xref: /openbmc/linux/net/xdp/xsk_queue.h (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 flags;
24 };
25 
26 /* Used for the RX and TX queues for packets */
27 struct xdp_rxtx_ring {
28 	struct xdp_ring ptrs;
29 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
30 };
31 
32 /* Used for the fill and completion queues for buffers */
33 struct xdp_umem_ring {
34 	struct xdp_ring ptrs;
35 	u64 desc[] ____cacheline_aligned_in_smp;
36 };
37 
38 struct xsk_queue {
39 	u32 ring_mask;
40 	u32 nentries;
41 	u32 cached_prod;
42 	u32 cached_cons;
43 	struct xdp_ring *ring;
44 	u64 invalid_descs;
45 	u64 queue_empty_descs;
46 };
47 
48 /* The structure of the shared state of the rings are the same as the
49  * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
50  * ring, the kernel is the producer and user space is the consumer. For
51  * the Tx and fill rings, the kernel is the consumer and user space is
52  * the producer.
53  *
54  * producer                         consumer
55  *
56  * if (LOAD ->consumer) {           LOAD ->producer
57  *                    (A)           smp_rmb()       (C)
58  *    STORE $data                   LOAD $data
59  *    smp_wmb()       (B)           smp_mb()        (D)
60  *    STORE ->producer              STORE ->consumer
61  * }
62  *
63  * (A) pairs with (D), and (B) pairs with (C).
64  *
65  * Starting with (B), it protects the data from being written after
66  * the producer pointer. If this barrier was missing, the consumer
67  * could observe the producer pointer being set and thus load the data
68  * before the producer has written the new data. The consumer would in
69  * this case load the old data.
70  *
71  * (C) protects the consumer from speculatively loading the data before
72  * the producer pointer actually has been read. If we do not have this
73  * barrier, some architectures could load old data as speculative loads
74  * are not discarded as the CPU does not know there is a dependency
75  * between ->producer and data.
76  *
77  * (A) is a control dependency that separates the load of ->consumer
78  * from the stores of $data. In case ->consumer indicates there is no
79  * room in the buffer to store $data we do not. So no barrier is needed.
80  *
81  * (D) protects the load of the data to be observed to happen after the
82  * store of the consumer pointer. If we did not have this memory
83  * barrier, the producer could observe the consumer pointer being set
84  * and overwrite the data with a new value before the consumer got the
85  * chance to read the old value. The consumer would thus miss reading
86  * the old entry and very likely read the new entry twice, once right
87  * now and again after circling through the ring.
88  */
89 
90 /* The operations on the rings are the following:
91  *
92  * producer                           consumer
93  *
94  * RESERVE entries                    PEEK in the ring for entries
95  * WRITE data into the ring           READ data from the ring
96  * SUBMIT entries                     RELEASE entries
97  *
98  * The producer reserves one or more entries in the ring. It can then
99  * fill in these entries and finally submit them so that they can be
100  * seen and read by the consumer.
101  *
102  * The consumer peeks into the ring to see if the producer has written
103  * any new entries. If so, the consumer can then read these entries
104  * and when it is done reading them release them back to the producer
105  * so that the producer can use these slots to fill in new entries.
106  *
107  * The function names below reflect these operations.
108  */
109 
110 /* Functions that read and validate content from consumer rings. */
111 
112 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
113 {
114 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
115 
116 	if (q->cached_cons != q->cached_prod) {
117 		u32 idx = q->cached_cons & q->ring_mask;
118 
119 		*addr = ring->desc[idx];
120 		return true;
121 	}
122 
123 	return false;
124 }
125 
126 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
127 					    struct xdp_desc *desc)
128 {
129 	u64 chunk, chunk_end;
130 
131 	chunk = xp_aligned_extract_addr(pool, desc->addr);
132 	chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len);
133 	if (chunk != chunk_end)
134 		return false;
135 
136 	if (chunk >= pool->addrs_cnt)
137 		return false;
138 
139 	if (desc->options)
140 		return false;
141 	return true;
142 }
143 
144 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
145 					      struct xdp_desc *desc)
146 {
147 	u64 addr, base_addr;
148 
149 	base_addr = xp_unaligned_extract_addr(desc->addr);
150 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
151 
152 	if (desc->len > pool->chunk_size)
153 		return false;
154 
155 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
156 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
157 		return false;
158 
159 	if (desc->options)
160 		return false;
161 	return true;
162 }
163 
164 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
165 				    struct xdp_desc *desc)
166 {
167 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
168 		xp_aligned_validate_desc(pool, desc);
169 }
170 
