1 // SPDX-License-Identifier: GPL-2.0 2 /* XDP sockets 3 * 4 * AF_XDP sockets allows a channel between XDP programs and userspace 5 * applications. 6 * Copyright(c) 2018 Intel Corporation. 7 * 8 * Author(s): Björn Töpel <bjorn.topel@intel.com> 9 * Magnus Karlsson <magnus.karlsson@intel.com> 10 */ 11 12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__ 13 14 #include <linux/if_xdp.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/task.h> 19 #include <linux/socket.h> 20 #include <linux/file.h> 21 #include <linux/uaccess.h> 22 #include <linux/net.h> 23 #include <linux/netdevice.h> 24 #include <linux/rculist.h> 25 #include <net/xdp_sock_drv.h> 26 #include <net/busy_poll.h> 27 #include <net/xdp.h> 28 29 #include "xsk_queue.h" 30 #include "xdp_umem.h" 31 #include "xsk.h" 32 33 #define TX_BATCH_SIZE 32 34 35 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list); 36 37 void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool) 38 { 39 if (pool->cached_need_wakeup & XDP_WAKEUP_RX) 40 return; 41 42 pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP; 43 pool->cached_need_wakeup |= XDP_WAKEUP_RX; 44 } 45 EXPORT_SYMBOL(xsk_set_rx_need_wakeup); 46 47 void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool) 48 { 49 struct xdp_sock *xs; 50 51 if (pool->cached_need_wakeup & XDP_WAKEUP_TX) 52 return; 53 54 rcu_read_lock(); 55 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { 56 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; 57 } 58 rcu_read_unlock(); 59 60 pool->cached_need_wakeup |= XDP_WAKEUP_TX; 61 } 62 EXPORT_SYMBOL(xsk_set_tx_need_wakeup); 63 64 void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool) 65 { 66 if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX)) 67 return; 68 69 pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP; 70 pool->cached_need_wakeup &= ~XDP_WAKEUP_RX; 71 } 72 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup); 73 74 void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool) 75 { 76 struct xdp_sock *xs; 77 78 if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX)) 79 return; 80 81 rcu_read_lock(); 82 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { 83 xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP; 84 } 85 rcu_read_unlock(); 86 87 pool->cached_need_wakeup &= ~XDP_WAKEUP_TX; 88 } 89 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup); 90 91 bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool) 92 { 93 return pool->uses_need_wakeup; 94 } 95 EXPORT_SYMBOL(xsk_uses_need_wakeup); 96 97 struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev, 98 u16 queue_id) 99 { 100 if (queue_id < dev->real_num_rx_queues) 101 return dev->_rx[queue_id].pool; 102 if (queue_id < dev->real_num_tx_queues) 103 return dev->_tx[queue_id].pool; 104 105 return NULL; 106 } 107 EXPORT_SYMBOL(xsk_get_pool_from_qid); 108 109 void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id) 110 { 111 if (queue_id < dev->num_rx_queues) 112 dev->_rx[queue_id].pool = NULL; 113 if (queue_id < dev->num_tx_queues) 114 dev->_tx[queue_id].pool = NULL; 115 } 116 117 /* The buffer pool is stored both in the _rx struct and the _tx struct as we do 118 * not know if the device has more tx queues than rx, or the opposite. 119 * This might also change during run time. 120 */ 121 int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool, 122 u16 queue_id) 123 { 124 if (queue_id >= max_t(unsigned int, 125 dev->real_num_rx_queues, 126 dev->real_num_tx_queues)) 127 return -EINVAL; 128 129 if (queue_id < dev->real_num_rx_queues) 130 dev->_rx[queue_id].pool = pool; 131 if (queue_id < dev->real_num_tx_queues) 132 dev->_tx[queue_id].pool = pool; 133 134 return 0; 135 } 136 137 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len) 138 { 139 struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp); 140 u64 addr; 141 int err; 142 143 addr = xp_get_handle(xskb); 144 err = xskq_prod_reserve_desc(xs->rx, addr, len); 145 if (err) { 146 xs->rx_queue_full++; 147 return err; 148 } 149 150 xp_release(xskb); 151 return 0; 152 } 153 154 static void xsk_copy_xdp(struct xdp_buff *to, struct xdp_buff *from, u32 len) 155 { 156 void *from_buf, *to_buf; 157 u32 metalen; 158 159 if (unlikely(xdp_data_meta_unsupported(from))) { 160 from_buf = from->data; 161 to_buf = to->data; 162 metalen = 0; 163 } else { 164 from_buf = from->data_meta; 165 metalen = from->data - from->data_meta; 166 to_buf = to->data - metalen; 167 } 168 169 memcpy(to_buf, from_buf, len + metalen); 170 } 171 172 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) 173 { 174 struct xdp_buff *xsk_xdp; 175 int err; 176 u32 len; 177 178 len = xdp->data_end - xdp->data; 179 if (len > xsk_pool_get_rx_frame_size(xs->pool)) { 180 xs->rx_dropped++; 