xref: /openbmc/linux/net/xdp/xsk.c (revision 83c4a4ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3  *
4  * AF_XDP sockets allows a channel between XDP programs and userspace
5  * applications.
6  * Copyright(c) 2018 Intel Corporation.
7  *
8  * Author(s): Björn Töpel <bjorn.topel@intel.com>
9  *	      Magnus Karlsson <magnus.karlsson@intel.com>
10  */
11 
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13 
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock_drv.h>
26 #include <net/busy_poll.h>
27 #include <net/xdp.h>
28 
29 #include "xsk_queue.h"
30 #include "xdp_umem.h"
31 #include "xsk.h"
32 
33 #define TX_BATCH_SIZE 16
34 
35 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
36 
37 void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
38 {
39 	if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
40 		return;
41 
42 	pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
43 	pool->cached_need_wakeup |= XDP_WAKEUP_RX;
44 }
45 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
46 
47 void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
48 {
49 	struct xdp_sock *xs;
50 
51 	if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
52 		return;
53 
54 	rcu_read_lock();
55 	list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
56 		xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
57 	}
58 	rcu_read_unlock();
59 
60 	pool->cached_need_wakeup |= XDP_WAKEUP_TX;
61 }
62 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
63 
64 void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
65 {
66 	if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
67 		return;
68 
69 	pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
70 	pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
71 }
72 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
73 
74 void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
75 {
76 	struct xdp_sock *xs;
77 
78 	if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
79 		return;
80 
81 	rcu_read_lock();
82 	list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
83 		xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
84 	}
85 	rcu_read_unlock();
86 
87 	pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
88 }
89 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
90 
91 bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
92 {
93 	return pool->uses_need_wakeup;
94 }
95 EXPORT_SYMBOL(xsk_uses_need_wakeup);
96 
97 struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
98 					    u16 queue_id)
99 {
100 	if (queue_id < dev->real_num_rx_queues)
101 		return dev->_rx[queue_id].pool;
102 	if (queue_id < dev->real_num_tx_queues)
103 		return dev->_tx[queue_id].pool;
104 
105 	return NULL;
106 }
107 EXPORT_SYMBOL(xsk_get_pool_from_qid);
108 
109 void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
110 {
111 	if (queue_id < dev->real_num_rx_queues)
112 		dev->_rx[queue_id].pool = NULL;
113 	if (queue_id < dev->real_num_tx_queues)
114 		dev->_tx[queue_id].pool = NULL;
115 }
116 
117 /* The buffer pool is stored both in the _rx struct and the _tx struct as we do
118  * not know if the device has more tx queues than rx, or the opposite.
119  * This might also change during run time.
120  */
121 int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
122 			u16 queue_id)
123 {
124 	if (queue_id >= max_t(unsigned int,
125 			      dev->real_num_rx_queues,
126 			      dev->real_num_tx_queues))
127 		return -EINVAL;
128 
129 	if (queue_id < dev->real_num_rx_queues)
130 		dev->_rx[queue_id].pool = pool;
131 	if (queue_id < dev->real_num_tx_queues)
132 		dev->_tx[queue_id].pool = pool;
133 
134 	return 0;
135 }
136 
137 void xp_release(struct xdp_buff_xsk *xskb)
138 {
139 	xskb->pool->free_heads[xskb->pool->free_heads_cnt++] = xskb;
140 }
141 
142 static u64 xp_get_handle(struct xdp_buff_xsk *xskb)
143 {
144 	u64 offset = xskb->xdp.data - xskb->xdp.data_hard_start;
145 
146 	offset += xskb->pool->headroom;
147 	if (!xskb->pool->unaligned)
148 		return xskb->orig_addr + offset;
149 	return xskb->orig_addr + (offset << XSK_UNALIGNED_BUF_OFFSET_SHIFT);
150 }
151 
152 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
153 {
154 	struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
155 	u64 addr;
156 	int err;
157 
158 	addr = xp_get_handle(xskb);
159 	err = xskq_prod_reserve_desc(xs->rx, addr, len);
160 	if (err) {
161 		xs->rx_queue_full++;
162 		return err;
163 	}
164 
165 	xp_release(xskb);
166 	return 0;
167 }
168 
169 static void xsk_copy_xdp(struct xdp_buff *to, struct xdp_buff *from, u32 len)
170 {
171 	void *from_buf, *to_buf;
172 	u32 metalen;
173 
174 	if (unlikely(xdp_data_meta_unsupported(from))) {
175 		from_buf = from->data;
176 		to_buf = to->data;
177 		metalen = 0;
178 	} else {
179 		from_buf = from->data_meta;
180 		metalen = from->data - from->data_meta;
181 		to_buf = to->data - metalen;
182 	}
183 
184 	memcpy(to_buf, from_buf, len + metalen);
185 }
186 
187 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len,
188 		     bool explicit_free)
189 {
190 	struct xdp_buff *xsk_xdp;
191 	int err;
192 
193 	if (len > xsk_pool_get_rx_frame_size(xs->pool)) {
194 		xs->rx_dropped++;
195 		return -ENOSPC;
196 	}
197 
198 	xsk_xdp = xsk_buff_alloc(xs->pool);
199 	if (!xsk_xdp) {
200 		xs->rx_dropped++;
201 		return -ENOSPC;
202 	}
203 
204 	xsk_copy_xdp(xsk_xdp, xdp, len);
205 	err = __xsk_rcv_zc(xs, xsk_xdp, len);
206 	if (err) {
207 		xsk_buff_free(xsk_xdp);
208 		return err;
209 	}
210 	if (explicit_free)
211 		xdp_return_buff(xdp);
212 	return 0;
213 }
214 
215 static bool xsk_tx_writeable(struct xdp_sock *xs)
216 {
217 	if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
218 		return false;
219 
220 	return true;
221 }
222 
223 static bool xsk_is_bound(struct xdp_sock *xs)
224 {
225 	if (READ_ONCE(xs->state) == XSK_BOUND) {
226 		/* Matches smp_wmb() in bind(). */
227 		smp_rmb();
228 		return true;
229 	}
230 	return false;
231 }
232 
233 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp,
234 		   bool explicit_free)
235 {
236 	u32 len;
237 
238 	if (!xsk_is_bound(xs))
239 		return -EINVAL;
240 
241 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
242 		return -EINVAL;
243 
244 	sk_mark_napi_id_once_xdp(&xs->sk, xdp);
245 	len = xdp->data_end - xdp->data;
246 
247 	return xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL ?
