54  * consumer. For the Tx and fill rings, the kernel is the consumer and
55  * user space is the producer.
56  *
57  * producer                         consumer
58  *
59  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
60  *    STORE $data                   LOAD $data
61  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
62  * }
63  *
64  * (A) pairs with (D), and (B) pairs with (C).
65  *
66  * Starting with (B), it protects the data from being written after
67  * the producer pointer. If this barrier was missing, the consumer
68  * could observe the producer pointer being set and thus load the data
69  * before the producer has written the new data. The consumer would in
70  * this case load the old data.
71  *
72  * (C) protects the consumer from speculatively loading the data before
73  * the producer pointer actually has been read. If we do not have this
74  * barrier, some architectures could load old data as speculative loads
75  * are not discarded as the CPU does not know there is a dependency
76  * between ->producer and data.
77  *
78  * (A) is a control dependency that separates the load of ->consumer
79  * from the stores of $data. In case ->consumer indicates there is no
80  * room in the buffer to store $data we do not. The dependency will
81  * order both of the stores after the loads. So no barrier is needed.
82  *
83  * (D) protects the load of the data to be observed to happen after the
84  * store of the consumer pointer. If we did not have this memory
85  * barrier, the producer could observe the consumer pointer being set
86  * and overwrite the data with a new value before the consumer got the
87  * chance to read the old value. The consumer would thus miss reading
88  * the old entry and very likely read the new entry twice, once right
89  * now and again after circling through the ring.
90  */
91 
92 /* The operations on the rings are the following:
93  *
94  * producer                           consumer
95  *
96  * RESERVE entries                    PEEK in the ring for entries
97  * WRITE data into the ring           READ data from the ring
98  * SUBMIT entries                     RELEASE entries
99  *
100  * The producer reserves one or more entries in the ring. It can then
101  * fill in these entries and finally submit them so that they can be
102  * seen and read by the consumer.
103  *
104  * The consumer peeks into the ring to see if the producer has written
105  * any new entries. If so, the consumer can then read these entries
106  * and when it is done reading them release them back to the producer
107  * so that the producer can use these slots to fill in new entries.
108  *
109  * The function names below reflect these operations.
110  */
111 
112 /* Functions that read and validate content from consumer rings. */
113 
114 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
115 {
116 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
117 
118 	if (q->cached_cons != q->cached_prod) {
119 		u32 idx = q->cached_cons & q->ring_mask;
120 
121 		*addr = ring->desc[idx];
122 		return true;
123 	}
124 
125 	return false;
126 }
127 
128 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
129 					    struct xdp_desc *desc)
130 {
131 	u64 chunk, chunk_end;
132 
133 	chunk = xp_aligned_extract_addr(pool, desc->addr);
134 	if (likely(desc->len)) {
135 		chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
136 		if (chunk != chunk_end)
137 			return false;
138 	}
139 
140 	if (chunk >= pool->addrs_cnt)
141 		return false;
142 
143 	if (desc->options)
144 		return false;
145 	return true;
146 }
147 
148 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
149 					      struct xdp_desc *desc)
150 {
151 	u64 addr, base_addr;
152 
153 	base_addr = xp_unaligned_extract_addr(desc->addr);
154 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
155 
156 	if (desc->len > pool->chunk_size)
157 		return false;
158 
159 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
160 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
161 		return false;
162 
163 	if (desc->options)
164 		return false;
165 	return true;
166 }
167 
168 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
169 				    struct xdp_desc *desc)
170 {
171 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
172 		xp_aligned_validate_desc(pool, desc);
173 }
174 
175 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
176 					   struct xdp_desc *d,
177 					   struct xsk_buff_pool *pool)
178 {
179 	if (!xp_validate_desc(pool, d)) {
180 		q->invalid_descs++;
181 		return false;
182 	}
183 	return true;
184 }
185 
186 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
187 				       struct xdp_desc *desc,
188 				       struct xsk_buff_pool *pool)
189 {
190 	while (q->cached_cons != q->cached_prod) {
191 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
192 		u32 idx = q->cached_cons & q->ring_mask;
193 
194 		*desc = ring->desc[idx];
195 		if (xskq_cons_is_valid_desc(q, desc, pool))
196 			return true;
197 
198 		q->cached_cons++;
199 	}
200 
201 	return false;
202 }
203 
204 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q,
205 					    struct xdp_desc *descs,
206 					    struct xsk_buff_pool *pool, u32 max)
207 {
208 	u32 cached_cons = q->cached_cons, nb_entries = 0;
209 
210 	while (cached_cons != q->cached_prod && nb_entries < max) {
211 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
212 		u32 idx = cached_cons & q->ring_mask;
213 
214 		descs[nb_entries] = ring->desc[idx];
215 		if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
216 			/* Skip the entry */
217 			cached_cons++;
218 			continue;
219 		}
220 
221 		nb_entries++;
222 		cached_cons++;
223 	}
224 
225 	return nb_entries;
226 }
227 
228 /* Functions for consumers */
