xref: /openbmc/linux/net/xdp/xsk.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3  *
4  * AF_XDP sockets allows a channel between XDP programs and userspace
5  * applications.
6  * Copyright(c) 2018 Intel Corporation.
7  *
8  * Author(s): Björn Töpel <bjorn.topel@intel.com>
9  *	      Magnus Karlsson <magnus.karlsson@intel.com>
10  */
11 
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13 
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock_drv.h>
26 #include <net/xdp.h>
27 
28 #include "xsk_queue.h"
29 #include "xdp_umem.h"
30 #include "xsk.h"
31 
32 #define TX_BATCH_SIZE 16
33 
34 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
35 
36 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
37 {
38 	return READ_ONCE(xs->rx) &&  READ_ONCE(xs->umem) &&
39 		READ_ONCE(xs->umem->fq);
40 }
41 
42 void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
43 {
44 	if (umem->need_wakeup & XDP_WAKEUP_RX)
45 		return;
46 
47 	umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
48 	umem->need_wakeup |= XDP_WAKEUP_RX;
49 }
50 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
51 
52 void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
53 {
54 	struct xdp_sock *xs;
55 
56 	if (umem->need_wakeup & XDP_WAKEUP_TX)
57 		return;
58 
59 	rcu_read_lock();
60 	list_for_each_entry_rcu(xs, &umem->xsk_tx_list, list) {
61 		xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
62 	}
63 	rcu_read_unlock();
64 
65 	umem->need_wakeup |= XDP_WAKEUP_TX;
66 }
67 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
68 
69 void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
70 {
71 	if (!(umem->need_wakeup & XDP_WAKEUP_RX))
72 		return;
73 
74 	umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
75 	umem->need_wakeup &= ~XDP_WAKEUP_RX;
76 }
77 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
78 
79 void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
80 {
81 	struct xdp_sock *xs;
82 
83 	if (!(umem->need_wakeup & XDP_WAKEUP_TX))
84 		return;
85 
86 	rcu_read_lock();
87 	list_for_each_entry_rcu(xs, &umem->xsk_tx_list, list) {
88 		xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
89 	}
90 	rcu_read_unlock();
91 
92 	umem->need_wakeup &= ~XDP_WAKEUP_TX;
93 }
94 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
95 
96 bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
97 {
98 	return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
99 }
100 EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
101 
102 void xp_release(struct xdp_buff_xsk *xskb)
103 {
104 	xskb->pool->free_heads[xskb->pool->free_heads_cnt++] = xskb;
105 }
106 
107 static u64 xp_get_handle(struct xdp_buff_xsk *xskb)
108 {
109 	u64 offset = xskb->xdp.data - xskb->xdp.data_hard_start;
110 
111 	offset += xskb->pool->headroom;
112 	if (!xskb->pool->unaligned)
113 		return xskb->orig_addr + offset;
114 	return xskb->orig_addr + (offset << XSK_UNALIGNED_BUF_OFFSET_SHIFT);
115 }
116 
117 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
118 {
119 	struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
120 	u64 addr;
121 	int err;
122 
123 	addr = xp_get_handle(xskb);
124 	err = xskq_prod_reserve_desc(xs->rx, addr, len);
125 	if (err) {
126 		xs->rx_dropped++;
127 		return err;
128 	}
129 
130 	xp_release(xskb);
131 	return 0;
132 }
133 
134 static void xsk_copy_xdp(struct xdp_buff *to, struct xdp_buff *from, u32 len)
135 {
136 	void *from_buf, *to_buf;
137 	u32 metalen;
138 
139 	if (unlikely(xdp_data_meta_unsupported(from))) {
140 		from_buf = from->data;
141 		to_buf = to->data;
142 		metalen = 0;
143 	} else {
144 		from_buf = from->data_meta;
145 		metalen = from->data - from->data_meta;
146 		to_buf = to->data - metalen;
147 	}
148 
149 	memcpy(to_buf, from_buf, len + metalen);
150 }
151 
152 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len,
153 		     bool explicit_free)
154 {
155 	struct xdp_buff *xsk_xdp;
156 	int err;
157 
158 	if (len > xsk_umem_get_rx_frame_size(xs->umem)) {
159 		xs->rx_dropped++;
160 		return -ENOSPC;
161 	}
162 
163 	xsk_xdp = xsk_buff_alloc(xs->umem);
164 	if (!xsk_xdp) {
165 		xs->rx_dropped++;
166 		return -ENOSPC;
167 	}
168 
169 	xsk_copy_xdp(xsk_xdp, xdp, len);
170 	err = __xsk_rcv_zc(xs, xsk_xdp, len);
171 	if (err) {
172 		xsk_buff_free(xsk_xdp);
173 		return err;
174 	}
175 	if (explicit_free)
176 		xdp_return_buff(xdp);
177 	return 0;
178 }
179 
180 static bool xsk_is_bound(struct xdp_sock *xs)
181 {
182 	if (READ_ONCE(xs->state) == XSK_BOUND) {
183 		/* Matches smp_wmb() in bind(). */
184 		smp_rmb();
185 		return true;
186 	}
187 	return false;
188 }
189 
190 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp,
191 		   bool explicit_free)
192 {
193 	u32 len;
194 
195 	if (!xsk_is_bound(xs))
196 		return -EINVAL;
197 
198 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
199 		return -EINVAL;
200 
201 	len = xdp->data_end - xdp->data;
202 
203 	return xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL ?
