xref: /openbmc/linux/net/xdp/xsk.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3  *
4  * AF_XDP sockets allows a channel between XDP programs and userspace
5  * applications.
6  * Copyright(c) 2018 Intel Corporation.
7  *
8  * Author(s): Björn Töpel <bjorn.topel@intel.com>
9  *	      Magnus Karlsson <magnus.karlsson@intel.com>
10  */
11 
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13 
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock.h>
26 #include <net/xdp.h>
27 
28 #include "xsk_queue.h"
29 #include "xdp_umem.h"
30 #include "xsk.h"
31 
32 #define TX_BATCH_SIZE 16
33 
34 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
35 {
36 	return READ_ONCE(xs->rx) &&  READ_ONCE(xs->umem) &&
37 		READ_ONCE(xs->umem->fq);
38 }
39 
40 bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt)
41 {
42 	return xskq_has_addrs(umem->fq, cnt);
43 }
44 EXPORT_SYMBOL(xsk_umem_has_addrs);
45 
46 u64 *xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr)
47 {
48 	return xskq_peek_addr(umem->fq, addr, umem);
49 }
50 EXPORT_SYMBOL(xsk_umem_peek_addr);
51 
52 void xsk_umem_discard_addr(struct xdp_umem *umem)
53 {
54 	xskq_discard_addr(umem->fq);
55 }
56 EXPORT_SYMBOL(xsk_umem_discard_addr);
57 
58 void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
59 {
60 	if (umem->need_wakeup & XDP_WAKEUP_RX)
61 		return;
62 
63 	umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
64 	umem->need_wakeup |= XDP_WAKEUP_RX;
65 }
66 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
67 
68 void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
69 {
70 	struct xdp_sock *xs;
71 
72 	if (umem->need_wakeup & XDP_WAKEUP_TX)
73 		return;
74 
75 	rcu_read_lock();
76 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
77 		xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
78 	}
79 	rcu_read_unlock();
80 
81 	umem->need_wakeup |= XDP_WAKEUP_TX;
82 }
83 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
84 
85 void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
86 {
87 	if (!(umem->need_wakeup & XDP_WAKEUP_RX))
88 		return;
89 
90 	umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
91 	umem->need_wakeup &= ~XDP_WAKEUP_RX;
92 }
93 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
94 
95 void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
96 {
97 	struct xdp_sock *xs;
98 
99 	if (!(umem->need_wakeup & XDP_WAKEUP_TX))
100 		return;
101 
102 	rcu_read_lock();
103 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
104 		xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
105 	}
106 	rcu_read_unlock();
107 
108 	umem->need_wakeup &= ~XDP_WAKEUP_TX;
109 }
110 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
111 
112 bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
113 {
114 	return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
115 }
116 EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
117 
118 /* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for
119  * each page. This is only required in copy mode.
120  */
121 static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf,
122 			     u32 len, u32 metalen)
123 {
124 	void *to_buf = xdp_umem_get_data(umem, addr);
125 
126 	addr = xsk_umem_add_offset_to_addr(addr);
127 	if (xskq_crosses_non_contig_pg(umem, addr, len + metalen)) {
128 		void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr;
129 		u64 page_start = addr & ~(PAGE_SIZE - 1);
130 		u64 first_len = PAGE_SIZE - (addr - page_start);
131 
132 		memcpy(to_buf, from_buf, first_len + metalen);
133 		memcpy(next_pg_addr, from_buf + first_len, len - first_len);
134 
135 		return;
136 	}
137 
138 	memcpy(to_buf, from_buf, len + metalen);
139 }
140 
141 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
142 {
143 	u64 offset = xs->umem->headroom;
144 	u64 addr, memcpy_addr;
145 	void *from_buf;
146 	u32 metalen;
147 	int err;
148 
149 	if (!xskq_peek_addr(xs->umem->fq, &addr, xs->umem) ||
150 	    len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
151 		xs->rx_dropped++;
152 		return -ENOSPC;
153 	}
154 
155 	if (unlikely(xdp_data_meta_unsupported(xdp))) {
156 		from_buf = xdp->data;
157 		metalen = 0;
158 	} else {
159 		from_buf = xdp->data_meta;
160 		metalen = xdp->data - xdp->data_meta;
161 	}
162 
163 	memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
164 	__xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen);
165 
166 	offset += metalen;
167 	addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
168 	err = xskq_produce_batch_desc(xs->rx, addr, len);
169 	if (!err) {
170 		xskq_discard_addr(xs->umem->fq);
171 		xdp_return_buff(xdp);
172 		return 0;
173 	}
174 
175 	xs->rx_dropped++;
176 	return err;
177 }
178 
179 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
180 {
181 	int err = xskq_produce_batch_desc(xs->rx, (u64)xdp->handle, len);
182 
183 	if (err)
184 		xs->rx_dropped++;
185 
186 	return err;
187 }
188 
189 static bool xsk_is_bound(struct xdp_sock *xs)
190 {
191 	if (READ_ONCE(xs->state) == XSK_BOUND) {
192 		/* Matches smp_wmb() in bind(). */
193 		smp_rmb();
194 		return true;
195 	}
196 	return false;
197 }
198 
199 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
200 {
201 	u32 len;
202 
203 	if (!xsk_is_bound(xs))
204 		return -EINVAL;
205 
206 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
207 		return -EINVAL;
208 
209 	len = xdp->data_end - xdp->data;
210 
211 	return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ?
