xref: /openbmc/linux/net/xdp/xsk_queue.h (revision 1edd0337)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 	size_t ring_vmalloc_size;
49 };
50 
51 /* The structure of the shared state of the rings are a simple
52  * circular buffer, as outlined in
53  * Documentation/core-api/circular-buffers.rst. For the Rx and
54  * completion ring, the kernel is the producer and user space is the
55  * consumer. For the Tx and fill rings, the kernel is the consumer and
56  * user space is the producer.
57  *
58  * producer                         consumer
59  *
60  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
61  *    STORE $data                   LOAD $data
62  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
63  * }
64  *
65  * (A) pairs with (D), and (B) pairs with (C).
66  *
67  * Starting with (B), it protects the data from being written after
68  * the producer pointer. If this barrier was missing, the consumer
69  * could observe the producer pointer being set and thus load the data
70  * before the producer has written the new data. The consumer would in
71  * this case load the old data.
72  *
73  * (C) protects the consumer from speculatively loading the data before
74  * the producer pointer actually has been read. If we do not have this
75  * barrier, some architectures could load old data as speculative loads
76  * are not discarded as the CPU does not know there is a dependency
77  * between ->producer and data.
78  *
79  * (A) is a control dependency that separates the load of ->consumer
80  * from the stores of $data. In case ->consumer indicates there is no
81  * room in the buffer to store $data we do not. The dependency will
82  * order both of the stores after the loads. So no barrier is needed.
83  *
84  * (D) protects the load of the data to be observed to happen after the
85  * store of the consumer pointer. If we did not have this memory
86  * barrier, the producer could observe the consumer pointer being set
87  * and overwrite the data with a new value before the consumer got the
88  * chance to read the old value. The consumer would thus miss reading
89  * the old entry and very likely read the new entry twice, once right
90  * now and again after circling through the ring.
91  */
92 
93 /* The operations on the rings are the following:
94  *
95  * producer                           consumer
96  *
97  * RESERVE entries                    PEEK in the ring for entries
98  * WRITE data into the ring           READ data from the ring
99  * SUBMIT entries                     RELEASE entries
100  *
101  * The producer reserves one or more entries in the ring. It can then
102  * fill in these entries and finally submit them so that they can be
103  * seen and read by the consumer.
104  *
105  * The consumer peeks into the ring to see if the producer has written
106  * any new entries. If so, the consumer can then read these entries
107  * and when it is done reading them release them back to the producer
108  * so that the producer can use these slots to fill in new entries.
109  *
110  * The function names below reflect these operations.
111  */
112 
113 /* Functions that read and validate content from consumer rings. */
114 
115 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
116 {
117 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
118 	u32 idx = cached_cons & q->ring_mask;
119 
120 	*addr = ring->desc[idx];
121 }
122 
123 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
124 {
125 	if (q->cached_cons != q->cached_prod) {
126 		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
127 		return true;
128 	}
129 
130 	return false;
131 }
132 
133 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
134 					    struct xdp_desc *desc)
135 {
136 	u64 chunk, chunk_end;
137 
138 	chunk = xp_aligned_extract_addr(pool, desc->addr);
139 	if (likely(desc->len)) {
140 		chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
141 		if (chunk != chunk_end)
142 			return false;
143 	}
144 
145 	if (chunk >= pool->addrs_cnt)
146 		return false;
147 
148 	if (desc->options)
149 		return false;
150 	return true;
151 }
152 
153 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
154 					      struct xdp_desc *desc)
155 {
156 	u64 addr, base_addr;
157 
158 	base_addr = xp_unaligned_extract_addr(desc->addr);
159 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
160 
161 	if (desc->len > pool->chunk_size)
162 		return false;
163 
164 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
165 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
166 		return false;
167 
168 	if (desc->options)
169 		return false;
170 	return true;
171 }
172 
173 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
174 				    struct xdp_desc *desc)
175 {
176 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
177 		xp_aligned_validate_desc(pool, desc);
178 }
179 
180 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
181 					   struct xdp_desc *d,
182 					   struct xsk_buff_pool *pool)
183 {
184 	if (!xp_validate_desc(pool, d)) {
185 		q->invalid_descs++;
186 		return false;
187 	}
188 	return true;
189 }
190 
191 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
192 				       struct xdp_desc *desc,
193 				       struct xsk_buff_pool *pool)
194 {
195 	while (q->cached_cons != q->cached_prod) {
196 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
197 		u32 idx = q->cached_cons & q->ring_mask;
198 
199 		*desc = ring->desc[idx];
200 		if (xskq_cons_is_valid_desc(q, desc, pool))
201 			return true;
202 
203 		q->cached_cons++;
204 	}
205 
206 	return false;
207 }
208 
209 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
210 {
211 	q->cached_cons += cnt;
212 }
213 
214 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
215 					    u32 max)
216 {