204 		__xsk_rcv_zc(xs, xdp, len) :
205 		__xsk_rcv(xs, xdp, len, explicit_free);
206 }
207 
208 static void xsk_flush(struct xdp_sock *xs)
209 {
210 	xskq_prod_submit(xs->rx);
211 	__xskq_cons_release(xs->umem->fq);
212 	sock_def_readable(&xs->sk);
213 }
214 
215 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
216 {
217 	int err;
218 
219 	spin_lock_bh(&xs->rx_lock);
220 	err = xsk_rcv(xs, xdp, false);
221 	xsk_flush(xs);
222 	spin_unlock_bh(&xs->rx_lock);
223 	return err;
224 }
225 
226 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
227 {
228 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
229 	int err;
230 
231 	err = xsk_rcv(xs, xdp, true);
232 	if (err)
233 		return err;
234 
235 	if (!xs->flush_node.prev)
236 		list_add(&xs->flush_node, flush_list);
237 
238 	return 0;
239 }
240 
241 void __xsk_map_flush(void)
242 {
243 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
244 	struct xdp_sock *xs, *tmp;
245 
246 	list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
247 		xsk_flush(xs);
248 		__list_del_clearprev(&xs->flush_node);
249 	}
250 }
251 
252 void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
253 {
254 	xskq_prod_submit_n(umem->cq, nb_entries);
255 }
256 EXPORT_SYMBOL(xsk_umem_complete_tx);
257 
258 void xsk_umem_consume_tx_done(struct xdp_umem *umem)
259 {
260 	struct xdp_sock *xs;
261 
262 	rcu_read_lock();
263 	list_for_each_entry_rcu(xs, &umem->xsk_tx_list, list) {
264 		__xskq_cons_release(xs->tx);
265 		xs->sk.sk_write_space(&xs->sk);
266 	}
267 	rcu_read_unlock();
268 }
269 EXPORT_SYMBOL(xsk_umem_consume_tx_done);
270 
271 bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
272 {
273 	struct xdp_sock *xs;
274 
275 	rcu_read_lock();
276 	list_for_each_entry_rcu(xs, &umem->xsk_tx_list, list) {
277 		if (!xskq_cons_peek_desc(xs->tx, desc, umem))
278 			continue;
279 
280 		/* This is the backpressure mechanism for the Tx path.
281 		 * Reserve space in the completion queue and only proceed
282 		 * if there is space in it. This avoids having to implement
283 		 * any buffering in the Tx path.
