1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 size_t ring_vmalloc_size; 49 }; 50 51 /* The structure of the shared state of the rings are a simple 52 * circular buffer, as outlined in 53 * Documentation/core-api/circular-buffers.rst. For the Rx and 54 * completion ring, the kernel is the producer and user space is the 55 * consumer. For the Tx and fill rings, the kernel is the consumer and 56 * user space is the producer. 57 * 58 * producer consumer 59 * 60 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 61 * STORE $data LOAD $data 62 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 63 * } 64 * 65 * (A) pairs with (D), and (B) pairs with (C). 66 * 67 * Starting with (B), it protects the data from being written after 68 * the producer pointer. If this barrier was missing, the consumer 69 * could observe the producer pointer being set and thus load the data 70 * before the producer has written the new data. The consumer would in 71 * this case load the old data. 72 * 73 * (C) protects the consumer from speculatively loading the data before 74 * the producer pointer actually has been read. If we do not have this 75 * barrier, some architectures could load old data as speculative loads 76 * are not discarded as the CPU does not know there is a dependency 77 * between ->producer and data. 78 * 79 * (A) is a control dependency that separates the load of ->consumer 80 * from the stores of $data. In case ->consumer indicates there is no 81 * room in the buffer to store $data we do not. The dependency will 82 * order both of the stores after the loads. So no barrier is needed. 83 * 84 * (D) protects the load of the data to be observed to happen after the 85 * store of the consumer pointer. If we did not have this memory 86 * barrier, the producer could observe the consumer pointer being set 87 * and overwrite the data with a new value before the consumer got the 88 * chance to read the old value. The consumer would thus miss reading 89 * the old entry and very likely read the new entry twice, once right 90 * now and again after circling through the ring. 91 */ 92 93 /* The operations on the rings are the following: 94 * 95 * producer consumer 96 * 97 * RESERVE entries PEEK in the ring for entries 98 * WRITE data into the ring READ data from the ring 99 * SUBMIT entries RELEASE entries 100 * 101 * The producer reserves one or more entries in the ring. It can then 102 * fill in these entries and finally submit them so that they can be 103 * seen and read by the consumer. 104 * 105 * The consumer peeks into the ring to see if the producer has written 106 * any new entries. If so, the consumer can then read these entries 107 * and when it is done reading them release them back to the producer 108 * so that the producer can use these slots to fill in new entries. 109 * 110 * The function names below reflect these operations. 111 */ 112 113 /* Functions that read and validate content from consumer rings. */ 114 115 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr) 116 { 117 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 118 u32 idx = cached_cons & q->ring_mask; 119 120 *addr = ring->desc[idx]; 121 } 122 123 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 124 { 125 if (q->cached_cons != q->cached_prod) { 126 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr); 127 return true; 128 } 129 130 return false; 131 } 132 133 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 134 struct xdp_desc *desc) 135 { 136 u64 chunk, chunk_end; 137 138 chunk = xp_aligned_extract_addr(pool, desc->addr); 139 if (likely(desc->len)) { 140 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1); 141 if (chunk != chunk_end) 142 return false; 143 } 144 145 if (chunk >= pool->addrs_cnt) 146 return false; 147 148 if (desc->options) 149 return false; 150 return true; 151 } 152 153 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 154 struct xdp_desc *desc) 155 { 156 u64 addr, base_addr; 157 158 base_addr = xp_unaligned_extract_addr(desc->addr); 159 addr = xp_unaligned_add_offset_to_addr(desc->addr); 160 161 if (desc->len > pool->chunk_size) 162 return false; 163 164 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || 165 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 166 return false; 167 168 if (desc->options) 169 return false; 170 return true; 171 } 172 173 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 174 struct xdp_desc *desc) 175 { 176 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 177 xp_aligned_validate_desc(pool, desc); 178 } 179 180 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 181 struct xdp_desc *d, 182 struct xsk_buff_pool *pool) 183 { 184 if (!xp_validate_desc(pool, d)) { 185 q->invalid_descs++; 186 return false; 187 } 188 return true; 189 } 190 191 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 192 struct xdp_desc *desc, 193 struct xsk_buff_pool *pool) 194 { 195 while (q->cached_cons != q->cached_prod) { 196 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 197 u32 idx = q->cached_cons & q->ring_mask; 198 199 *desc = ring->desc[idx]; 200 if (xskq_cons_is_valid_desc(q, desc, pool)) 201 return true; 202 203 q->cached_cons++; 204 } 205 206 return false; 207 } 208 209 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 210 { 211 q->cached_cons += cnt; 212 } 213 214 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool, 215 u32 max) 216 { 217 u32 cached_cons = q->cached_cons, nb_entries = 0; 218 struct xdp_desc *descs = pool->tx_descs; 219 220 