248 		__xsk_rcv_zc(xs, xdp, len) :
249 		__xsk_rcv(xs, xdp, len, explicit_free);
250 }
251 
252 static void xsk_flush(struct xdp_sock *xs)
253 {
254 	xskq_prod_submit(xs->rx);
255 	__xskq_cons_release(xs->pool->fq);
256 	sock_def_readable(&xs->sk);
257 }
258 
259 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
260 {
261 	int err;
262 
263 	spin_lock_bh(&xs->rx_lock);
264 	err = xsk_rcv(xs, xdp, false);
265 	xsk_flush(xs);
266 	spin_unlock_bh(&xs->rx_lock);
267 	return err;
268 }
269 
270 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
271 {
272 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
273 	int err;
274 
275 	err = xsk_rcv(xs, xdp, true);
276 	if (err)
277 		return err;
278 
279 	if (!xs->flush_node.prev)
280 		list_add(&xs->flush_node, flush_list);
281 
282 	return 0;
283 }
284 
285 void __xsk_map_flush(void)
286 {
287 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
288 	struct xdp_sock *xs, *tmp;
289 
290 	list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
291 		xsk_flush(xs);
292 		__list_del_clearprev(&xs->flush_node);
293 	}
294 }
295 
296 void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
297 {
298 	xskq_prod_submit_n(pool->cq, nb_entries);
299 }
300 EXPORT_SYMBOL(xsk_tx_completed);
301 
302 void xsk_tx_release(struct xsk_buff_pool *pool)
303 {
304 	struct xdp_sock *xs;
305 
306 	rcu_read_lock();
307 	list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
308 		__xskq_cons_release(xs->tx);
309 		if (xsk_tx_writeable(xs))
310 			xs->sk.sk_write_space(&xs->sk);
311 	}
312 	rcu_read_unlock();
313 }
314 EXPORT_SYMBOL(xsk_tx_release);
315 
316 bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
317 {
318 	struct xdp_sock *xs;
319 
320 	rcu_read_lock();
321 	list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
322 		if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
323 			xs->tx->queue_empty_descs++;
324 			continue;
325 		}
326 
327 		/* This is the backpressure mechanism for the Tx path.
328 		 * Reserve space in the completion queue and only proceed
329 		 * if there is space in it. This avoids having to implement
330 		 * any buffering in the Tx path.
331 		 */
332 		if (xskq_prod_reserve_addr(pool->cq, desc->addr))
333 			goto out;
334 
335 		xskq_cons_release(xs->tx);
336 		rcu_read_unlock();
337 		return true;
338 	}
339 
340 out:
341 	rcu_read_unlock();
342 	return false;
343 }
344 EXPORT_SYMBOL(xsk_tx_peek_desc);
345 
346 static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, struct xdp_desc *descs,
347 					u32 max_entries)
348 {
349 	u32 nb_pkts = 0;
350 
351 	while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
352 		nb_pkts++;
353 
354 	xsk_tx_release(pool);
355 	return nb_pkts;
356 }
357 
358 u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, struct xdp_desc *descs,
359 				   u32 max_entries)
360 {
361 	struct xdp_sock *xs;
362 	u32 nb_pkts;
363 
364 	rcu_read_lock();
365 	if (!list_is_singular(&pool->xsk_tx_list)) {
366 		/* Fallback to the non-batched version */
367 		rcu_read_unlock();
368 		return xsk_tx_peek_release_fallback(pool, descs, max_entries);
369 	}
370 
371 	xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
372 	if (!xs) {
373 		nb_pkts = 0;
374 		goto out;
375 	}
376 
377 	nb_pkts = xskq_cons_peek_desc_batch(xs->tx, descs, pool, max_entries);
378 	if (!nb_pkts) {
379 		xs->tx->queue_empty_descs++;
380 		goto out;
381 	}
382 
383 	/* This is the backpressure mechanism for the Tx path. Try to
384 	 * reserve space in the completion queue for all packets, but
385 	 * if there are fewer slots available, just process that many
386 	 * packets. This avoids having to implement any buffering in
387 	 * the Tx path.