217 	u32 cached_cons = q->cached_cons, nb_entries = 0;
218 	struct xdp_desc *descs = pool->tx_descs;
219 
220 	while (cached_cons != q->cached_prod && nb_entries < max) {
221 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
222 		u32 idx = cached_cons & q->ring_mask;
223 
224 		descs[nb_entries] = ring->desc[idx];
225 		if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
226 			/* Skip the entry */
227 			cached_cons++;
228 			continue;
229 		}
230 
231 		nb_entries++;
232 		cached_cons++;
233 	}
234 
235 	/* Release valid plus any invalid entries */
236 	xskq_cons_release_n(q, cached_cons - q->cached_cons);
237 	return nb_entries;
238 }
239 
240 /* Functions for consumers */
241 
242 static inline void __xskq_cons_release(struct xsk_queue *q)
243 {
244 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
245 }
246 
247 static inline void __xskq_cons_peek(struct xsk_queue *q)
248 {
249 	/* Refresh the local pointer */
250 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
251 }
252 
253 static inline void xskq_cons_get_entries(struct xsk_queue *q)
254 {
255 	__xskq_cons_release(q);
256 	__xskq_cons_peek(q);
257 }
258 
259 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
260 {
261 	u32 entries = q->cached_prod - q->cached_cons;
262 
263 	if (entries >= max)
264 		return max;
265 
266 	__xskq_cons_peek(q);
267 	entries = q->cached_prod - q->cached_cons;
268 
269 	return entries >= max ? max : entries;
270 }
271 
272 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
273 {
274 	return xskq_cons_nb_entries(q, cnt) >= cnt;
275 }
276 
277 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
278 {
279 	if (q->cached_prod == q->cached_cons)
280 		xskq_cons_get_entries(q);
281 	return xskq_cons_read_addr_unchecked(q, addr);
282 }
283 
284 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
285 				       struct xdp_desc *desc,
286 				       struct xsk_buff_pool *pool)
287 {
288 	if (q->cached_prod == q->cached_cons)
289 		xskq_cons_get_entries(q);
290 	return xskq_cons_read_desc(q, desc, pool);
291 }
292 
293 /* To improve performance in the xskq_cons_release functions, only update local state here.
294  * Reflect this to global state when we get new entries from the ring in
295  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
296  */
297 static inline void xskq_cons_release(struct xsk_queue *q)
298 {
299 	q->cached_cons++;
300 }
301 
302 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
303 {
304 	/* No barriers needed since data is not accessed */
305 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
306 }
307 
308 /* Functions for producers */
309 
310 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
311 {
312 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
313 
314 	if (free_entries >= max)
315 		return max;
316 
317 	/* Refresh the local tail pointer */
318 	q->cached_cons = READ_ONCE(q->ring->consumer);
319 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
320 
321 	return free_entries >= max ? max : free_entries;
322 }
323 
324 static inline bool xskq_prod_is_full(struct xsk_queue *q)
325 {
326 	return xskq_prod_nb_free(q, 1) ? false : true;
327 }
328 
329 static inline void xskq_prod_cancel(struct xsk_queue *q)
330 {
331 	q->cached_prod--;
332 }
333 
334 static inline int xskq_prod_reserve(struct xsk_queue *q)
335 {
336 	if (xskq_prod_is_full(q))
337 		return -ENOSPC;
338 
339 	/* A, matches D */
340 	q->cached_prod++;
341 	return 0;
342 }
343 
344 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
345 {
346 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
347 
348 	if (xskq_prod_is_full(q))
349 		return -ENOSPC;
350 
351 	/* A, matches D */
352 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
353 	return 0;
354 }
355 
356 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
357 					      u32 nb_entries)
358 {
359 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
360 	u32 i, cached_prod;
361 
362 	/* A, matches D */
363 	cached_prod = q->cached_prod;
364 	for (i = 0; i < nb_entries; i++)
365 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
366 	q->cached_prod = cached_prod;
367 }
368 
369 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
370 					 u64 addr, u32 len)
371 {
372 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
373 	u32 idx;
374 
375 	if (xskq_prod_is_full(q))
376 		return -ENOBUFS;
377 
378 	/* A, matches D */
379 	idx = q->cached_prod++ & q->ring_mask;
380 	ring->desc[idx].addr = addr;
381 	ring->desc[idx].len = len;
382 
383 	return 0;
384 }
385 
386 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
387 {
388 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
389 }
390 
391 static inline void xskq_prod_submit(struct xsk_queue *q)
392 {
393 	__xskq_prod_submit(q, q->cached_prod);
394 }
395 
396 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
397 {
398 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
399 	u32 idx = q->ring->producer;
400 
401 	ring->desc[idx++ & q->ring_mask] = addr;
402 
403 	__xskq_prod_submit(q, idx);
404 }
405 
406 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
407 {
408 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
409 }
410 
411 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
412 {
413 	/* No barriers needed since data is not accessed */
414 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
415 }
416 
417 /* For both producers and consumers */
418 
419 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
420 {
421 	return q ? q->invalid_descs : 0;
422 }
423 
424 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
425 {
426 	return q ? q->queue_empty_descs : 0;
427 }
428 
429 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
430 void xskq_destroy(struct xsk_queue *q_ops);
431 
432 #endif /* _LINUX_XSK_QUEUE_H */
433