181 return -ENOSPC; 182 } 183 184 xsk_xdp = xsk_buff_alloc(xs->pool); 185 if (!xsk_xdp) { 186 xs->rx_dropped++; 187 return -ENOMEM; 188 } 189 190 xsk_copy_xdp(xsk_xdp, xdp, len); 191 err = __xsk_rcv_zc(xs, xsk_xdp, len); 192 if (err) { 193 xsk_buff_free(xsk_xdp); 194 return err; 195 } 196 return 0; 197 } 198 199 static bool xsk_tx_writeable(struct xdp_sock *xs) 200 { 201 if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2) 202 return false; 203 204 return true; 205 } 206 207 static bool xsk_is_bound(struct xdp_sock *xs) 208 { 209 if (READ_ONCE(xs->state) == XSK_BOUND) { 210 /* Matches smp_wmb() in bind(). */ 211 smp_rmb(); 212 return true; 213 } 214 return false; 215 } 216 217 static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp) 218 { 219 if (!xsk_is_bound(xs)) 220 return -ENXIO; 221 222 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) 223 return -EINVAL; 224 225 sk_mark_napi_id_once_xdp(&xs->sk, xdp); 226 return 0; 227 } 228 229 static void xsk_flush(struct xdp_sock *xs) 230 { 231 xskq_prod_submit(xs->rx); 232 __xskq_cons_release(xs->pool->fq); 233 sock_def_readable(&xs->sk); 234 } 235 236 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) 237 { 238 int err; 239 240 spin_lock_bh(&xs->rx_lock); 241 err = xsk_rcv_check(xs, xdp); 242 if (!err) { 243 err = __xsk_rcv(xs, xdp); 244 xsk_flush(xs); 245 } 246 spin_unlock_bh(&xs->rx_lock); 247 return err; 248 } 249 250 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) 251 { 252 int err; 253 u32 len; 254 255 err = xsk_rcv_check(xs, xdp); 256 if (err) 257 return err; 258 259 if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) { 260 len = xdp->data_end - xdp->data; 261 return __xsk_rcv_zc(xs, xdp, len); 262 } 263 264 err = __xsk_rcv(xs, xdp); 265 if (!err) 266 xdp_return_buff(xdp); 267 return err; 268 } 269 270 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp) 271 { 272 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list); 273 int err; 274 275 err = xsk_rcv(xs, xdp); 276 if (err) 277 return err; 278 279 if (!xs->flush_node.prev) 280 list_add(&xs->flush_node, flush_list); 281 282 return 0; 283 } 284 285 void __xsk_map_flush(void) 286 { 287 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list); 288 struct xdp_sock *xs, *tmp; 289 290 list_for_each_entry_safe(xs, tmp, flush_list, flush_node) { 291 xsk_flush(xs); 292 __list_del_clearprev(&xs->flush_node); 293 } 294 } 295 296 void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries) 297 { 298 xskq_prod_submit_n(pool->cq, nb_entries); 299 } 300 EXPORT_SYMBOL(xsk_tx_completed); 301 302 void xsk_tx_release(struct xsk_buff_pool *pool) 303 { 304 struct xdp_sock *xs; 305 306 rcu_read_lock(); 307 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { 308 __xskq_cons_release(xs->tx); 309 if (xsk_tx_writeable(xs)) 310 xs->sk.sk_write_space(&xs->sk); 311 } 312 rcu_read_unlock(); 313 } 314 EXPORT_SYMBOL(xsk_tx_release); 315 316 bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) 317 { 318 struct xdp_sock *xs; 319 320 rcu_read_lock(); 321 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { 322 if (!xskq_cons_peek_desc(xs->tx, desc, pool)) { 323 xs->tx->queue_empty_descs++; 324 continue; 325 } 326 327 /* This is the backpressure mechanism for the Tx path. 328 * Reserve space in the completion queue and only proceed 329 * if there is space in it. This avoids having to implement 330 * any buffering in the Tx path. 331 */ 332 if (xskq_prod_reserve_addr(pool->cq, desc->addr)) 333 goto out; 334 335 xskq_cons_release(xs->tx); 336 rcu_read_unlock(); 337 return true; 338 } 339 340 out: 341 rcu_read_unlock(); 342 return false; 343 } 344 EXPORT_SYMBOL(xsk_tx_peek_desc); 345 346 static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries) 347 { 348 struct xdp_desc *descs = pool->tx_descs; 349 u32 nb_pkts = 0; 350 351 while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts])) 352 nb_pkts++; 353 354 xsk_tx_release(pool); 355 return nb_pkts; 356 } 357 358 u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts) 359 { 360 struct xdp_sock *xs; 361 362 rcu_read_lock(); 363 if (!list_is_singular(&pool->xsk_tx_list)) { 364 /* Fallback to the non-batched version */ 365 rcu_read_unlock(); 366 return xsk_tx_peek_release_fallback(pool, nb_pkts); 367 } 368 369 xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list); 370 if (!xs) { 371 nb_pkts = 0; 372 goto out; 373 } 374 375 nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts); 376 377 /* This is the backpressure mechanism for the Tx path. Try to 378 * reserve space in the completion queue for all packets, but 379 * if there are fewer slots available, just process that many 380 * packets. This avoids having to implement any buffering in 381 * the Tx path. 382 */ 