while (cached_cons != q->cached_prod && nb_entries < max) { 221 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 222 u32 idx = cached_cons & q->ring_mask; 223 224 descs[nb_entries] = ring->desc[idx]; 225 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) { 226 /* Skip the entry */ 227 cached_cons++; 228 continue; 229 } 230 231 nb_entries++; 232 cached_cons++; 233 } 234 235 /* Release valid plus any invalid entries */ 236 xskq_cons_release_n(q, cached_cons - q->cached_cons); 237 return nb_entries; 238 } 239 240 /* Functions for consumers */ 241 242 static inline void __xskq_cons_release(struct xsk_queue *q) 243 { 244 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 245 } 246 247 static inline void __xskq_cons_peek(struct xsk_queue *q) 248 { 249 /* Refresh the local pointer */ 250 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 251 } 252 253 static inline void xskq_cons_get_entries(struct xsk_queue *q) 254 { 255 __xskq_cons_release(q); 256 __xskq_cons_peek(q); 257 } 258 259 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 260 { 261 u32 entries = q->cached_prod - q->cached_cons; 262 263 if (entries >= max) 264 return max; 265 266 __xskq_cons_peek(q); 267 entries = q->cached_prod - q->cached_cons; 268 269 return entries >= max ? max : entries; 270 } 271 272 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 273 { 274 return xskq_cons_nb_entries(q, cnt) >= cnt; 275 } 276 277 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 278 { 279 if (q->cached_prod == q->cached_cons) 280 xskq_cons_get_entries(q); 281 return xskq_cons_read_addr_unchecked(q, addr); 282 } 283 284 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 285 struct xdp_desc *desc, 286 struct xsk_buff_pool *pool) 287 { 288 if (q->cached_prod == q->cached_cons) 289 xskq_cons_get_entries(q); 290 return xskq_cons_read_desc(q, desc, pool); 291 } 292 293 /* To improve performance in the xskq_cons_release functions, only update local state here. 294 * Reflect this to global state when we get new entries from the ring in 295 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 296 */ 297 static inline void xskq_cons_release(struct xsk_queue *q) 298 { 299 q->cached_cons++; 300 } 301 302 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 303 { 304 /* No barriers needed since data is not accessed */ 305 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 306 } 307 308 /* Functions for producers */ 309 310 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 311 { 312 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 313 314 if (free_entries >= max) 315 return max; 316 317 /* Refresh the local tail pointer */ 318 q->cached_cons = READ_ONCE(q->ring->consumer); 319 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 320 321 return free_entries >= max ? max : free_entries; 322 } 323 324 static inline bool xskq_prod_is_full(struct xsk_queue *q) 325 { 326 return xskq_prod_nb_free(q, 1) ? false : true; 327 } 328 329 static inline void xskq_prod_cancel(struct xsk_queue *q) 330 { 331 q->cached_prod--; 332 } 333 334 static inline int xskq_prod_reserve(struct xsk_queue *q) 335 { 336 if (xskq_prod_is_full(q)) 337 return -ENOSPC; 338 339 /* A, matches D */ 340 q->cached_prod++; 341 return 0; 342 } 343 344 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 345 { 346 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 347 348 if (xskq_prod_is_full(q)) 349 return -ENOSPC; 350 351 /* A, matches D */ 352 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 353 return 0; 354 } 355 356 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 357 u32 nb_entries) 358 { 359 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 360 u32 i, cached_prod; 361 362 /* A, matches D */ 363 cached_prod = q->cached_prod; 364 for (i = 0; i < nb_entries; i++) 365 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 366 q->cached_prod = cached_prod; 367 } 368 369 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 370 u64 addr, u32 len) 371 { 372 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 373 u32 idx; 374 375 if (xskq_prod_is_full(q)) 376 return -ENOBUFS; 377 378 /* A, matches D */ 379 idx = q->cached_prod++ & q->ring_mask; 380 ring->desc[idx].addr = addr; 381 ring->desc[idx].len = len; 382 383 return 0; 384 } 385 386 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 387 { 388 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 389 } 390 391 static inline void xskq_prod_submit(struct xsk_queue *q) 392 { 393 __xskq_prod_submit(q, q->cached_prod); 394 } 395 396 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) 397 { 398 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 399 u32 idx = q->ring->producer; 400 401 ring->desc[idx++ & q->ring_mask] = addr; 402 403 __xskq_prod_submit(q, idx); 404 } 405 406 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 407 { 408 __xskq_prod_submit(q, q->ring->producer + nb_entries); 409 } 410 411 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 412 { 413 /* No barriers needed since data is not accessed */ 414 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 415 } 416 417 /* For both producers and consumers */ 418 419 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 420 { 421 return q ? q->invalid_descs : 0; 422 } 423 424 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 425 { 426 return q ? q->queue_empty_descs : 0; 427 } 428 429 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 430 void xskq_destroy(struct xsk_queue *q_ops); 431 432 #endif /* _LINUX_XSK_QUEUE_H */ 433