284 		 */
285 		if (xskq_prod_reserve_addr(umem->cq, desc->addr))
286 			goto out;
287 
288 		xskq_cons_release(xs->tx);
289 		rcu_read_unlock();
290 		return true;
291 	}
292 
293 out:
294 	rcu_read_unlock();
295 	return false;
296 }
297 EXPORT_SYMBOL(xsk_umem_consume_tx);
298 
299 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
300 {
301 	struct net_device *dev = xs->dev;
302 	int err;
303 
304 	rcu_read_lock();
305 	err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
306 	rcu_read_unlock();
307 
308 	return err;
309 }
310 
311 static int xsk_zc_xmit(struct xdp_sock *xs)
312 {
313 	return xsk_wakeup(xs, XDP_WAKEUP_TX);
314 }
315 
316 static void xsk_destruct_skb(struct sk_buff *skb)
317 {
318 	u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
319 	struct xdp_sock *xs = xdp_sk(skb->sk);
320 	unsigned long flags;
321 
322 	spin_lock_irqsave(&xs->tx_completion_lock, flags);
323 	xskq_prod_submit_addr(xs->umem->cq, addr);
324 	spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
325 
326 	sock_wfree(skb);
327 }
328 
329 static int xsk_generic_xmit(struct sock *sk)
330 {
331 	struct xdp_sock *xs = xdp_sk(sk);
332 	u32 max_batch = TX_BATCH_SIZE;
333 	bool sent_frame = false;
334 	struct xdp_desc desc;
335 	struct sk_buff *skb;
336 	int err = 0;
337 
338 	mutex_lock(&xs->mutex);
339 
340 	if (xs->queue_id >= xs->dev->real_num_tx_queues)
341 		goto out;
342 
343 	while (xskq_cons_peek_desc(xs->tx, &desc, xs->umem)) {
344 		char *buffer;
345 		u64 addr;
346 		u32 len;
347 
348 		if (max_batch-- == 0) {
349 			err = -EAGAIN;
350 			goto out;
351 		}
352 
353 		len = desc.len;
354 		skb = sock_alloc_send_skb(sk, len, 1, &err);
355 		if (unlikely(!skb)) {
356 			err = -EAGAIN;
357 			goto out;
358 		}
359 
360 		skb_put(skb, len);
361 		addr = desc.addr;
362 		buffer = xsk_buff_raw_get_data(xs->umem, addr);
363 		err = skb_store_bits(skb, 0, buffer, len);
364 		/* This is the backpressure mechanism for the Tx path.
365 		 * Reserve space in the completion queue and only proceed
366 		 * if there is space in it. This avoids having to implement
367 		 * any buffering in the Tx path.
368 		 */
369 		if (unlikely(err) || xskq_prod_reserve(xs->umem->cq)) {
370 			kfree_skb(skb);
371 			goto out;
372 		}
373 
374 		skb->dev = xs->dev;
375 		skb->priority = sk->sk_priority;
376 		skb->mark = sk->sk_mark;
377 		skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
378 		skb->destructor = xsk_destruct_skb;
379 
380 		err = dev_direct_xmit(skb, xs->queue_id);
381 		xskq_cons_release(xs->tx);
382 		/* Ignore NET_XMIT_CN as packet might have been sent */
383 		if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
384 			/* SKB completed but not sent */
385 			err = -EBUSY;
386 			goto out;
387 		}
388 
389 		sent_frame = true;
390 	}
391 
392 out:
393 	if (sent_frame)
394 		sk->sk_write_space(sk);
395 
396 	mutex_unlock(&xs->mutex);
397 	return err;
398 }
399 
400 static int __xsk_sendmsg(struct sock *sk)
401 {
402 	struct xdp_sock *xs = xdp_sk(sk);
403 
404 	if (unlikely(!(xs->dev->flags & IFF_UP)))
405 		return -ENETDOWN;
406 	if (unlikely(!xs->tx))
407 		return -ENOBUFS;
408 
409 	return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
410 }
411 
412 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
413 {
414 	bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
415 	struct sock *sk = sock->sk;
416 	struct xdp_sock *xs = xdp_sk(sk);
417 
418 	if (unlikely(!xsk_is_bound(xs)))
419 		return -ENXIO;
420 	if (unlikely(need_wait))
421 		return -EOPNOTSUPP;
422 
423 	return __xsk_sendmsg(sk);
424 }
425 
426 static __poll_t xsk_poll(struct file *file, struct socket *sock,
427 			     struct poll_table_struct *wait)
428 {
429 	__poll_t mask = datagram_poll(file, sock, wait);
430 	struct sock *sk = sock->sk;
431 	struct xdp_sock *xs = xdp_sk(sk);