383 nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts); 384 if (!nb_pkts) 385 goto out; 386 387 nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts); 388 if (!nb_pkts) { 389 xs->tx->queue_empty_descs++; 390 goto out; 391 } 392 393 __xskq_cons_release(xs->tx); 394 xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts); 395 xs->sk.sk_write_space(&xs->sk); 396 397 out: 398 rcu_read_unlock(); 399 return nb_pkts; 400 } 401 EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch); 402 403 static int xsk_wakeup(struct xdp_sock *xs, u8 flags) 404 { 405 struct net_device *dev = xs->dev; 406 407 return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags); 408 } 409 410 static void xsk_destruct_skb(struct sk_buff *skb) 411 { 412 u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg; 413 struct xdp_sock *xs = xdp_sk(skb->sk); 414 unsigned long flags; 415 416 spin_lock_irqsave(&xs->pool->cq_lock, flags); 417 xskq_prod_submit_addr(xs->pool->cq, addr); 418 spin_unlock_irqrestore(&xs->pool->cq_lock, flags); 419 420 sock_wfree(skb); 421 } 422 423 static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs, 424 struct xdp_desc *desc) 425 { 426 struct xsk_buff_pool *pool = xs->pool; 427 u32 hr, len, ts, offset, copy, copied; 428 struct sk_buff *skb; 429 struct page *page; 430 void *buffer; 431 int err, i; 432 u64 addr; 433 434 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom)); 435 436 skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err); 437 if (unlikely(!skb)) 438 return ERR_PTR(err); 439 440 skb_reserve(skb, hr); 441 442 addr = desc->addr; 443 len = desc->len; 444 ts = pool->unaligned ? len : pool->chunk_size; 445 446 buffer = xsk_buff_raw_get_data(pool, addr); 447 offset = offset_in_page(buffer); 448 addr = buffer - pool->addrs; 449 450 for (copied = 0, i = 0; copied < len; i++) { 451 page = pool->umem->pgs[addr >> PAGE_SHIFT]; 452 get_page(page); 453 454 copy = min_t(u32, PAGE_SIZE - offset, len - copied); 455 skb_fill_page_desc(skb, i, page, offset, copy); 456 457 copied += copy; 458 addr += copy; 459 offset = 0; 460 } 461 462 skb->len += len; 463 skb->data_len += len; 464 skb->truesize += ts; 465 466 refcount_add(ts, &xs->sk.sk_wmem_alloc); 467 468 return skb; 469 } 470 471 static struct sk_buff *xsk_build_skb(struct xdp_sock *xs, 472 struct xdp_desc *desc) 473 { 474 struct net_device *dev = xs->dev; 475 struct sk_buff *skb; 476 477 if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) { 478 skb = xsk_build_skb_zerocopy(xs, desc); 479 if (IS_ERR(skb)) 480 return skb; 481 } else { 482 u32 hr, tr, len; 483 void *buffer; 484 int err; 485 486 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom)); 487 tr = dev->needed_tailroom; 488 len = desc->len; 489 490 skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err); 491 if (unlikely(!skb)) 492 return ERR_PTR(err); 493 494 skb_reserve(skb, hr); 495 skb_put(skb, len); 496 497 buffer = xsk_buff_raw_get_data(xs->pool, desc->addr); 498 err = skb_store_bits(skb, 0, buffer, len); 499 if (unlikely(err)) { 500 kfree_skb(skb); 501 return ERR_PTR(err); 502 } 503 } 504 505 skb->dev = dev; 506 skb->priority = xs->sk.sk_priority; 507 skb->mark = xs->sk.sk_mark; 508 skb_shinfo(skb)->destructor_arg = (void *)(long)desc->addr; 509 skb->destructor = xsk_destruct_skb; 510 511 return skb; 512 } 513 514 static int xsk_generic_xmit(struct sock *sk) 515 { 516 struct xdp_sock *xs = xdp_sk(sk); 517 u32 max_batch = TX_BATCH_SIZE; 518 bool sent_frame = false; 519 struct xdp_desc desc; 520 struct sk_buff *skb; 521 unsigned long flags; 522 int err = 0; 523 524 mutex_lock(&xs->mutex); 525 526 /* Since we dropped the RCU read lock, the socket state might have changed. */ 527 if (unlikely(!xsk_is_bound(xs))) { 528 err = -ENXIO; 529 goto out; 530 } 531 532 if (xs->queue_id >= xs->dev->real_num_tx_queues) 533 goto out; 534 535 while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) { 536 if (max_batch-- == 0) { 537 err = -EAGAIN; 538 goto out; 539 } 540 541 /* This is the backpressure mechanism for the Tx path. 542 * Reserve space in the completion queue and only proceed 543 * if there is space in it. This avoids having to implement 544 * any buffering in the Tx path. 545 */ 546 spin_lock_irqsave(&xs->pool->cq_lock, flags); 547 if (xskq_prod_reserve(xs->pool->cq)) { 548 spin_unlock_irqrestore(&xs->pool->cq_lock, flags); 549 goto out; 550 } 551 spin_unlock_irqrestore(&xs->pool->cq_lock, flags); 552 553 skb = xsk_build_skb(xs, &desc); 554 if (IS_ERR(skb)) { 555 err = PTR_ERR(skb); 556 spin_lock_irqsave(&xs->pool->cq_lock, flags); 557 xskq_prod_cancel(xs->pool->cq); 558 spin_unlock_irqrestore(&xs->pool->cq_lock, flags); 559 goto out; 560 } 561 562 err = __dev_direct_xmit(skb, xs->queue_id); 563 if (err == NETDEV_TX_BUSY) { 564 /* Tell user-space to retry the send */ 565 skb->destructor = sock_wfree; 566 spin_lock_irqsave(&xs->pool->cq_lock, flags); 567 xskq_prod_cancel(xs->pool->cq); 568 spin_unlock_irqrestore(&xs->pool->cq_lock, flags); 569 /* Free skb without triggering the perf drop trace */ 570 consume_skb(skb); 571 err = -EAGAIN; 572 goto out; 573 } 574 575 xskq_cons_release(xs->tx); 576 /* Ignore NET_XMIT_CN as packet might have been sent */ 577 if (err == NET_XMIT_DROP) { 578 /* SKB completed but not sent */ 579 err = -EBUSY; 580 goto out; 581 } 582 583 sent_frame = true; 584 } 585 586 xs->tx->queue_empty_descs++; 587 588 out: 589 if (sent_frame) 590 if (xsk_tx_writeable(xs)) 591 sk->sk_write_space(sk); 592 593 mutex_unlock(&xs->mutex); 594 return err; 595 } 596 597 static int xsk_xmit(struct sock *sk) 598 { 599 struct xdp_sock *xs = xdp_sk(sk); 600 int ret; 601 602 if (unlikely(!(xs->dev->flags & IFF_UP))) 603 return -ENETDOWN; 604 if (unlikely(!xs->tx)) 605 return -ENOBUFS; 606 607 if (xs->zc) 608 return xsk_wakeup(xs, XDP_WAKEUP_TX); 609 610 /* Drop the RCU lock since the SKB path might sleep. */ 611 rcu_read_unlock(); 612 ret = xsk_generic_xmit(sk); 613 /* Reaquire RCU lock before going into common code. */ 614 rcu_read_lock(); 615 616 return ret; 617 } 618 619 static bool xsk_no_wakeup(struct sock *sk) 620 { 621 #ifdef CONFIG_NET_RX_BUSY_POLL 622 /* Prefer busy-polling, skip the wakeup. */ 623 return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) && 624 READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID; 625 #else 626 return false; 627 #endif 628 } 629 630 static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) 631 { 632 bool need_wait = !(m->msg_flags & MSG_DONTWAIT); 633 struct sock *sk = sock->sk; 634 struct xdp_sock *xs = xdp_sk(sk); 635 struct xsk_buff_pool *pool; 636 637 if (unlikely(!xsk_is_bound(xs))) 638 return -ENXIO; 639 if (unlikely(need_wait)) 640 return -EOPNOTSUPP; 641 642 if (sk_can_busy_loop(sk)) { 643 if (xs->zc) 644 __sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool)); 645 sk_busy_loop(sk, 1); /* only support non-blocking sockets */ 646 } 647 648 if (xs->zc && xsk_no_wakeup(sk)) 649 return 0; 650 651 pool = xs->pool; 652 if (pool->cached_need_wakeup & XDP_WAKEUP_TX) 653 return xsk_xmit(sk); 654 return 0; 655 } 656 657 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) 658 { 659 int ret; 660 661 rcu_read_lock(); 662 ret = __xsk_sendmsg(sock, m, total_len); 663 rcu_read_unlock(); 664 665 return ret; 666 } 667 668 static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) 669 { 670 bool need_wait = !(flags & MSG_DONTWAIT); 671 struct sock *sk = sock->sk; 672 struct xdp_sock *xs = xdp_sk(sk); 673 674 if (unlikely(!xsk_is_bound(xs))) 675 return -ENXIO; 676 if (unlikely(!(xs->dev->flags & IFF_UP))) 677 return -ENETDOWN; 678 if (unlikely(!xs->rx)) 679 return -ENOBUFS; 680 if (unlikely(need_wait)) 681 return -EOPNOTSUPP; 682 683 if (sk_can_busy_loop(sk)) 684 sk_busy_loop(sk, 1); /* only support non-blocking sockets */ 685 686 if (xsk_no_wakeup(sk)) 687 return 0; 688 689 if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc) 690 return xsk_wakeup(xs, XDP_WAKEUP_RX); 691 return 0; 692 } 693 694 static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) 695 { 696 int ret; 697 698 rcu_read_lock(); 699 ret = __xsk_recvmsg(sock, m, len, flags); 700 rcu_read_unlock(); 701 702 return ret; 703 } 704 705 static __poll_t xsk_poll(struct file *file, struct socket *sock, 706 struct poll_table_struct *wait) 707 { 708 __poll_t mask = 0; 709 struct sock *sk = sock->sk; 710 struct xdp_sock *xs = xdp_sk(sk); 711 struct xsk_buff_pool *pool; 712 713 sock_poll_wait(file, sock, wait); 714 715 rcu_read_lock(); 716 if (unlikely(!xsk_is_bound(xs))) { 717 rcu_read_unlock(); 718 return mask; 719 } 720 721 pool = xs->pool; 722 723 if (pool->cached_need_wakeup) { 724 if (xs->zc) 725 xsk_wakeup(xs, pool->cached_need_wakeup); 726 else 727 /* Poll needs to drive Tx also in copy mode */ 728 xsk_xmit(sk); 729 } 730 731 if (xs->rx && !xskq_prod_is_empty(xs->rx)) 732 mask |= EPOLLIN | EPOLLRDNORM; 733 if (xs->tx && xsk_tx_writeable(xs)) 734 mask |= EPOLLOUT | EPOLLWRNORM; 735 736 rcu_read_unlock(); 737 return mask; 738 } 739 740 static int xsk_init_queue(u32 entries, struct xsk_queue **queue, 741 bool umem_queue) 742 { 743 struct xsk_queue *q; 744 745 if (entries == 0 || *queue || !is_power_of_2(entries)) 746 return -EINVAL; 747 748 q = xskq_create(entries, umem_queue); 749 if (!q) 750 return -ENOMEM; 751 752 /* Make sure queue is ready before it can be seen by others */ 753 smp_wmb(); 754 WRITE_ONCE(*queue, q); 755 return 0; 756 } 757 758 static void xsk_unbind_dev(struct xdp_sock *xs) 759 { 760 struct