388 	 */
389 	nb_pkts = xskq_prod_reserve_addr_batch(pool->cq, descs, nb_pkts);
390 	if (!nb_pkts)
391 		goto out;
392 
393 	xskq_cons_release_n(xs->tx, nb_pkts);
394 	__xskq_cons_release(xs->tx);
395 	xs->sk.sk_write_space(&xs->sk);
396 
397 out:
398 	rcu_read_unlock();
399 	return nb_pkts;
400 }
401 EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
402 
403 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
404 {
405 	struct net_device *dev = xs->dev;
406 	int err;
407 
408 	rcu_read_lock();
409 	err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
410 	rcu_read_unlock();
411 
412 	return err;
413 }
414 
415 static int xsk_zc_xmit(struct xdp_sock *xs)
416 {
417 	return xsk_wakeup(xs, XDP_WAKEUP_TX);
418 }
419 
420 static void xsk_destruct_skb(struct sk_buff *skb)
421 {
422 	u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
423 	struct xdp_sock *xs = xdp_sk(skb->sk);
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&xs->tx_completion_lock, flags);
427 	xskq_prod_submit_addr(xs->pool->cq, addr);
428 	spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
429 
430 	sock_wfree(skb);
431 }
432 
433 static int xsk_generic_xmit(struct sock *sk)
434 {
435 	struct xdp_sock *xs = xdp_sk(sk);
436 	u32 max_batch = TX_BATCH_SIZE;
437 	bool sent_frame = false;
438 	struct xdp_desc desc;
439 	struct sk_buff *skb;
440 	int err = 0;
441 
442 	mutex_lock(&xs->mutex);
443 
444 	if (xs->queue_id >= xs->dev->real_num_tx_queues)
445 		goto out;
446 
447 	while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
448 		char *buffer;
449 		u64 addr;
450 		u32 len;
451 
452 		if (max_batch-- == 0) {
453 			err = -EAGAIN;
454 			goto out;
455 		}
456 
457 		len = desc.len;
458 		skb = sock_alloc_send_skb(sk, len, 1, &err);
459 		if (unlikely(!skb))
460 			goto out;
461 
462 		skb_put(skb, len);
463 		addr = desc.addr;
464 		buffer = xsk_buff_raw_get_data(xs->pool, addr);
465 		err = skb_store_bits(skb, 0, buffer, len);
466 		/* This is the backpressure mechanism for the Tx path.
467 		 * Reserve space in the completion queue and only proceed
468 		 * if there is space in it. This avoids having to implement
469 		 * any buffering in the Tx path.
470 		 */
471 		if (unlikely(err) || xskq_prod_reserve(xs->pool->cq)) {
472 			kfree_skb(skb);
473 			goto out;
474 		}
475 
476 		skb->dev = xs->dev;
477 		skb->priority = sk->sk_priority;
478 		skb->mark = sk->sk_mark;
479 		skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
480 		skb->destructor = xsk_destruct_skb;
481 
482 		err = __dev_direct_xmit(skb, xs->queue_id);
483 		if  (err == NETDEV_TX_BUSY) {
484 			/* Tell user-space to retry the send */
485 			skb->destructor = sock_wfree;
486 			/* Free skb without triggering the perf drop trace */
487 			consume_skb(skb);
488 			err = -EAGAIN;
489 			goto out;
490 		}
491 
492 		xskq_cons_release(xs->tx);
493 		/* Ignore NET_XMIT_CN as packet might have been sent */
494 		if (err == NET_XMIT_DROP) {
495 			/* SKB completed but not sent */
496 			err = -EBUSY;
497 			goto out;
498 		}
499 
500 		sent_frame = true;
501 	}
502 
503 	xs->tx->queue_empty_descs++;
504 
505 out:
506 	if (sent_frame)
507 		if (xsk_tx_writeable(xs))
508 			sk->sk_write_space(sk);
509 
510 	mutex_unlock(&xs->mutex);
511 	return err;
512 }
513 
514 static int __xsk_sendmsg(struct sock *sk)
515 {
516 	struct xdp_sock *xs = xdp_sk(sk);
517 
518 	if (unlikely(!(xs->dev->flags & IFF_UP)))
519 		return -ENETDOWN;
520 	if (unlikely(!xs->tx))
521 		return -ENOBUFS;
522 
523 	return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
524 }
525 
526 static bool xsk_no_wakeup(struct sock *sk)
527 {
528 #ifdef CONFIG_NET_RX_BUSY_POLL
529 	/* Prefer busy-polling, skip the wakeup. */
530 	return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
531 		READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
532 #else
533 	return false;
534 #endif
535 }
536 
537 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
538 {
539 	bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
540 	struct sock *sk = sock->sk;
541 	struct xdp_sock *xs = xdp_sk(sk);
542 	struct xsk_buff_pool *pool;
543 
544 	if (unlikely(!xsk_is_bound(xs)))
545 		return -ENXIO;
546 	if (unlikely(need_wait))
547 		return -EOPNOTSUPP;
548 
549 	if (sk_can_busy_loop(sk))
550 		sk_busy_loop(sk, 1); /* only support non-blocking sockets */
551 
552 	if (xsk_no_wakeup(sk))
553 		return 0;
554 
