xref: /openbmc/linux/net/xdp/xsk_queue.h (revision 221e8c12)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 };
49 
50 /* The structure of the shared state of the rings are a simple
51  * circular buffer, as outlined in
52  * Documentation/core-api/circular-buffers.rst. For the Rx and
53  * completion ring, the kernel is the producer and user space is the
54  * consumer. For the Tx and fill rings, the kernel is the consumer and
55  * user space is the producer.
56  *
57  * producer                         consumer
58  *
59  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
60  *    STORE $data                   LOAD $data
61  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
62  * }
63  *
64  * (A) pairs with (D), and (B) pairs with (C).
65  *
66  * Starting with (B), it protects the data from being written after
67  * the producer pointer. If this barrier was missing, the consumer
68  * could observe the producer pointer being set and thus load the data
69  * before the producer has written the new data. The consumer would in
70  * this case load the old data.
71  *
72  * (C) protects the consumer from speculatively loading the data before
73  * the producer pointer actually has been read. If we do not have this
74  * barrier, some architectures could load old data as speculative loads
75  * are not discarded as the CPU does not know there is a dependency
76  * between ->producer and data.
77  *
78  * (A) is a control dependency that separates the load of ->consumer
79  * from the stores of $data. In case ->consumer indicates there is no
80  * room in the buffer to store $data we do not. The dependency will
81  * order both of the stores after the loads. So no barrier is needed.
82  *
83  * (D) protects the load of the data to be observed to happen after the
84  * store of the consumer pointer. If we did not have this memory
85  * barrier, the producer could observe the consumer pointer being set
86  * and overwrite the data with a new value before the consumer got the
87  * chance to read the old value. The consumer would thus miss reading
88  * the old entry and very likely read the new entry twice, once right
89  * now and again after circling through the ring.
90  */
91 
92 /* The operations on the rings are the following:
93  *
94  * producer                           consumer
95  *
96  * RESERVE entries                    PEEK in the ring for entries
97  * WRITE data into the ring           READ data from the ring
98  * SUBMIT entries                     RELEASE entries
99  *
100  * The producer reserves one or more entries in the ring. It can then
101  * fill in these entries and finally submit them so that they can be
102  * seen and read by the consumer.
103  *
104  * The consumer peeks into the ring to see if the producer has written
105  * any new entries. If so, the consumer can then read these entries
106  * and when it is done reading them release them back to the producer
107  * so that the producer can use these slots to fill in new entries.
108  *
109  * The function names below reflect these operations.
110  */
111 
112 /* Functions that read and validate content from consumer rings. */
113 
114 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
115 {
116 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
117 
118 	if (q->cached_cons != q->cached_prod) {
119 		u32 idx = q->cached_cons & q->ring_mask;
120 
121 		*addr = ring->desc[idx];
122 		return true;
123 	}
124 
125 	return false;
126 }
127 
128 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
129 					    struct xdp_desc *desc)
130 {
131 	u64 chunk, chunk_end;
132 
133 	chunk = xp_aligned_extract_addr(pool, desc->addr);
134 	chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len);
135 	if (chunk != chunk_end)
136 		return false;
137 
138 	if (chunk >= pool->addrs_cnt)
139 		return false;
140 
141 	if (desc->options)
142 		return false;
143 	return true;
144 }
145 
146 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
147 					      struct xdp_desc *desc)
148 {
149 	u64 addr, base_addr;
150 
151 	base_addr = xp_unaligned_extract_addr(desc->addr);
152 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
153 
154 	if (desc->len > pool->chunk_size)
155 		return false;
156 
157 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
158 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
159 		return false;
160 
161 	if (desc->options)
162 		return false;
163 	return true;
164 }
165 
166 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
167 				    struct xdp_desc *desc)
168 {
169 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
170 		xp_aligned_validate_desc(pool, desc);
171 }
172 
173 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
174 					   struct xdp_desc *d,
175 					   struct xsk_buff_pool *pool)
176 {
177 	if (!xp_validate_desc(pool, d)) {
178 		q->invalid_descs++;
179 		return false;
180 	}
181 	return true;
182 }
183 
184 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
185 				       struct xdp_desc *desc,
186 				       struct xsk_buff_pool *pool)
187 {
188 	while (q->cached_cons != q->cached_prod) {
189 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
190 		u32 idx = q->cached_cons & q->ring_mask;
191 
192 		*desc = ring->desc[idx];
193 		if (xskq_cons_is_valid_desc(q, desc, pool))
194 			return true;
195 
196 		q->cached_cons++;
197 	}
198 
199 	return false;
200 }
201 
202 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q,
203 					    struct xdp_desc *descs,
204 					    struct xsk_buff_pool *pool, u32 max)
205 {
206 	u32 cached_cons = q->cached_cons, nb_entries = 0;
207 
208 	while (cached_cons != q->cached_prod && nb_entries < max) {
209 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
210 		u32 idx = cached_cons & q->ring_mask;
211 
212 		descs[nb_entries] = ring->desc[idx];
213 		if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
214 			/* Skip the entry */