432 	struct xdp_umem *umem;
433 
434 	if (unlikely(!xsk_is_bound(xs)))
435 		return mask;
436 
437 	umem = xs->umem;
438 
439 	if (umem->need_wakeup) {
440 		if (xs->zc)
441 			xsk_wakeup(xs, umem->need_wakeup);
442 		else
443 			/* Poll needs to drive Tx also in copy mode */
444 			__xsk_sendmsg(sk);
445 	}
446 
447 	if (xs->rx && !xskq_prod_is_empty(xs->rx))
448 		mask |= EPOLLIN | EPOLLRDNORM;
449 	if (xs->tx && !xskq_cons_is_full(xs->tx))
450 		mask |= EPOLLOUT | EPOLLWRNORM;
451 
452 	return mask;
453 }
454 
455 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
456 			  bool umem_queue)
457 {
458 	struct xsk_queue *q;
459 
460 	if (entries == 0 || *queue || !is_power_of_2(entries))
461 		return -EINVAL;
462 
463 	q = xskq_create(entries, umem_queue);
464 	if (!q)
465 		return -ENOMEM;
466 
467 	/* Make sure queue is ready before it can be seen by others */
468 	smp_wmb();
469 	WRITE_ONCE(*queue, q);
470 	return 0;
471 }
472 
473 static void xsk_unbind_dev(struct xdp_sock *xs)
474 {
475 	struct net_device *dev = xs->dev;
476 
477 	if (xs->state != XSK_BOUND)
478 		return;
479 	WRITE_ONCE(xs->state, XSK_UNBOUND);
480 
481 	/* Wait for driver to stop using the xdp socket. */
482 	xdp_del_sk_umem(xs->umem, xs);
483 	xs->dev = NULL;
484 	synchronize_net();
485 	dev_put(dev);
486 }
487 
488 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
489 					      struct xdp_sock ***map_entry)
490 {
491 	struct xsk_map *map = NULL;
492 	struct xsk_map_node *node;
493 
494 	*map_entry = NULL;
495 
496 	spin_lock_bh(&xs->map_list_lock);
497 	node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
498 					node);
499 	if (node) {
500 		WARN_ON(xsk_map_inc(node->map));
501 		map = node->map;
502 		*map_entry = node->map_entry;
503 	}
504 	spin_unlock_bh(&xs->map_list_lock);
505 	return map;
506 }
507 
508 static void xsk_delete_from_maps(struct xdp_sock *xs)
509 {
510 	/* This function removes the current XDP socket from all the
511 	 * maps it resides in. We need to take extra care here, due to
512 	 * the two locks involved. Each map has a lock synchronizing
513 	 * updates to the entries, and each socket has a lock that
514 	 * synchronizes access to the list of maps (map_list). For
515 	 * deadlock avoidance the locks need to be taken in the order
516 	 * "map lock"->"socket map list lock". We start off by
517 	 * accessing the socket map list, and take a reference to the
518 	 * map to guarantee existence between the
519 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
520 	 * calls. Then we ask the map to remove the socket, which
521 	 * tries to remove the socket from the map. Note that there
522 	 * might be updates to the map between
523 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
524 	 */
525 	struct xdp_sock **map_entry = NULL;
526 	struct xsk_map *map;
527 
528 	while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
529 		xsk_map_try_sock_delete(map, xs, map_entry);
530 		xsk_map_put(map);
531 	}
532 }
533 
534 static int xsk_release(struct socket *sock)
535 {
536 	struct sock *sk = sock->sk;
537 	struct xdp_sock *xs = xdp_sk(sk);
538 	struct net *net;
539 
540 	if (!sk)
541 		return 0;
542 
543 	net = sock_net(sk);
544 
545 	mutex_lock(&net->xdp.lock);
546 	sk_del_node_init_rcu(sk);
547 	mutex_unlock(&net->xdp.lock);
548 
549 	local_bh_disable();
550 	sock_prot_inuse_add(net, sk->sk_prot, -1);
551 	local_bh_enable();
552 
553 	xsk_delete_from_maps(xs);
554 	mutex_lock(&xs->mutex);
555 	xsk_unbind_dev(xs);
556 	mutex_unlock(&xs->mutex);
557 
558 	xskq_destroy(xs->rx);
559 	xskq_destroy(xs->tx);
560 
561 	sock_orphan(sk);
562 	sock->sk = NULL;
563 
564 	sk_refcnt_debug_release(sk);
565 	sock_put(sk);
566 
567 	return 0;
568 }
569 
570 static struct socket *xsk_lookup_xsk_from_fd(int fd)
571 {
572 	struct socket *sock;