229 
230 static inline void __xskq_cons_release(struct xsk_queue *q)
231 {
232 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
233 }
234 
235 static inline void __xskq_cons_peek(struct xsk_queue *q)
236 {
237 	/* Refresh the local pointer */
238 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
239 }
240 
241 static inline void xskq_cons_get_entries(struct xsk_queue *q)
242 {
243 	__xskq_cons_release(q);
244 	__xskq_cons_peek(q);
245 }
246 
247 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
248 {
249 	u32 entries = q->cached_prod - q->cached_cons;
250 
251 	if (entries >= max)
252 		return max;
253 
254 	__xskq_cons_peek(q);
255 	entries = q->cached_prod - q->cached_cons;
256 
257 	return entries >= max ? max : entries;
258 }
259 
260 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
261 {
262 	return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false;
263 }
264 
265 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
266 {
267 	if (q->cached_prod == q->cached_cons)
268 		xskq_cons_get_entries(q);
269 	return xskq_cons_read_addr_unchecked(q, addr);
270 }
271 
272 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
273 				       struct xdp_desc *desc,
274 				       struct xsk_buff_pool *pool)
275 {
276 	if (q->cached_prod == q->cached_cons)
277 		xskq_cons_get_entries(q);
278 	return xskq_cons_read_desc(q, desc, pool);
279 }
280 
281 static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs,
282 					    struct xsk_buff_pool *pool, u32 max)
283 {
284 	u32 entries = xskq_cons_nb_entries(q, max);
285 
286 	return xskq_cons_read_desc_batch(q, descs, pool, entries);
287 }
288 
289 /* To improve performance in the xskq_cons_release functions, only update local state here.
290  * Reflect this to global state when we get new entries from the ring in
291  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
292  */
293 static inline void xskq_cons_release(struct xsk_queue *q)
294 {
295 	q->cached_cons++;
296 }
297 
298 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
299 {
300 	q->cached_cons += cnt;
301 }
302 
303 static inline bool xskq_cons_is_full(struct xsk_queue *q)
304 {
305 	/* No barriers needed since data is not accessed */
306 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
307 		q->nentries;
308 }
309 
310 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
311 {
312 	/* No barriers needed since data is not accessed */
313 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
314 }
315 
316 /* Functions for producers */
317 
318 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
319 {
320 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
321 
322 	if (free_entries >= max)
323 		return max;
324 
325 	/* Refresh the local tail pointer */
326 	q->cached_cons = READ_ONCE(q->ring->consumer);
327 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
328 
329 	return free_entries >= max ? max : free_entries;
330 }
331 
332 static inline bool xskq_prod_is_full(struct xsk_queue *q)
333 {
334 	return xskq_prod_nb_free(q, 1) ? false : true;
335 }
336 
337 static inline void xskq_prod_cancel(struct xsk_queue *q)
338 {
339 	q->cached_prod--;
340 }
341 
342 static inline int xskq_prod_reserve(struct xsk_queue *q)
343 {
344 	if (xskq_prod_is_full(q))
345 		return -ENOSPC;
346 
347 	/* A, matches D */
348 	q->cached_prod++;
349 	return 0;
350 }
351 
352 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
353 {
354 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
355 
356 	if (xskq_prod_is_full(q))
357 		return -ENOSPC;
358 
359 	/* A, matches D */
360 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
361 	return 0;
362 }
363 
364 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
365 					       u32 max)
366 {
367 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
368 	u32 nb_entries, i, cached_prod;
369 
370 	nb_entries = xskq_prod_nb_free(q, max);
371 
372 	/* A, matches D */
373 	cached_prod = q->cached_prod;
374 	for (i = 0; i < nb_entries; i++)
375 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
376 	q->cached_prod = cached_prod;
377 
378 	return nb_entries;
379 }
380 
381 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
382 					 u64 addr, u32 len)
383 {
384 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
385 	u32 idx;
386 
387 	if (xskq_prod_is_full(q))
388 		return -ENOSPC;
389 
390 	/* A, matches D */
391 	idx = q->cached_prod++ & q->ring_mask;
392 	ring->desc[idx].addr = addr;
393 	ring->desc[idx].len = len;
394 
395 	return 0;
396 }
397 
398 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
399 {
400 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
401 }
402 
403 static inline void xskq_prod_submit(struct xsk_queue *q)
404 {
405 	__xskq_prod_submit(q, q->cached_prod);
406 }
407 
408 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
409 {
410 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
411 	u32 idx = q->ring->producer;
412 
413 	ring->desc[idx++ & q->ring_mask] = addr;
414 
415 	__xskq_prod_submit(q, idx);
416 }
417 
418 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
419 {
420 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
421 }
422 
423 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
424 {
425 	/* No barriers needed since data is not accessed */
426 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
427 }
428 
429 /* For both producers and consumers */
430 
431 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
432 {
433 	return q ? q->invalid_descs : 0;
434 }
435 
436 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
437 {
438 	return q ? q->queue_empty_descs : 0;
439 }
440 
441 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
442 void xskq_destroy(struct xsk_queue *q_ops);
443 
444 #endif /* _LINUX_XSK_QUEUE_H */
445