net_device *dev = xs->dev; 761 762 if (xs->state != XSK_BOUND) 763 return; 764 WRITE_ONCE(xs->state, XSK_UNBOUND); 765 766 /* Wait for driver to stop using the xdp socket. */ 767 xp_del_xsk(xs->pool, xs); 768 synchronize_net(); 769 dev_put(dev); 770 } 771 772 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs, 773 struct xdp_sock __rcu ***map_entry) 774 { 775 struct xsk_map *map = NULL; 776 struct xsk_map_node *node; 777 778 *map_entry = NULL; 779 780 spin_lock_bh(&xs->map_list_lock); 781 node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node, 782 node); 783 if (node) { 784 bpf_map_inc(&node->map->map); 785 map = node->map; 786 *map_entry = node->map_entry; 787 } 788 spin_unlock_bh(&xs->map_list_lock); 789 return map; 790 } 791 792 static void xsk_delete_from_maps(struct xdp_sock *xs) 793 { 794 /* This function removes the current XDP socket from all the 795 * maps it resides in. We need to take extra care here, due to 796 * the two locks involved. Each map has a lock synchronizing 797 * updates to the entries, and each socket has a lock that 798 * synchronizes access to the list of maps (map_list). For 799 * deadlock avoidance the locks need to be taken in the order 800 * "map lock"->"socket map list lock". We start off by 801 * accessing the socket map list, and take a reference to the 802 * map to guarantee existence between the 803 * xsk_get_map_list_entry() and xsk_map_try_sock_delete() 804 * calls. Then we ask the map to remove the socket, which 805 * tries to remove the socket from the map. Note that there 806 * might be updates to the map between 807 * xsk_get_map_list_entry() and xsk_map_try_sock_delete(). 808 */ 809 struct xdp_sock __rcu **map_entry = NULL; 810 struct xsk_map *map; 811 812 while ((map = xsk_get_map_list_entry(xs, &map_entry))) { 813 xsk_map_try_sock_delete(map, xs, map_entry); 814 bpf_map_put(&map->map); 815 } 816 } 817 818 static int xsk_release(struct socket *sock) 819 { 820 struct sock *sk = sock->sk; 821 struct xdp_sock *xs = xdp_sk(sk); 822 struct net *net; 823 824 if (!sk) 825 return 0; 826 827 net = sock_net(sk); 828 829 mutex_lock(&net->xdp.lock); 830 sk_del_node_init_rcu(sk); 831 mutex_unlock(&net->xdp.lock); 832 833 sock_prot_inuse_add(net, sk->sk_prot, -1); 834 835 xsk_delete_from_maps(xs); 836 mutex_lock(&xs->mutex); 837 xsk_unbind_dev(xs); 838 mutex_unlock(&xs->mutex); 839 840 xskq_destroy(xs->rx); 841 xskq_destroy(xs->tx); 842 xskq_destroy(xs->fq_tmp); 843 xskq_destroy(xs->cq_tmp); 844 845 sock_orphan(sk); 846 sock->sk = NULL; 847 848 sock_put(sk); 849 850 return 0; 851 } 852 853 static struct socket *xsk_lookup_xsk_from_fd(int fd) 854 { 855 struct socket *sock; 856 int err; 857 858 sock = sockfd_lookup(fd, &err); 859 if (!sock) 860 return ERR_PTR(-ENOTSOCK); 861 862 if (sock->sk->sk_family != PF_XDP) { 863 sockfd_put(sock); 864 return ERR_PTR(-ENOPROTOOPT); 865 } 866 867 return sock; 868 } 869 870 static bool xsk_validate_queues(struct xdp_sock *xs) 871 { 872 return xs->fq_tmp && xs->cq_tmp; 873 } 874 875 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 876 { 877 struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr; 878 struct sock *sk = sock->sk; 879 struct xdp_sock *xs = xdp_sk(sk); 880 struct net_device *dev; 881 u32 flags, qid; 882 int err = 0; 883 884 if (addr_len < sizeof(struct sockaddr_xdp)) 885 return -EINVAL; 886 if (sxdp->sxdp_family != AF_XDP) 887 return -EINVAL; 888 889 flags = sxdp->sxdp_flags; 890 if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY | 891 XDP_USE_NEED_WAKEUP)) 892 return -EINVAL; 893 894 rtnl_lock(); 895 mutex_lock(&xs->mutex); 896 if (xs->state != XSK_READY) { 897 err = -EBUSY; 898 goto out_release; 899 } 900 901 dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex); 902 if (!dev) { 903 err = -ENODEV; 904 goto out_release; 905 } 906 907 if (!xs->rx && !xs->tx) { 908 err = -EINVAL; 909 goto out_unlock; 910 } 911 912 qid = sxdp->sxdp_queue_id; 913 914 if (flags & XDP_SHARED_UMEM) { 915 struct xdp_sock *umem_xs; 916 struct socket *sock; 917 918 if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) || 919 (flags & XDP_USE_NEED_WAKEUP)) { 920 /* Cannot specify flags for shared sockets. */ 921 err = -EINVAL; 922 goto out_unlock; 923 } 924 925 if (xs->umem) { 926 /* We have already our own. */ 927 err = -EINVAL; 928 goto out_unlock; 929 } 930 931 sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd); 932 if (IS_ERR(sock)) { 933 err = PTR_ERR(sock); 934 goto out_unlock; 935 } 936 937 umem_xs = xdp_sk(sock->sk); 938 if (!xsk_is_bound(umem_xs)) { 939 err = -EBADF; 940 sockfd_put(sock); 941 goto out_unlock; 942 } 943 944 if (umem_xs->queue_id != qid || umem_xs->dev != dev) { 945 /* Share the umem with another socket on another qid 946 * and/or device. 