555 	pool = xs->pool;
556 	if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
557 		return __xsk_sendmsg(sk);
558 	return 0;
559 }
560 
561 static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
562 {
563 	bool need_wait = !(flags & MSG_DONTWAIT);
564 	struct sock *sk = sock->sk;
565 	struct xdp_sock *xs = xdp_sk(sk);
566 
567 	if (unlikely(!xsk_is_bound(xs)))
568 		return -ENXIO;
569 	if (unlikely(!(xs->dev->flags & IFF_UP)))
570 		return -ENETDOWN;
571 	if (unlikely(!xs->rx))
572 		return -ENOBUFS;
573 	if (unlikely(need_wait))
574 		return -EOPNOTSUPP;
575 
576 	if (sk_can_busy_loop(sk))
577 		sk_busy_loop(sk, 1); /* only support non-blocking sockets */
578 
579 	if (xsk_no_wakeup(sk))
580 		return 0;
581 
582 	if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
583 		return xsk_wakeup(xs, XDP_WAKEUP_RX);
584 	return 0;
585 }
586 
587 static __poll_t xsk_poll(struct file *file, struct socket *sock,
588 			     struct poll_table_struct *wait)
589 {
590 	__poll_t mask = 0;
591 	struct sock *sk = sock->sk;
592 	struct xdp_sock *xs = xdp_sk(sk);
593 	struct xsk_buff_pool *pool;
594 
595 	sock_poll_wait(file, sock, wait);
596 
597 	if (unlikely(!xsk_is_bound(xs)))
598 		return mask;
599 
600 	pool = xs->pool;
601 
602 	if (pool->cached_need_wakeup) {
603 		if (xs->zc)
604 			xsk_wakeup(xs, pool->cached_need_wakeup);
605 		else
606 			/* Poll needs to drive Tx also in copy mode */
607 			__xsk_sendmsg(sk);
608 	}
609 
610 	if (xs->rx && !xskq_prod_is_empty(xs->rx))
611 		mask |= EPOLLIN | EPOLLRDNORM;
612 	if (xs->tx && xsk_tx_writeable(xs))
613 		mask |= EPOLLOUT | EPOLLWRNORM;
614 
615 	return mask;
616 }
617 
618 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
619 			  bool umem_queue)
620 {
621 	struct xsk_queue *q;
622 
623 	if (entries == 0 || *queue || !is_power_of_2(entries))
624 		return -EINVAL;
625 
626 	q = xskq_create(entries, umem_queue);
627 	if (!q)
628 		return -ENOMEM;
629 
630 	/* Make sure queue is ready before it can be seen by others */
631 	smp_wmb();
632 	WRITE_ONCE(*queue, q);
633 	return 0;
634 }
635 
636 static void xsk_unbind_dev(struct xdp_sock *xs)
637 {
638 	struct net_device *dev = xs->dev;
639 
640 	if (xs->state != XSK_BOUND)
641 		return;
642 	WRITE_ONCE(xs->state, XSK_UNBOUND);
643 
644 	/* Wait for driver to stop using the xdp socket. */
645 	xp_del_xsk(xs->pool, xs);
646 	xs->dev = NULL;
647 	synchronize_net();
648 	dev_put(dev);
649 }
650 
651 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
652 					      struct xdp_sock ***map_entry)
653 {
654 	struct xsk_map *map = NULL;
655 	struct xsk_map_node *node;
656 
657 	*map_entry = NULL;
658 
659 	spin_lock_bh(&xs->map_list_lock);
660 	node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
661 					node);
662 	if (node) {
663 		bpf_map_inc(&node->map->map);
664 		map = node->map;
665 		*map_entry = node->map_entry;
666 	}
667 	spin_unlock_bh(&xs->map_list_lock);
668 	return map;
669 }
670 
671 static void xsk_delete_from_maps(struct xdp_sock *xs)
672 {
673 	/* This function removes the current XDP socket from all the
674 	 * maps it resides in. We need to take extra care here, due to
675 	 * the two locks involved. Each map has a lock synchronizing
676 	 * updates to the entries, and each socket has a lock that
677 	 * synchronizes access to the list of maps (map_list). For
678 	 * deadlock avoidance the locks need to be taken in the order
679 	 * "map lock"->"socket map list lock". We start off by
680 	 * accessing the socket map list, and take a reference to the
681 	 * map to guarantee existence between the
682 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
683 	 * calls. Then we ask the map to remove the socket, which
684 	 * tries to remove the socket from the map. Note that there
685 	 * might be updates to the map between
686 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
687 	 */
688 	struct xdp_sock **map_entry = NULL;
689 	struct xsk_map *map;
690 
691 	while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
692 		xsk_map_try_sock_delete(map, xs, map_entry);
693 		bpf_map_put(&map->map);
694 	}
695 }
696 
697 static int xsk_release(struct socket *sock)
698 {
699 	struct sock *sk = sock->sk;
700 	struct xdp_sock *xs = xdp_sk(sk);
701 	struct net *net;
702 
703 	if (!sk)
704 		return 0;
705 
706 	net = sock_net(sk);
707 
708 	mutex_lock(&net->xdp.lock);
709 	sk_del_node_init_rcu(sk);