573 	int err;
574 
575 	sock = sockfd_lookup(fd, &err);
576 	if (!sock)
577 		return ERR_PTR(-ENOTSOCK);
578 
579 	if (sock->sk->sk_family != PF_XDP) {
580 		sockfd_put(sock);
581 		return ERR_PTR(-ENOPROTOOPT);
582 	}
583 
584 	return sock;
585 }
586 
587 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
588 {
589 	struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
590 	struct sock *sk = sock->sk;
591 	struct xdp_sock *xs = xdp_sk(sk);
592 	struct net_device *dev;
593 	u32 flags, qid;
594 	int err = 0;
595 
596 	if (addr_len < sizeof(struct sockaddr_xdp))
597 		return -EINVAL;
598 	if (sxdp->sxdp_family != AF_XDP)
599 		return -EINVAL;
600 
601 	flags = sxdp->sxdp_flags;
602 	if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
603 		      XDP_USE_NEED_WAKEUP))
604 		return -EINVAL;
605 
606 	rtnl_lock();
607 	mutex_lock(&xs->mutex);
608 	if (xs->state != XSK_READY) {
609 		err = -EBUSY;
610 		goto out_release;
611 	}
612 
613 	dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
614 	if (!dev) {
615 		err = -ENODEV;
616 		goto out_release;
617 	}
618 
619 	if (!xs->rx && !xs->tx) {
620 		err = -EINVAL;
621 		goto out_unlock;
622 	}
623 
624 	qid = sxdp->sxdp_queue_id;
625 
626 	if (flags & XDP_SHARED_UMEM) {
627 		struct xdp_sock *umem_xs;
628 		struct socket *sock;
629 
630 		if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
631 		    (flags & XDP_USE_NEED_WAKEUP)) {
632 			/* Cannot specify flags for shared sockets. */
633 			err = -EINVAL;
634 			goto out_unlock;
635 		}
636 
637 		if (xs->umem) {
638 			/* We have already our own. */
639 			err = -EINVAL;
640 			goto out_unlock;
641 		}
642 
643 		sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
644 		if (IS_ERR(sock)) {
645 			err = PTR_ERR(sock);
646 			goto out_unlock;
647 		}
648 
649 		umem_xs = xdp_sk(sock->sk);
650 		if (!xsk_is_bound(umem_xs)) {
651 			err = -EBADF;
652 			sockfd_put(sock);
653 			goto out_unlock;
654 		}
655 		if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
656 			err = -EINVAL;
657 			sockfd_put(sock);
658 			goto out_unlock;
659 		}
660 
661 		xdp_get_umem(umem_xs->umem);
662 		WRITE_ONCE(xs->umem, umem_xs->umem);
663 		sockfd_put(sock);
664 	} else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
665 		err = -EINVAL;
666 		goto out_unlock;
667 	} else {
668 		/* This xsk has its own umem. */
669 		err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
670 		if (err)
671 			goto out_unlock;
672 	}
673 
674 	xs->dev = dev;
675 	xs->zc = xs->umem->zc;
676 	xs->queue_id = qid;
677 	xdp_add_sk_umem(xs->umem, xs);
678 
679 out_unlock:
680 	if (err) {
681 		dev_put(dev);
682 	} else {
683 		/* Matches smp_rmb() in bind() for shared umem
684 		 * sockets, and xsk_is_bound().
685 		 */
686 		smp_wmb();
687 		WRITE_ONCE(xs->state, XSK_BOUND);
688 	}
689 out_release:
690 	mutex_unlock(&xs->mutex);
691 	rtnl_unlock();
692 	return err;
693 }
694 
695 struct xdp_umem_reg_v1 {
696 	__u64 addr; /* Start of packet data area */
697 	__u64 len; /* Length of packet data area */
698 	__u32 chunk_size;
699 	__u32 headroom;
700 };
701 
702 static int xsk_setsockopt(struct socket *sock, int level, int optname,
703 			  char __user *optval, unsigned int optlen)
704 {
705 	struct sock *sk = sock->sk;
706 	struct xdp_sock *xs = xdp_sk(sk);
707 	int err;
708 
709 	if (level != SOL_XDP)
710 		return -ENOPROTOOPT;
711 
712 	switch (optname) {
713 	case XDP_RX_RING:
714 	case XDP_TX_RING:
715 	{
716 		struct xsk_queue **q;
717 		int entries;
718 
719 		if (optlen < sizeof(entries))
720 			return -EINVAL;
721 		if (copy_from_user(&entries, optval, sizeof(entries)))
722 			return -EFAULT;
723 
724 		mutex_lock(&xs->mutex);
725 		if (xs->state != XSK_READY) {
726 			mutex_unlock(&xs->mutex);
727 			return -EBUSY;
728 		}