947 */ 948 xs->pool = xp_create_and_assign_umem(xs, 949 umem_xs->umem); 950 if (!xs->pool) { 951 err = -ENOMEM; 952 sockfd_put(sock); 953 goto out_unlock; 954 } 955 956 err = xp_assign_dev_shared(xs->pool, umem_xs, dev, 957 qid); 958 if (err) { 959 xp_destroy(xs->pool); 960 xs->pool = NULL; 961 sockfd_put(sock); 962 goto out_unlock; 963 } 964 } else { 965 /* Share the buffer pool with the other socket. */ 966 if (xs->fq_tmp || xs->cq_tmp) { 967 /* Do not allow setting your own fq or cq. */ 968 err = -EINVAL; 969 sockfd_put(sock); 970 goto out_unlock; 971 } 972 973 xp_get_pool(umem_xs->pool); 974 xs->pool = umem_xs->pool; 975 976 /* If underlying shared umem was created without Tx 977 * ring, allocate Tx descs array that Tx batching API 978 * utilizes 979 */ 980 if (xs->tx && !xs->pool->tx_descs) { 981 err = xp_alloc_tx_descs(xs->pool, xs); 982 if (err) { 983 xp_put_pool(xs->pool); 984 sockfd_put(sock); 985 goto out_unlock; 986 } 987 } 988 } 989 990 xdp_get_umem(umem_xs->umem); 991 WRITE_ONCE(xs->umem, umem_xs->umem); 992 sockfd_put(sock); 993 } else if (!xs->umem || !xsk_validate_queues(xs)) { 994 err = -EINVAL; 995 goto out_unlock; 996 } else { 997 /* This xsk has its own umem. */ 998 xs->pool = xp_create_and_assign_umem(xs, xs->umem); 999 if (!xs->pool) { 1000 err = -ENOMEM; 1001 goto out_unlock; 1002 } 1003 1004 err = xp_assign_dev(xs->pool, dev, qid, flags); 1005 if (err) { 1006 xp_destroy(xs->pool); 1007 xs->pool = NULL; 1008 goto out_unlock; 1009 } 1010 } 1011 1012 /* FQ and CQ are now owned by the buffer pool and cleaned up with it. */ 1013 xs->fq_tmp = NULL; 1014 xs->cq_tmp = NULL; 1015 1016 xs->dev = dev; 1017 xs->zc = xs->umem->zc; 1018 xs->queue_id = qid; 1019 xp_add_xsk(xs->pool, xs); 1020 1021 out_unlock: 1022 if (err) { 1023 dev_put(dev); 1024 } else { 1025 /* Matches smp_rmb() in bind() for shared umem 1026 * sockets, and xsk_is_bound(). 1027 */ 1028 smp_wmb(); 1029 WRITE_ONCE(xs->state, XSK_BOUND); 1030 } 1031 out_release: 1032 mutex_unlock(&xs->mutex); 1033 rtnl_unlock(); 1034 return err; 1035 } 1036 1037 struct xdp_umem_reg_v1 { 1038 __u64 addr; /* Start of packet data area */ 1039 __u64 len; /* Length of packet data area */ 1040 __u32 chunk_size; 1041 __u32 headroom; 1042 }; 1043 1044 static int xsk_setsockopt(struct socket *sock, int level, int optname, 1045 sockptr_t optval, unsigned int optlen) 1046 { 1047 struct sock *sk = sock->sk; 1048 struct xdp_sock *xs = xdp_sk(sk); 1049 int err; 1050 1051 if (level != SOL_XDP) 1052 return -ENOPROTOOPT; 1053 1054 switch (optname) { 1055 case XDP_RX_RING: 1056 case XDP_TX_RING: 1057 { 1058 struct xsk_queue **q; 1059 int entries; 1060 1061 if (optlen < sizeof(entries)) 1062 return -EINVAL; 1063 if (copy_from_sockptr(&entries, optval, sizeof(entries))) 1064 return -EFAULT; 1065 1066 mutex_lock(&xs->mutex); 1067 if (xs->state != XSK_READY) { 1068 mutex_unlock(&xs->mutex); 1069 return -EBUSY; 1070 } 1071 q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx; 1072 err = xsk_init_queue(entries, q, false); 1073 if (!err && optname == XDP_TX_RING) 1074 /* Tx needs to be explicitly woken up the first time */ 1075 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; 1076 mutex_unlock(&xs->mutex); 1077 return err; 1078 } 1079 case XDP_UMEM_REG: 1080 { 1081 size_t mr_size = sizeof(struct xdp_umem_reg); 1082 struct xdp_umem_reg mr = {}; 1083 struct xdp_umem *umem; 1084 1085 if (optlen < sizeof(struct xdp_umem_reg_v1)) 1086 return -EINVAL; 1087 else if (optlen < sizeof(mr)) 1088 mr_size = sizeof(struct xdp_umem_reg_v1); 1089 1090 if (copy_from_sockptr(&mr, optval, mr_size)) 1091 return -EFAULT; 1092 1093 mutex_lock(&xs->mutex); 1094 if (xs->state != XSK_READY || xs->umem) { 1095 mutex_unlock(&xs->mutex); 1096 return -EBUSY; 1097 } 1098 1099 umem = xdp_umem_create(&mr); 1100 if (IS_ERR(umem)) { 1101 mutex_unlock(&xs->mutex); 1102 return PTR_ERR(umem); 1103 } 1104 1105 /* Make sure umem is ready before it can be seen by others */ 1106 smp_wmb(); 1107 WRITE_ONCE(xs->umem, umem); 1108 mutex_unlock(&xs->mutex); 1109 return 0; 1110 } 1111 case XDP_UMEM_FILL_RING: 1112 case XDP_UMEM_COMPLETION_RING: 1113 { 1114 struct xsk_queue **q; 1115 int entries; 1116 1117 if (copy_from_sockptr(&entries, optval, sizeof(entries))) 1118 return -EFAULT; 1119 1120 mutex_lock(&xs->mutex); 1121 if (xs->state != XSK_READY) { 1122 mutex_unlock(&xs->mutex); 1123 return -EBUSY; 1124 } 1125 1126 q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp : 1127 &xs->cq_tmp; 1128 err = xsk_init_queue(entries, q, true); 1129 mutex_unlock(&xs->mutex); 1130 return err; 1131 } 1132 default: 1133 break; 1134 } 1135 1136 return -ENOPROTOOPT; 1137 } 1138 1139 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring) 1140 { 