171 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
172 					   struct xdp_desc *d,
173 					   struct xsk_buff_pool *pool)
174 {
175 	if (!xp_validate_desc(pool, d)) {
176 		q->invalid_descs++;
177 		return false;
178 	}
179 	return true;
180 }
181 
182 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
183 				       struct xdp_desc *desc,
184 				       struct xsk_buff_pool *pool)
185 {
186 	while (q->cached_cons != q->cached_prod) {
187 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
188 		u32 idx = q->cached_cons & q->ring_mask;
189 
190 		*desc = ring->desc[idx];
191 		if (xskq_cons_is_valid_desc(q, desc, pool))
192 			return true;
193 
194 		q->cached_cons++;
195 	}
196 
197 	return false;
198 }
199 
200 /* Functions for consumers */
201 
202 static inline void __xskq_cons_release(struct xsk_queue *q)
203 {
204 	smp_mb(); /* D, matches A */
205 	WRITE_ONCE(q->ring->consumer, q->cached_cons);
206 }
207 
208 static inline void __xskq_cons_peek(struct xsk_queue *q)
209 {
210 	/* Refresh the local pointer */
211 	q->cached_prod = READ_ONCE(q->ring->producer);
212 	smp_rmb(); /* C, matches B */
213 }
214 
215 static inline void xskq_cons_get_entries(struct xsk_queue *q)
216 {
217 	__xskq_cons_release(q);
218 	__xskq_cons_peek(q);
219 }
220 
221 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
222 {
223 	u32 entries = q->cached_prod - q->cached_cons;
224 
225 	if (entries >= cnt)
226 		return true;
227 
228 	__xskq_cons_peek(q);
229 	entries = q->cached_prod - q->cached_cons;
230 
231 	return entries >= cnt;
232 }
233 
234 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
235 {
236 	if (q->cached_prod == q->cached_cons)
237 		xskq_cons_get_entries(q);
238 	return xskq_cons_read_addr_unchecked(q, addr);
239 }
240 
241 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
242 				       struct xdp_desc *desc,
243 				       struct xsk_buff_pool *pool)
244 {
245 	if (q->cached_prod == q->cached_cons)
246 		xskq_cons_get_entries(q);
247 	return xskq_cons_read_desc(q, desc, pool);
248 }
249 
250 static inline void xskq_cons_release(struct xsk_queue *q)
251 {
252 	/* To improve performance, only update local state here.
253 	 * Reflect this to global state when we get new entries
254 	 * from the ring in xskq_cons_get_entries() and whenever
255 	 * Rx or Tx processing are completed in the NAPI loop.
256 	 */
257 	q->cached_cons++;
258 }
259 
260 static inline bool xskq_cons_is_full(struct xsk_queue *q)
261 {
262 	/* No barriers needed since data is not accessed */
263 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
264 		q->nentries;
265 }
266 
267 /* Functions for producers */
268 
269 static inline bool xskq_prod_is_full(struct xsk_queue *q)
270 {
271 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
272 
273 	if (free_entries)
274 		return false;
275 
276 	/* Refresh the local tail pointer */
277 	q->cached_cons = READ_ONCE(q->ring->consumer);
278 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
279 
280 	return !free_entries;
281 }
282 
283 static inline int xskq_prod_reserve(struct xsk_queue *q)
284 {
285 	if (xskq_prod_is_full(q))
286 		return -ENOSPC;
287 
288 	/* A, matches D */
289 	q->cached_prod++;
290 	return 0;
291 }
292 
293 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
294 {
295 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
296 
297 	if (xskq_prod_is_full(q))
298 		return -ENOSPC;
299 
300 	/* A, matches D */
301 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
302 	return 0;
303 }
304 
305 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
306 					 u64 addr, u32 len)
307 {
308 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
309 	u32 idx;
310 
311 	if (xskq_prod_is_full(q))
312 		return -ENOSPC;
313 
314 	/* A, matches D */
315 	idx = q->cached_prod++ & q->ring_mask;
316 	ring->desc[idx].addr = addr;
317 	ring->desc[idx].len = len;
318 
319 	return 0;
320 }
321 
322 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
323 {
324 	smp_wmb(); /* B, matches C */
325 
326 	WRITE_ONCE(q->ring->producer, idx);
327 }
328 
329 static inline void xskq_prod_submit(struct xsk_queue *q)
330 {
331 	__xskq_prod_submit(q, q->cached_prod);
332 }
333 
334 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
335 {
336 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
337 	u32 idx = q->ring->producer;
338 
339 	ring->desc[idx++ & q->ring_mask] = addr;
340 
341 	__xskq_prod_submit(q, idx);
342 }
343 
344 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
345 {
346 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
347 }
348 
349 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
350 {
351 	/* No barriers needed since data is not accessed */
352 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
353 }
354 
355 /* For both producers and consumers */
356 
357 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
358 {
359 	return q ? q->invalid_descs : 0;
360 }
361 
362 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
363 {
364 	return q ? q->queue_empty_descs : 0;
365 }
366 
367 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
368 void xskq_destroy(struct xsk_queue *q_ops);
369 
370 #endif /* _LINUX_XSK_QUEUE_H */
371