729 		q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
730 		err = xsk_init_queue(entries, q, false);
731 		if (!err && optname == XDP_TX_RING)
732 			/* Tx needs to be explicitly woken up the first time */
733 			xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
734 		mutex_unlock(&xs->mutex);
735 		return err;
736 	}
737 	case XDP_UMEM_REG:
738 	{
739 		size_t mr_size = sizeof(struct xdp_umem_reg);
740 		struct xdp_umem_reg mr = {};
741 		struct xdp_umem *umem;
742 
743 		if (optlen < sizeof(struct xdp_umem_reg_v1))
744 			return -EINVAL;
745 		else if (optlen < sizeof(mr))
746 			mr_size = sizeof(struct xdp_umem_reg_v1);
747 
748 		if (copy_from_user(&mr, optval, mr_size))
749 			return -EFAULT;
750 
751 		mutex_lock(&xs->mutex);
752 		if (xs->state != XSK_READY || xs->umem) {
753 			mutex_unlock(&xs->mutex);
754 			return -EBUSY;
755 		}
756 
757 		umem = xdp_umem_create(&mr);
758 		if (IS_ERR(umem)) {
759 			mutex_unlock(&xs->mutex);
760 			return PTR_ERR(umem);
761 		}
762 
763 		/* Make sure umem is ready before it can be seen by others */
764 		smp_wmb();
765 		WRITE_ONCE(xs->umem, umem);
766 		mutex_unlock(&xs->mutex);
767 		return 0;
768 	}
769 	case XDP_UMEM_FILL_RING:
770 	case XDP_UMEM_COMPLETION_RING:
771 	{
772 		struct xsk_queue **q;
773 		int entries;
774 
775 		if (copy_from_user(&entries, optval, sizeof(entries)))
776 			return -EFAULT;
777 
778 		mutex_lock(&xs->mutex);
779 		if (xs->state != XSK_READY) {
780 			mutex_unlock(&xs->mutex);
781 			return -EBUSY;
782 		}
783 		if (!xs->umem) {
784 			mutex_unlock(&xs->mutex);
785 			return -EINVAL;
786 		}
787 
788 		q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
789 			&xs->umem->cq;
790 		err = xsk_init_queue(entries, q, true);
791 		if (optname == XDP_UMEM_FILL_RING)
792 			xp_set_fq(xs->umem->pool, *q);
793 		mutex_unlock(&xs->mutex);
794 		return err;
795 	}
796 	default:
797 		break;
798 	}
799 
800 	return -ENOPROTOOPT;
801 }
802 
803 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
804 {
805 	ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
806 	ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
807 	ring->desc = offsetof(struct xdp_rxtx_ring, desc);
808 }
809 
810 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
811 {
812 	ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
813 	ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
814 	ring->desc = offsetof(struct xdp_umem_ring, desc);
815 }
816 
817 static int xsk_getsockopt(struct socket *sock, int level, int optname,
818 			  char __user *optval, int __user *optlen)
819 {
820 	struct sock *sk = sock->sk;
821 	struct xdp_sock *xs = xdp_sk(sk);
822 	int len;
823 
824 	if (level != SOL_XDP)
825 		return -ENOPROTOOPT;
826 
827 	if (get_user(len, optlen))
828 		return -EFAULT;
829 	if (len < 0)
830 		return -EINVAL;
831 
832 	switch (optname) {
833 	case XDP_STATISTICS:
834 	{
835 		struct xdp_statistics stats;
836 
837 		if (len < sizeof(stats))
838 			return -EINVAL;
839 
840 		mutex_lock(&xs->mutex);
841 		stats.rx_dropped = xs->rx_dropped;
842 		stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
843 		stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
844 		mutex_unlock(&xs->mutex);
845 
846 		if (copy_to_user(optval, &stats, sizeof(stats)))
847 			return -EFAULT;
848 		if (put_user(sizeof(stats), optlen))
849 			return -EFAULT;
850 
851 		return 0;
852 	}
853 	case XDP_MMAP_OFFSETS:
854 	{
855 		struct xdp_mmap_offsets off;
856 		struct xdp_mmap_offsets_v1 off_v1;
857 		bool flags_supported = true;
858 		void *to_copy;
859 
860 		if (len < sizeof(off_v1))
861 			return -EINVAL;
862 		else if (len < sizeof(off))
863 			flags_supported = false;
864 
865 		if (flags_supported) {
866 			/* xdp_ring_offset is identical to xdp_ring_offset_v1
867 			 * except for the flags field added to the end.