710 	mutex_unlock(&net->xdp.lock);
711 
712 	local_bh_disable();
713 	sock_prot_inuse_add(net, sk->sk_prot, -1);
714 	local_bh_enable();
715 
716 	xsk_delete_from_maps(xs);
717 	mutex_lock(&xs->mutex);
718 	xsk_unbind_dev(xs);
719 	mutex_unlock(&xs->mutex);
720 
721 	xskq_destroy(xs->rx);
722 	xskq_destroy(xs->tx);
723 	xskq_destroy(xs->fq_tmp);
724 	xskq_destroy(xs->cq_tmp);
725 
726 	sock_orphan(sk);
727 	sock->sk = NULL;
728 
729 	sk_refcnt_debug_release(sk);
730 	sock_put(sk);
731 
732 	return 0;
733 }
734 
735 static struct socket *xsk_lookup_xsk_from_fd(int fd)
736 {
737 	struct socket *sock;
738 	int err;
739 
740 	sock = sockfd_lookup(fd, &err);
741 	if (!sock)
742 		return ERR_PTR(-ENOTSOCK);
743 
744 	if (sock->sk->sk_family != PF_XDP) {
745 		sockfd_put(sock);
746 		return ERR_PTR(-ENOPROTOOPT);
747 	}
748 
749 	return sock;
750 }
751 
752 static bool xsk_validate_queues(struct xdp_sock *xs)
753 {
754 	return xs->fq_tmp && xs->cq_tmp;
755 }
756 
757 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
758 {
759 	struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
760 	struct sock *sk = sock->sk;
761 	struct xdp_sock *xs = xdp_sk(sk);
762 	struct net_device *dev;
763 	u32 flags, qid;
764 	int err = 0;
765 
766 	if (addr_len < sizeof(struct sockaddr_xdp))
767 		return -EINVAL;
768 	if (sxdp->sxdp_family != AF_XDP)
769 		return -EINVAL;
770 
771 	flags = sxdp->sxdp_flags;
772 	if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
773 		      XDP_USE_NEED_WAKEUP))
774 		return -EINVAL;
775 
776 	rtnl_lock();
777 	mutex_lock(&xs->mutex);
778 	if (xs->state != XSK_READY) {
779 		err = -EBUSY;
780 		goto out_release;
781 	}
782 
783 	dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
784 	if (!dev) {
785 		err = -ENODEV;
786 		goto out_release;
787 	}
788 
789 	if (!xs->rx && !xs->tx) {
790 		err = -EINVAL;
791 		goto out_unlock;
792 	}
793 
794 	qid = sxdp->sxdp_queue_id;
795 
796 	if (flags & XDP_SHARED_UMEM) {
797 		struct xdp_sock *umem_xs;
798 		struct socket *sock;
799 
800 		if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
801 		    (flags & XDP_USE_NEED_WAKEUP)) {
802 			/* Cannot specify flags for shared sockets. */
803 			err = -EINVAL;
804 			goto out_unlock;
805 		}
806 
807 		if (xs->umem) {
808 			/* We have already our own. */
809 			err = -EINVAL;
810 			goto out_unlock;
811 		}
812 
813 		sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
814 		if (IS_ERR(sock)) {
815 			err = PTR_ERR(sock);
816 			goto out_unlock;
817 		}
818 
819 		umem_xs = xdp_sk(sock->sk);
820 		if (!xsk_is_bound(umem_xs)) {
821 			err = -EBADF;
822 			sockfd_put(sock);
823 			goto out_unlock;
824 		}
825 
826 		if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
827 			/* Share the umem with another socket on another qid
828 			 * and/or device.
829 			 */
830 			xs->pool = xp_create_and_assign_umem(xs,
831 							     umem_xs->umem);
832 			if (!xs->pool) {
833 				err = -ENOMEM;
834 				sockfd_put(sock);
835 				goto out_unlock;
836 			}
837 
838 			err = xp_assign_dev_shared(xs->pool, umem_xs->umem,
839 						   dev, qid);
840 			if (err) {
841 				xp_destroy(xs->pool);
842 				xs->pool = NULL;
843 				sockfd_put(sock);
844 				goto out_unlock;
845 			}
846 		} else {
847 			/* Share the buffer pool with the other socket. */
848 			if (xs->fq_tmp || xs->cq_tmp) {
849 				/* Do not allow setting your own fq or cq. */
850 				err = -EINVAL;
851 				sockfd_put(sock);
852 				goto out_unlock;
853 			}
854 
855 			xp_get_pool(umem_xs->pool);
856 			xs->pool = umem_xs->pool;
857 		}
858 
859 		xdp_get_umem(umem_xs->umem);
860 		WRITE_ONCE(xs->umem, umem_xs->umem);
861 		sockfd_put(sock);
862 	} else if (!xs->umem || !xsk_validate_queues(xs)) {
863 		err = -EINVAL;
864 		goto out_unlock;
865 	} else {
866 		/* This xsk has its own umem. */
867 		xs->pool = xp_create_and_assign_umem(xs, xs->umem);
868 		if (!xs->pool) {
869 			err = -ENOMEM;
870 			goto out_unlock;
871 		}
872 
873 		err = xp_assign_dev(xs->pool, dev, qid, flags);
874 		if (err) {
875 			xp_destroy(xs->pool);
876 			xs->pool = NULL;
877 			goto out_unlock;
878 		}
879 	}
880 
881 	xs->dev = dev;
882 	xs->zc = xs->umem->zc;
883 	xs->queue_id = qid;
884 	xp_add_xsk(xs->pool, xs);
885 
886 out_unlock:
887 	if (err) {
888 		dev_put(dev);
889 	} else {
890 		/* Matches smp_rmb() in bind() for shared umem
891 		 * sockets, and xsk_is_bound().