1141 ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer); 1142 ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer); 1143 ring->desc = offsetof(struct xdp_rxtx_ring, desc); 1144 } 1145 1146 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring) 1147 { 1148 ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer); 1149 ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer); 1150 ring->desc = offsetof(struct xdp_umem_ring, desc); 1151 } 1152 1153 struct xdp_statistics_v1 { 1154 __u64 rx_dropped; 1155 __u64 rx_invalid_descs; 1156 __u64 tx_invalid_descs; 1157 }; 1158 1159 static int xsk_getsockopt(struct socket *sock, int level, int optname, 1160 char __user *optval, int __user *optlen) 1161 { 1162 struct sock *sk = sock->sk; 1163 struct xdp_sock *xs = xdp_sk(sk); 1164 int len; 1165 1166 if (level != SOL_XDP) 1167 return -ENOPROTOOPT; 1168 1169 if (get_user(len, optlen)) 1170 return -EFAULT; 1171 if (len < 0) 1172 return -EINVAL; 1173 1174 switch (optname) { 1175 case XDP_STATISTICS: 1176 { 1177 struct xdp_statistics stats = {}; 1178 bool extra_stats = true; 1179 size_t stats_size; 1180 1181 if (len < sizeof(struct xdp_statistics_v1)) { 1182 return -EINVAL; 1183 } else if (len < sizeof(stats)) { 1184 extra_stats = false; 1185 stats_size = sizeof(struct xdp_statistics_v1); 1186 } else { 1187 stats_size = sizeof(stats); 1188 } 1189 1190 mutex_lock(&xs->mutex); 1191 stats.rx_dropped = xs->rx_dropped; 1192 if (extra_stats) { 1193 stats.rx_ring_full = xs->rx_queue_full; 1194 stats.rx_fill_ring_empty_descs = 1195 xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0; 1196 stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx); 1197 } else { 1198 stats.rx_dropped += xs->rx_queue_full; 1199 } 1200 stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx); 1201 stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx); 1202 mutex_unlock(&xs->mutex); 1203 1204 if (copy_to_user(optval, &stats, stats_size)) 1205 return -EFAULT; 1206 if (put_user(stats_size, optlen)) 1207 return -EFAULT; 1208 1209 return 0; 1210 } 1211 case XDP_MMAP_OFFSETS: 1212 { 1213 struct xdp_mmap_offsets off; 1214 struct xdp_mmap_offsets_v1 off_v1; 1215 bool flags_supported = true; 1216 void *to_copy; 1217 1218 if (len < sizeof(off_v1)) 1219 return -EINVAL; 1220 else if (len < sizeof(off)) 1221 flags_supported = false; 1222 1223 if (flags_supported) { 1224 /* xdp_ring_offset is identical to xdp_ring_offset_v1 1225 * except for the flags field added to the end. 1226 */ 1227 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) 1228 &off.rx); 1229 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) 1230 &off.tx); 1231 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) 1232 &off.fr); 1233 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) 1234 &off.cr); 1235 off.rx.flags = offsetof(struct xdp_rxtx_ring, 1236 ptrs.flags); 1237 off.tx.flags = offsetof(struct xdp_rxtx_ring, 1238 ptrs.flags); 1239 off.fr.flags = offsetof(struct xdp_umem_ring, 1240 ptrs.flags); 1241 off.cr.flags = offsetof(struct xdp_umem_ring, 1242 ptrs.flags); 1243 1244 len = sizeof(off); 1245 to_copy = &off; 1246 } else { 1247 xsk_enter_rxtx_offsets(&off_v1.rx); 1248 xsk_enter_rxtx_offsets(&off_v1.tx); 1249 xsk_enter_umem_offsets(&off_v1.fr); 1250 xsk_enter_umem_offsets(&off_v1.cr); 1251 1252 len = sizeof(off_v1); 1253 to_copy = &off_v1; 1254 } 1255 1256 if (copy_to_user(optval, to_copy, len)) 1257 return -EFAULT; 1258 if (put_user(len, optlen)) 1259 return -EFAULT; 1260 1261 return 0; 1262 } 1263 case XDP_OPTIONS: 1264 { 1265 struct xdp_options opts = {}; 1266 1267 if (len < sizeof(opts)) 1268 return -EINVAL; 1269 1270 mutex_lock(&xs->mutex); 1271 if (xs->zc) 1272 opts.flags |= XDP_OPTIONS_ZEROCOPY; 1273 mutex_unlock(&xs->mutex); 1274 1275 len = sizeof(opts); 1276 if (copy_to_user(optval, &opts, len)) 1277 return -EFAULT; 1278 if (put_user(len, optlen)) 1279 return -EFAULT; 1280 1281 return 0; 1282 } 1283 default: 1284 break; 1285 } 1286 1287 return -EOPNOTSUPP; 1288 } 1289 1290 static int xsk_mmap(struct file *file, struct socket *sock, 1291 struct vm_area_struct *vma) 1292 { 1293 loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1294 unsigned long size = vma->vm_end - vma->vm_start; 1295 struct xdp_sock *xs = xdp_sk(sock->sk); 1296 struct xsk_queue *q = NULL; 1297 unsigned long pfn; 1298 struct page *qpg; 1299 1300 if (READ_ONCE(xs->state) != XSK_READY) 1301 return -EBUSY; 1302 1303 if (offset == XDP_PGOFF_RX_RING) { 1304 q = READ_ONCE(xs->rx); 1305 } else if (offset == XDP_PGOFF_TX_RING) { 1306 q = READ_ONCE(xs->tx); 1307 } else { 1308 /* Matches the smp_wmb() in XDP_UMEM_REG */ 1309 smp_rmb(); 1310 if (offset == XDP_UMEM_PGOFF_FILL_RING) 1311 q = READ_ONCE(xs->fq_tmp); 1312 