215 			cached_cons++;
216 			continue;
217 		}
218 
219 		nb_entries++;
220 		cached_cons++;
221 	}
222 
223 	return nb_entries;
224 }
225 
226 /* Functions for consumers */
227 
228 static inline void __xskq_cons_release(struct xsk_queue *q)
229 {
230 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
231 }
232 
233 static inline void __xskq_cons_peek(struct xsk_queue *q)
234 {
235 	/* Refresh the local pointer */
236 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
237 }
238 
239 static inline void xskq_cons_get_entries(struct xsk_queue *q)
240 {
241 	__xskq_cons_release(q);
242 	__xskq_cons_peek(q);
243 }
244 
245 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
246 {
247 	u32 entries = q->cached_prod - q->cached_cons;
248 
249 	if (entries >= max)
250 		return max;
251 
252 	__xskq_cons_peek(q);
253 	entries = q->cached_prod - q->cached_cons;
254 
255 	return entries >= max ? max : entries;
256 }
257 
258 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
259 {
260 	return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false;
261 }
262 
263 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
264 {
265 	if (q->cached_prod == q->cached_cons)
266 		xskq_cons_get_entries(q);
267 	return xskq_cons_read_addr_unchecked(q, addr);
268 }
269 
270 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
271 				       struct xdp_desc *desc,
272 				       struct xsk_buff_pool *pool)
273 {
274 	if (q->cached_prod == q->cached_cons)
275 		xskq_cons_get_entries(q);
276 	return xskq_cons_read_desc(q, desc, pool);
277 }
278 
279 static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs,
280 					    struct xsk_buff_pool *pool, u32 max)
281 {
282 	u32 entries = xskq_cons_nb_entries(q, max);
283 
284 	return xskq_cons_read_desc_batch(q, descs, pool, entries);
285 }
286 
287 /* To improve performance in the xskq_cons_release functions, only update local state here.
288  * Reflect this to global state when we get new entries from the ring in
289  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
290  */
291 static inline void xskq_cons_release(struct xsk_queue *q)
292 {
293 	q->cached_cons++;
294 }
295 
296 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
297 {
298 	q->cached_cons += cnt;
299 }
300 
301 static inline bool xskq_cons_is_full(struct xsk_queue *q)
302 {
303 	/* No barriers needed since data is not accessed */
304 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
305 		q->nentries;
306 }
307 
308 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
309 {
310 	/* No barriers needed since data is not accessed */
311 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
312 }
313 
314 /* Functions for producers */
315 
316 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
317 {
318 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
319 
320 	if (free_entries >= max)
321 		return max;
322 
323 	/* Refresh the local tail pointer */
324 	q->cached_cons = READ_ONCE(q->ring->consumer);
325 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
326 
327 	return free_entries >= max ? max : free_entries;
328 }
329 
330 static inline bool xskq_prod_is_full(struct xsk_queue *q)
331 {
332 	return xskq_prod_nb_free(q, 1) ? false : true;
333 }
334 
335 static inline void xskq_prod_cancel(struct xsk_queue *q)
336 {
337 	q->cached_prod--;
338 }
339 
340 static inline int xskq_prod_reserve(struct xsk_queue *q)
341 {
342 	if (xskq_prod_is_full(q))
343 		return -ENOSPC;
344 
345 	/* A, matches D */
346 	q->cached_prod++;
347 	return 0;
348 }
349 
350 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
351 {
352 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
353 
354 	if (xskq_prod_is_full(q))
355 		return -ENOSPC;
356 
357 	/* A, matches D */
358 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
359 	return 0;
360 }
361 
362 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
363 					       u32 max)
364 {
365 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
366 	u32 nb_entries, i, cached_prod;
367 
368 	nb_entries = xskq_prod_nb_free(q, max);
369 
370 	/* A, matches D */
371 	cached_prod = q->cached_prod;
372 	for (i = 0; i < nb_entries; i++)
373 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
374 	q->cached_prod = cached_prod;
375 
376 	return nb_entries;
377 }
378 
379 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
380 					 u64 addr, u32 len)
381 {
382 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
383 	u32 idx;
384 
385 	if (xskq_prod_is_full(q))
386 		return -ENOSPC;
387 
388 	/* A, matches D */
389 	idx = q->cached_prod++ & q->ring_mask;
390 	ring->desc[idx].addr = addr;
391 	ring->desc[idx].len = len;
392 
393 	return 0;
394 }
395 
396 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
397 {
398 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
399 }
400 
401 static inline void xskq_prod_submit(struct xsk_queue *q)
402 {
403 	__xskq_prod_submit(q, q->cached_prod);
404 }
405 
406 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
407 {
408 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
409 	u32 idx = q->ring->producer;
410 
411 	ring->desc[idx++ & q->ring_mask] = addr;
412 
413 	__xskq_prod_submit(q, idx);
414 }
415 
416 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
417 {
418 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
419 }
420 
421 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
422 {
423 	/* No barriers needed since data is not accessed */
424 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
425 }
426 
427 /* For both producers and consumers */
428 
429 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
430 {
431 	return q ? q->invalid_descs : 0;
432 }
433 
434 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
435 {
436 	return q ? q->queue_empty_descs : 0;
437 }
438 
439 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
440 void xskq_destroy(struct xsk_queue *q_ops);
441 
442 #endif /* _LINUX_XSK_QUEUE_H */
443