892 		 */
893 		smp_wmb();
894 		WRITE_ONCE(xs->state, XSK_BOUND);
895 	}
896 out_release:
897 	mutex_unlock(&xs->mutex);
898 	rtnl_unlock();
899 	return err;
900 }
901 
902 struct xdp_umem_reg_v1 {
903 	__u64 addr; /* Start of packet data area */
904 	__u64 len; /* Length of packet data area */
905 	__u32 chunk_size;
906 	__u32 headroom;
907 };
908 
909 static int xsk_setsockopt(struct socket *sock, int level, int optname,
910 			  sockptr_t optval, unsigned int optlen)
911 {
912 	struct sock *sk = sock->sk;
913 	struct xdp_sock *xs = xdp_sk(sk);
914 	int err;
915 
916 	if (level != SOL_XDP)
917 		return -ENOPROTOOPT;
918 
919 	switch (optname) {
920 	case XDP_RX_RING:
921 	case XDP_TX_RING:
922 	{
923 		struct xsk_queue **q;
924 		int entries;
925 
926 		if (optlen < sizeof(entries))
927 			return -EINVAL;
928 		if (copy_from_sockptr(&entries, optval, sizeof(entries)))
929 			return -EFAULT;
930 
931 		mutex_lock(&xs->mutex);
932 		if (xs->state != XSK_READY) {
933 			mutex_unlock(&xs->mutex);
934 			return -EBUSY;
935 		}
936 		q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
937 		err = xsk_init_queue(entries, q, false);
938 		if (!err && optname == XDP_TX_RING)
939 			/* Tx needs to be explicitly woken up the first time */
940 			xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
941 		mutex_unlock(&xs->mutex);
942 		return err;
943 	}
944 	case XDP_UMEM_REG:
945 	{
946 		size_t mr_size = sizeof(struct xdp_umem_reg);
947 		struct xdp_umem_reg mr = {};
948 		struct xdp_umem *umem;
949 
950 		if (optlen < sizeof(struct xdp_umem_reg_v1))
951 			return -EINVAL;
952 		else if (optlen < sizeof(mr))
953 			mr_size = sizeof(struct xdp_umem_reg_v1);
954 
955 		if (copy_from_sockptr(&mr, optval, mr_size))
956 			return -EFAULT;
957 
958 		mutex_lock(&xs->mutex);
959 		if (xs->state != XSK_READY || xs->umem) {
960 			mutex_unlock(&xs->mutex);
961 			return -EBUSY;
962 		}
963 
964 		umem = xdp_umem_create(&mr);
965 		if (IS_ERR(umem)) {
966 			mutex_unlock(&xs->mutex);
967 			return PTR_ERR(umem);
968 		}
969 
970 		/* Make sure umem is ready before it can be seen by others */
971 		smp_wmb();
972 		WRITE_ONCE(xs->umem, umem);
973 		mutex_unlock(&xs->mutex);
974 		return 0;
975 	}
976 	case XDP_UMEM_FILL_RING:
977 	case XDP_UMEM_COMPLETION_RING:
978 	{
979 		struct xsk_queue **q;
980 		int entries;
981 
982 		if (copy_from_sockptr(&entries, optval, sizeof(entries)))
983 			return -EFAULT;
984 
985 		mutex_lock(&xs->mutex);
986 		if (xs->state != XSK_READY) {
987 			mutex_unlock(&xs->mutex);
988 			return -EBUSY;
989 		}
990 
991 		q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
992 			&xs->cq_tmp;
993 		err = xsk_init_queue(entries, q, true);
994 		mutex_unlock(&xs->mutex);
995 		return err;
996 	}
997 	default:
998 		break;
999 	}
1000 
1001 	return -ENOPROTOOPT;
1002 }
1003 
1004 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
1005 {
1006 	ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
1007 	ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
1008 	ring->desc = offsetof(struct xdp_rxtx_ring, desc);
1009 }
1010 
1011 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
1012 {
1013 	ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
1014 	ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
1015 	ring->desc = offsetof(struct xdp_umem_ring, desc);
1016 }
1017 
1018 struct xdp_statistics_v1 {
1019 	__u64 rx_dropped;
1020 	__u64 rx_invalid_descs;
1021 	__u64 tx_invalid_descs;
1022 };
1023 
1024 static int xsk_getsockopt(struct socket *sock, int level, int optname,
1025 			  char __user *optval, int __user *optlen)
1026 {
1027 	struct sock *sk = sock->sk;
1028 	struct xdp_sock *xs = xdp_sk(sk);
1029 	int len;
1030 
1031 	if (level != SOL_XDP)
1032 		return -ENOPROTOOPT;
1033 
1034 	if (get_user(len, optlen))
1035 		return -EFAULT;
1036 	if (len < 0)
1037 		return -EINVAL;
1038 
1039 	switch (optname) {
1040 	case XDP_STATISTICS:
1041 	{
1042 		struct xdp_statistics stats = {};
1043 		bool extra_stats = true;
1044 		size_t stats_size;
1045 
1046 		if (len < sizeof(struct xdp_statistics_v1)) {
1047 			return -EINVAL;
1048 		} else if (len < sizeof(stats)) {
1049 			extra_stats = false;
1050 			stats_size = sizeof(struct xdp_statistics_v1);
1051 		} else {
1052 			stats_size = sizeof(stats);
1053 		}
1054 
1055 		mutex_lock(&xs->mutex);
1056 		stats.rx_dropped = xs->rx_dropped;
1057 		if (extra_stats) {
1058 			stats.rx_ring_full = xs->rx_queue_full;
1059 			stats.rx_fill_ring_empty_descs =
1060 				xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
1061 			stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
1062 		} else {
1063 			stats.rx_dropped += xs->rx_queue_full;
1064 		}
1065 		stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
1066 		stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
1067 		mutex_unlock(&xs->mutex);
1068 
1069 		if (copy_to_user(optval, &stats, stats_size))
1070 			return -EFAULT;
1071 		if (put_user(stats_size, optlen))
1072 			return -EFAULT;
1073 
1074 		return 0;
1075 	}
1076 	case XDP_MMAP_OFFSETS:
1077 	{
1078 		struct xdp_mmap_offsets off;
1079 		struct xdp_mmap_offsets_v1 off_v1;
1080 		bool flags_supported = true;
1081 		void *to_copy;
1082 
1083 		if (len < sizeof(off_v1))
1084 			return -EINVAL;
1085 		else if (len < sizeof(off))
1086 			flags_supported = false;
1087 
1088 		if (flags_supported) {
1089 			/* xdp_ring_offset is identical to xdp_ring_offset_v1
1090 			 * except for the flags field added to the end.