868 			 */
869 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
870 					       &off.rx);
871 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
872 					       &off.tx);
873 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
874 					       &off.fr);
875 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
876 					       &off.cr);
877 			off.rx.flags = offsetof(struct xdp_rxtx_ring,
878 						ptrs.flags);
879 			off.tx.flags = offsetof(struct xdp_rxtx_ring,
880 						ptrs.flags);
881 			off.fr.flags = offsetof(struct xdp_umem_ring,
882 						ptrs.flags);
883 			off.cr.flags = offsetof(struct xdp_umem_ring,
884 						ptrs.flags);
885 
886 			len = sizeof(off);
887 			to_copy = &off;
888 		} else {
889 			xsk_enter_rxtx_offsets(&off_v1.rx);
890 			xsk_enter_rxtx_offsets(&off_v1.tx);
891 			xsk_enter_umem_offsets(&off_v1.fr);
892 			xsk_enter_umem_offsets(&off_v1.cr);
893 
894 			len = sizeof(off_v1);
895 			to_copy = &off_v1;
896 		}
897 
898 		if (copy_to_user(optval, to_copy, len))
899 			return -EFAULT;
900 		if (put_user(len, optlen))
901 			return -EFAULT;
902 
903 		return 0;
904 	}
905 	case XDP_OPTIONS:
906 	{
907 		struct xdp_options opts = {};
908 
909 		if (len < sizeof(opts))
910 			return -EINVAL;
911 
912 		mutex_lock(&xs->mutex);
913 		if (xs->zc)
914 			opts.flags |= XDP_OPTIONS_ZEROCOPY;
915 		mutex_unlock(&xs->mutex);
916 
917 		len = sizeof(opts);
918 		if (copy_to_user(optval, &opts, len))
919 			return -EFAULT;
920 		if (put_user(len, optlen))
921 			return -EFAULT;
922 
923 		return 0;
924 	}
925 	default:
926 		break;
927 	}
928 
929 	return -EOPNOTSUPP;
930 }
931 
932 static int xsk_mmap(struct file *file, struct socket *sock,
933 		    struct vm_area_struct *vma)
934 {
935 	loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
936 	unsigned long size = vma->vm_end - vma->vm_start;
937 	struct xdp_sock *xs = xdp_sk(sock->sk);
938 	struct xsk_queue *q = NULL;
939 	struct xdp_umem *umem;
940 	unsigned long pfn;
941 	struct page *qpg;
942 
943 	if (READ_ONCE(xs->state) != XSK_READY)
944 		return -EBUSY;
945 
946 	if (offset == XDP_PGOFF_RX_RING) {
947 		q = READ_ONCE(xs->rx);
948 	} else if (offset == XDP_PGOFF_TX_RING) {
949 		q = READ_ONCE(xs->tx);
950 	} else {
951 		umem = READ_ONCE(xs->umem);
952 		if (!umem)
953 			return -EINVAL;
954 
955 		/* Matches the smp_wmb() in XDP_UMEM_REG */
956 		smp_rmb();
957 		if (offset == XDP_UMEM_PGOFF_FILL_RING)
958 			q = READ_ONCE(umem->fq);
959 		else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
960 			q = READ_ONCE(umem->cq);
961 	}
962 
963 	if (!q)
964 		return -EINVAL;
965 
966 	/* Matches the smp_wmb() in xsk_init_queue */
967 	smp_rmb();
968 	qpg = virt_to_head_page(q->ring);
969 	if (size > page_size(qpg))
970 		return -EINVAL;
971 
972 	pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
973 	return remap_pfn_range(vma, vma->vm_start, pfn,
974 			       size, vma->vm_page_prot);
975 }
976 
977 static int xsk_notifier(struct notifier_block *this,
978 			unsigned long msg, void *ptr)
979 {
980 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
981 	struct net *net = dev_net(dev);
982 	struct sock *sk;
983 
984 	switch (msg) {
985 	case NETDEV_UNREGISTER:
986 		mutex_lock(&net->xdp.lock);
987 		sk_for_each(sk, &net->xdp.list) {
988 			struct xdp_sock *xs = xdp_sk(sk);
989 
990 			mutex_lock(&xs->mutex);
991 			if (xs->dev == dev) {
992 				sk->sk_err = ENETDOWN;
993 				if (!sock_flag(sk, SOCK_DEAD))
994 					sk->sk_error_report(sk);
995 
996 				xsk_unbind_dev(xs);
997 
998 				/* Clear device references in umem. */
999 				xdp_umem_clear_dev(xs->umem);
1000 			}
1001 			mutex_unlock(&xs->mutex);
1002 		}
1003 		mutex_unlock(&net->xdp.lock);
1004 		break;
1005 	}
1006 	return NOTIFY_DONE;
1007 }