else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING) 1313 q = READ_ONCE(xs->cq_tmp); 1314 } 1315 1316 if (!q) 1317 return -EINVAL; 1318 1319 /* Matches the smp_wmb() in xsk_init_queue */ 1320 smp_rmb(); 1321 qpg = virt_to_head_page(q->ring); 1322 if (size > page_size(qpg)) 1323 return -EINVAL; 1324 1325 pfn = virt_to_phys(q->ring) >> PAGE_SHIFT; 1326 return remap_pfn_range(vma, vma->vm_start, pfn, 1327 size, vma->vm_page_prot); 1328 } 1329 1330 static int xsk_notifier(struct notifier_block *this, 1331 unsigned long msg, void *ptr) 1332 { 1333 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1334 struct net *net = dev_net(dev); 1335 struct sock *sk; 1336 1337 switch (msg) { 1338 case NETDEV_UNREGISTER: 1339 mutex_lock(&net->xdp.lock); 1340 sk_for_each(sk, &net->xdp.list) { 1341 struct xdp_sock *xs = xdp_sk(sk); 1342 1343 mutex_lock(&xs->mutex); 1344 if (xs->dev == dev) { 1345 sk->sk_err = ENETDOWN; 1346 if (!sock_flag(sk, SOCK_DEAD)) 1347 sk_error_report(sk); 1348 1349 xsk_unbind_dev(xs); 1350 1351 /* Clear device references. */ 1352 xp_clear_dev(xs->pool); 1353 } 1354 mutex_unlock(&xs->mutex); 1355 } 1356 mutex_unlock(&net->xdp.lock); 1357 break; 1358 } 1359 return NOTIFY_DONE; 1360 } 1361 1362 static struct proto xsk_proto = { 1363 .name = "XDP", 1364 .owner = THIS_MODULE, 1365 .obj_size = sizeof(struct xdp_sock), 1366 }; 1367 1368 static const struct proto_ops xsk_proto_ops = { 1369 .family = PF_XDP, 1370 .owner = THIS_MODULE, 1371 .release = xsk_release, 1372 .bind = xsk_bind, 1373 .connect = sock_no_connect, 1374 .socketpair = sock_no_socketpair, 1375 .accept = sock_no_accept, 1376 .getname = sock_no_getname, 1377 .poll = xsk_poll, 1378 .ioctl = sock_no_ioctl, 1379 .listen = sock_no_listen, 1380 .shutdown = sock_no_shutdown, 1381 .setsockopt = xsk_setsockopt, 1382 .getsockopt = xsk_getsockopt, 1383 .sendmsg = xsk_sendmsg, 1384 .recvmsg = xsk_recvmsg, 1385 .mmap = xsk_mmap, 1386 .sendpage = sock_no_sendpage, 1387 }; 1388 1389 static void xsk_destruct(struct sock *sk) 1390 { 1391 struct xdp_sock *xs = xdp_sk(sk); 1392 1393 if (!sock_flag(sk, SOCK_DEAD)) 1394 return; 1395 1396 if (!xp_put_pool(xs->pool)) 1397 xdp_put_umem(xs->umem, !xs->pool); 1398 } 1399 1400 static int xsk_create(struct net *net, struct socket *sock, int protocol, 1401 int kern) 1402 { 1403 struct xdp_sock *xs; 1404 struct sock *sk; 1405 1406 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 1407 return -EPERM; 1408 if (sock->type != SOCK_RAW) 1409 return -ESOCKTNOSUPPORT; 1410 1411 if (protocol) 1412 return -EPROTONOSUPPORT; 1413 1414 sock->state = SS_UNCONNECTED; 1415 1416 sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern); 1417 if (!sk) 1418 return -ENOBUFS; 1419 1420 sock->ops = &xsk_proto_ops; 1421 1422 sock_init_data(sock, sk); 1423 1424 sk->sk_family = PF_XDP; 1425 1426 sk->sk_destruct = xsk_destruct; 1427 1428 sock_set_flag(sk, SOCK_RCU_FREE); 1429 1430 xs = xdp_sk(sk); 1431 xs->state = XSK_READY; 1432 mutex_init(&xs->mutex); 1433 spin_lock_init(&xs->rx_lock); 1434 1435 INIT_LIST_HEAD(&xs->map_list); 1436 spin_lock_init(&xs->map_list_lock); 1437 1438 mutex_lock(&net->xdp.lock); 1439 sk_add_node_rcu(sk, &net->xdp.list); 1440 mutex_unlock(&net->xdp.lock); 1441 1442 sock_prot_inuse_add(net, &xsk_proto, 1); 1443 1444 return 0; 1445 } 1446 1447 static const struct net_proto_family xsk_family_ops = { 1448 .family = PF_XDP, 1449 .create = xsk_create, 1450 .owner = THIS_MODULE, 1451 }; 1452 1453 static struct notifier_block xsk_netdev_notifier = { 1454 .notifier_call = xsk_notifier, 1455 }; 1456 1457 static int __net_init xsk_net_init(struct net *net) 1458 { 1459 mutex_init(&net->xdp.lock); 1460 INIT_HLIST_HEAD(&net->xdp.list); 1461 return 0; 1462 } 1463 1464 static void __net_exit xsk_net_exit(struct net *net) 1465 { 1466 WARN_ON_ONCE(!hlist_empty(&net->xdp.list)); 1467 } 1468 1469 static struct pernet_operations xsk_net_ops = { 1470 .init = xsk_net_init, 1471 .exit = xsk_net_exit, 1472 }; 1473 1474 static int __init xsk_init(void) 1475 { 1476 int err, cpu; 1477 1478 err = proto_register(&xsk_proto, 0 /* no slab */); 1479 if (err) 1480 goto out; 1481 1482 err = sock_register(&xsk_family_ops); 1483 if (err) 1484 goto out_proto; 1485 1486 err = register_pernet_subsys(&xsk_net_ops); 1487 if (err) 1488 goto out_sk; 1489 1490 err = register_netdevice_notifier(&xsk_netdev_notifier); 1491 if (err) 1492 goto out_pernet; 1493 1494 for_each_possible_cpu(cpu) 1495 INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu)); 1496 return 0; 1497 1498 out_pernet: 1499 unregister_pernet_subsys(&xsk_net_ops); 1500 out_sk: 1501 sock_unregister(PF_XDP); 1502 out_proto: 1503 proto_unregister(&xsk_proto); 1504 out: 1505 return err; 1506 } 1507 1508 fs_initcall(xsk_init); 1509