1091 			 */
1092 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1093 					       &off.rx);
1094 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1095 					       &off.tx);
1096 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1097 					       &off.fr);
1098 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1099 					       &off.cr);
1100 			off.rx.flags = offsetof(struct xdp_rxtx_ring,
1101 						ptrs.flags);
1102 			off.tx.flags = offsetof(struct xdp_rxtx_ring,
1103 						ptrs.flags);
1104 			off.fr.flags = offsetof(struct xdp_umem_ring,
1105 						ptrs.flags);
1106 			off.cr.flags = offsetof(struct xdp_umem_ring,
1107 						ptrs.flags);
1108 
1109 			len = sizeof(off);
1110 			to_copy = &off;
1111 		} else {
1112 			xsk_enter_rxtx_offsets(&off_v1.rx);
1113 			xsk_enter_rxtx_offsets(&off_v1.tx);
1114 			xsk_enter_umem_offsets(&off_v1.fr);
1115 			xsk_enter_umem_offsets(&off_v1.cr);
1116 
1117 			len = sizeof(off_v1);
1118 			to_copy = &off_v1;
1119 		}
1120 
1121 		if (copy_to_user(optval, to_copy, len))
1122 			return -EFAULT;
1123 		if (put_user(len, optlen))
1124 			return -EFAULT;
1125 
1126 		return 0;
1127 	}
1128 	case XDP_OPTIONS:
1129 	{
1130 		struct xdp_options opts = {};
1131 
1132 		if (len < sizeof(opts))
1133 			return -EINVAL;
1134 
1135 		mutex_lock(&xs->mutex);
1136 		if (xs->zc)
1137 			opts.flags |= XDP_OPTIONS_ZEROCOPY;
1138 		mutex_unlock(&xs->mutex);
1139 
1140 		len = sizeof(opts);
1141 		if (copy_to_user(optval, &opts, len))
1142 			return -EFAULT;
1143 		if (put_user(len, optlen))
1144 			return -EFAULT;
1145 
1146 		return 0;
1147 	}
1148 	default:
1149 		break;
1150 	}
1151 
1152 	return -EOPNOTSUPP;
1153 }
1154 
1155 static int xsk_mmap(struct file *file, struct socket *sock,
1156 		    struct vm_area_struct *vma)
1157 {
1158 	loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1159 	unsigned long size = vma->vm_end - vma->vm_start;
1160 	struct xdp_sock *xs = xdp_sk(sock->sk);
1161 	struct xsk_queue *q = NULL;
1162 	unsigned long pfn;
1163 	struct page *qpg;
1164 
1165 	if (READ_ONCE(xs->state) != XSK_READY)
1166 		return -EBUSY;
1167 
1168 	if (offset == XDP_PGOFF_RX_RING) {
1169 		q = READ_ONCE(xs->rx);
1170 	} else if (offset == XDP_PGOFF_TX_RING) {
1171 		q = READ_ONCE(xs->tx);
1172 	} else {
1173 		/* Matches the smp_wmb() in XDP_UMEM_REG */
1174 		smp_rmb();
1175 		if (offset == XDP_UMEM_PGOFF_FILL_RING)
1176 			q = READ_ONCE(xs->fq_tmp);
1177 		else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1178 			q = READ_ONCE(xs->cq_tmp);
1179 	}
1180 
1181 	if (!q)
1182 		return -EINVAL;
1183 
1184 	/* Matches the smp_wmb() in xsk_init_queue */
1185 	smp_rmb();
1186 	qpg = virt_to_head_page(q->ring);
1187 	if (size > page_size(qpg))
1188 		return -EINVAL;
1189 
1190 	pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
1191 	return remap_pfn_range(vma, vma->vm_start, pfn,
1192 			       size, vma->vm_page_prot);
1193 }
1194 
1195 static int xsk_notifier(struct notifier_block *this,
1196 			unsigned long msg, void *ptr)
1197 {
1198 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1199 	struct net *net = dev_net(dev);
1200 	struct sock *sk;
1201 
1202 	switch (msg) {
1203 	case NETDEV_UNREGISTER:
1204 		mutex_lock(&net->xdp.lock);
1205 		sk_for_each(sk, &net->xdp.list) {
1206 			struct xdp_sock *xs = xdp_sk(sk);
1207 
1208 			mutex_lock(&xs->mutex);
1209 			if (xs->dev == dev) {
1210 				sk->sk_err = ENETDOWN;
1211 				if (!sock_flag(sk, SOCK_DEAD))
1212 					sk->sk_error_report(sk);
1213 
1214 				xsk_unbind_dev(xs);
1215 
1216 				/* Clear device references. */
1217 				xp_clear_dev(xs->pool);
1218 			}
1219 			mutex_unlock(&xs->mutex);
1220 		}
1221 		mutex_unlock(&net->xdp.lock);
1222 		break;
1223 	}
1224 	return NOTIFY_DONE;
1225 }
1226 