1008 
1009 static struct proto xsk_proto = {
1010 	.name =		"XDP",
1011 	.owner =	THIS_MODULE,
1012 	.obj_size =	sizeof(struct xdp_sock),
1013 };
1014 
1015 static const struct proto_ops xsk_proto_ops = {
1016 	.family		= PF_XDP,
1017 	.owner		= THIS_MODULE,
1018 	.release	= xsk_release,
1019 	.bind		= xsk_bind,
1020 	.connect	= sock_no_connect,
1021 	.socketpair	= sock_no_socketpair,
1022 	.accept		= sock_no_accept,
1023 	.getname	= sock_no_getname,
1024 	.poll		= xsk_poll,
1025 	.ioctl		= sock_no_ioctl,
1026 	.listen		= sock_no_listen,
1027 	.shutdown	= sock_no_shutdown,
1028 	.setsockopt	= xsk_setsockopt,
1029 	.getsockopt	= xsk_getsockopt,
1030 	.sendmsg	= xsk_sendmsg,
1031 	.recvmsg	= sock_no_recvmsg,
1032 	.mmap		= xsk_mmap,
1033 	.sendpage	= sock_no_sendpage,
1034 };
1035 
1036 static void xsk_destruct(struct sock *sk)
1037 {
1038 	struct xdp_sock *xs = xdp_sk(sk);
1039 
1040 	if (!sock_flag(sk, SOCK_DEAD))
1041 		return;
1042 
1043 	xdp_put_umem(xs->umem);
1044 
1045 	sk_refcnt_debug_dec(sk);
1046 }
1047 
1048 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1049 		      int kern)
1050 {
1051 	struct sock *sk;
1052 	struct xdp_sock *xs;
1053 
1054 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
1055 		return -EPERM;
1056 	if (sock->type != SOCK_RAW)
1057 		return -ESOCKTNOSUPPORT;
1058 
1059 	if (protocol)
1060 		return -EPROTONOSUPPORT;
1061 
1062 	sock->state = SS_UNCONNECTED;
1063 
1064 	sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1065 	if (!sk)
1066 		return -ENOBUFS;
1067 
1068 	sock->ops = &xsk_proto_ops;
1069 
1070 	sock_init_data(sock, sk);
1071 
1072 	sk->sk_family = PF_XDP;
1073 
1074 	sk->sk_destruct = xsk_destruct;
1075 	sk_refcnt_debug_inc(sk);
1076 
1077 	sock_set_flag(sk, SOCK_RCU_FREE);
1078 
1079 	xs = xdp_sk(sk);
1080 	xs->state = XSK_READY;
1081 	mutex_init(&xs->mutex);
1082 	spin_lock_init(&xs->rx_lock);
1083 	spin_lock_init(&xs->tx_completion_lock);
1084 
1085 	INIT_LIST_HEAD(&xs->map_list);
1086 	spin_lock_init(&xs->map_list_lock);
1087 
1088 	mutex_lock(&net->xdp.lock);
1089 	sk_add_node_rcu(sk, &net->xdp.list);
1090 	mutex_unlock(&net->xdp.lock);
1091 
1092 	local_bh_disable();
1093 	sock_prot_inuse_add(net, &xsk_proto, 1);
1094 	local_bh_enable();
1095 
1096 	return 0;
1097 }
1098 
1099 static const struct net_proto_family xsk_family_ops = {
1100 	.family = PF_XDP,
1101 	.create = xsk_create,
1102 	.owner	= THIS_MODULE,
1103 };
1104 
1105 static struct notifier_block xsk_netdev_notifier = {
1106 	.notifier_call	= xsk_notifier,
1107 };
1108 
1109 static int __net_init xsk_net_init(struct net *net)
1110 {
1111 	mutex_init(&net->xdp.lock);
1112 	INIT_HLIST_HEAD(&net->xdp.list);
1113 	return 0;
1114 }
1115 
1116 static void __net_exit xsk_net_exit(struct net *net)
1117 {
1118 	WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1119 }
1120 
1121 static struct pernet_operations xsk_net_ops = {
1122 	.init = xsk_net_init,
1123 	.exit = xsk_net_exit,
1124 };
1125 
1126 static int __init xsk_init(void)
1127 {
1128 	int err, cpu;
1129 
1130 	err = proto_register(&xsk_proto, 0 /* no slab */);
1131 	if (err)
1132 		goto out;
1133 
1134 	err = sock_register(&xsk_family_ops);
1135 	if (err)
1136 		goto out_proto;
1137 
1138 	err = register_pernet_subsys(&xsk_net_ops);
1139 	if (err)
1140 		goto out_sk;
1141 
1142 	err = register_netdevice_notifier(&xsk_netdev_notifier);
1143 	if (err)
1144 		goto out_pernet;
1145 
1146 	for_each_possible_cpu(cpu)
1147 		INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1148 	return 0;
1149 
1150 out_pernet:
1151 	unregister_pernet_subsys(&xsk_net_ops);
1152 out_sk:
1153 	sock_unregister(PF_XDP);
1154 out_proto:
1155 	proto_unregister(&xsk_proto);
1156 out:
1157 	return err;
1158 }
1159 
1160 fs_initcall(xsk_init);
1161