1227 static struct proto xsk_proto = {
1228 	.name =		"XDP",
1229 	.owner =	THIS_MODULE,
1230 	.obj_size =	sizeof(struct xdp_sock),
1231 };
1232 
1233 static const struct proto_ops xsk_proto_ops = {
1234 	.family		= PF_XDP,
1235 	.owner		= THIS_MODULE,
1236 	.release	= xsk_release,
1237 	.bind		= xsk_bind,
1238 	.connect	= sock_no_connect,
1239 	.socketpair	= sock_no_socketpair,
1240 	.accept		= sock_no_accept,
1241 	.getname	= sock_no_getname,
1242 	.poll		= xsk_poll,
1243 	.ioctl		= sock_no_ioctl,
1244 	.listen		= sock_no_listen,
1245 	.shutdown	= sock_no_shutdown,
1246 	.setsockopt	= xsk_setsockopt,
1247 	.getsockopt	= xsk_getsockopt,
1248 	.sendmsg	= xsk_sendmsg,
1249 	.recvmsg	= xsk_recvmsg,
1250 	.mmap		= xsk_mmap,
1251 	.sendpage	= sock_no_sendpage,
1252 };
1253 
1254 static void xsk_destruct(struct sock *sk)
1255 {
1256 	struct xdp_sock *xs = xdp_sk(sk);
1257 
1258 	if (!sock_flag(sk, SOCK_DEAD))
1259 		return;
1260 
1261 	if (!xp_put_pool(xs->pool))
1262 		xdp_put_umem(xs->umem, !xs->pool);
1263 
1264 	sk_refcnt_debug_dec(sk);
1265 }
1266 
1267 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1268 		      int kern)
1269 {
1270 	struct xdp_sock *xs;
1271 	struct sock *sk;
1272 
1273 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
1274 		return -EPERM;
1275 	if (sock->type != SOCK_RAW)
1276 		return -ESOCKTNOSUPPORT;
1277 
1278 	if (protocol)
1279 		return -EPROTONOSUPPORT;
1280 
1281 	sock->state = SS_UNCONNECTED;
1282 
1283 	sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1284 	if (!sk)
1285 		return -ENOBUFS;
1286 
1287 	sock->ops = &xsk_proto_ops;
1288 
1289 	sock_init_data(sock, sk);
1290 
1291 	sk->sk_family = PF_XDP;
1292 
1293 	sk->sk_destruct = xsk_destruct;
1294 	sk_refcnt_debug_inc(sk);
1295 
1296 	sock_set_flag(sk, SOCK_RCU_FREE);
1297 
1298 	xs = xdp_sk(sk);
1299 	xs->state = XSK_READY;
1300 	mutex_init(&xs->mutex);
1301 	spin_lock_init(&xs->rx_lock);
1302 	spin_lock_init(&xs->tx_completion_lock);
1303 
1304 	INIT_LIST_HEAD(&xs->map_list);
1305 	spin_lock_init(&xs->map_list_lock);
1306 
1307 	mutex_lock(&net->xdp.lock);
1308 	sk_add_node_rcu(sk, &net->xdp.list);
1309 	mutex_unlock(&net->xdp.lock);
1310 
1311 	local_bh_disable();
1312 	sock_prot_inuse_add(net, &xsk_proto, 1);
1313 	local_bh_enable();
1314 
1315 	return 0;
1316 }
1317 
1318 static const struct net_proto_family xsk_family_ops = {
1319 	.family = PF_XDP,
1320 	.create = xsk_create,
1321 	.owner	= THIS_MODULE,
1322 };
1323 
1324 static struct notifier_block xsk_netdev_notifier = {
1325 	.notifier_call	= xsk_notifier,
1326 };
1327 
1328 static int __net_init xsk_net_init(struct net *net)
1329 {
1330 	mutex_init(&net->xdp.lock);
1331 	INIT_HLIST_HEAD(&net->xdp.list);
1332 	return 0;
1333 }
1334 
1335 static void __net_exit xsk_net_exit(struct net *net)
1336 {
1337 	WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1338 }
1339 
1340 static struct pernet_operations xsk_net_ops = {
1341 	.init = xsk_net_init,
1342 	.exit = xsk_net_exit,
1343 };
1344 
1345 static int __init xsk_init(void)
1346 {
1347 	int err, cpu;
1348 
1349 	err = proto_register(&xsk_proto, 0 /* no slab */);
1350 	if (err)
1351 		goto out;
1352 
1353 	err = sock_register(&xsk_family_ops);
1354 	if (err)
1355 		goto out_proto;
1356 
1357 	err = register_pernet_subsys(&xsk_net_ops);
1358 	if (err)
1359 		goto out_sk;
1360 
1361 	err = register_netdevice_notifier(&xsk_netdev_notifier);
1362 	if (err)
1363 		goto out_pernet;
1364 
1365 	for_each_possible_cpu(cpu)
1366 		INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1367 	return 0;
1368 
1369 out_pernet:
1370 	unregister_pernet_subsys(&xsk_net_ops);
1371 out_sk:
1372 	sock_unregister(PF_XDP);
1373 out_proto:
1374 	proto_unregister(&xsk_proto);
1375 out:
1376 	return err;
1377 }
1378 
1379 fs_initcall(xsk_init);
1380