212 		__xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len);
213 }
214 
215 static void xsk_flush(struct xdp_sock *xs)
216 {
217 	xskq_produce_flush_desc(xs->rx);
218 	xs->sk.sk_data_ready(&xs->sk);
219 }
220 
221 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
222 {
223 	u32 metalen = xdp->data - xdp->data_meta;
224 	u32 len = xdp->data_end - xdp->data;
225 	u64 offset = xs->umem->headroom;
226 	void *buffer;
227 	u64 addr;
228 	int err;
229 
230 	spin_lock_bh(&xs->rx_lock);
231 
232 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) {
233 		err = -EINVAL;
234 		goto out_unlock;
235 	}
236 
237 	if (!xskq_peek_addr(xs->umem->fq, &addr, xs->umem) ||
238 	    len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
239 		err = -ENOSPC;
240 		goto out_drop;
241 	}
242 
243 	addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
244 	buffer = xdp_umem_get_data(xs->umem, addr);
245 	memcpy(buffer, xdp->data_meta, len + metalen);
246 
247 	addr = xsk_umem_adjust_offset(xs->umem, addr, metalen);
248 	err = xskq_produce_batch_desc(xs->rx, addr, len);
249 	if (err)
250 		goto out_drop;
251 
252 	xskq_discard_addr(xs->umem->fq);
253 	xskq_produce_flush_desc(xs->rx);
254 
255 	spin_unlock_bh(&xs->rx_lock);
256 
257 	xs->sk.sk_data_ready(&xs->sk);
258 	return 0;
259 
260 out_drop:
261 	xs->rx_dropped++;
262 out_unlock:
263 	spin_unlock_bh(&xs->rx_lock);
264 	return err;
265 }
266 
267 int __xsk_map_redirect(struct bpf_map *map, struct xdp_buff *xdp,
268 		       struct xdp_sock *xs)
269 {
270 	struct xsk_map *m = container_of(map, struct xsk_map, map);
271 	struct list_head *flush_list = this_cpu_ptr(m->flush_list);
272 	int err;
273 
274 	err = xsk_rcv(xs, xdp);
275 	if (err)
276 		return err;
277 
278 	if (!xs->flush_node.prev)
279 		list_add(&xs->flush_node, flush_list);
280 
281 	return 0;
282 }
283 
284 void __xsk_map_flush(struct bpf_map *map)
285 {
286 	struct xsk_map *m = container_of(map, struct xsk_map, map);
287 	struct list_head *flush_list = this_cpu_ptr(m->flush_list);
288 	struct xdp_sock *xs, *tmp;
289 
290 	list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
291 		xsk_flush(xs);
292 		__list_del_clearprev(&xs->flush_node);
293 	}
294 }
295 
296 void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
297 {
298 	xskq_produce_flush_addr_n(umem->cq, nb_entries);
299 }
300 EXPORT_SYMBOL(xsk_umem_complete_tx);
301 
302 void xsk_umem_consume_tx_done(struct xdp_umem *umem)
303 {
304 	struct xdp_sock *xs;
305 
306 	rcu_read_lock();
307 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
308 		xs->sk.sk_write_space(&xs->sk);
309 	}
310 	rcu_read_unlock();
311 }
312 EXPORT_SYMBOL(xsk_umem_consume_tx_done);
313 
314 bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
315 {
316 	struct xdp_sock *xs;
317 
318 	rcu_read_lock();
319 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
320 		if (!xskq_peek_desc(xs->tx, desc, umem))
321 			continue;
322 
323 		if (xskq_produce_addr_lazy(umem->cq, desc->addr))
324 			goto out;
325 
326 		xskq_discard_desc(xs->tx);
327 		rcu_read_unlock();
328 		return true;
329 	}
330 
331 out:
332 	rcu_read_unlock();
333 	return false;
334 }
335 EXPORT_SYMBOL(xsk_umem_consume_tx);
336 
337 static int xsk_zc_xmit(struct xdp_sock *xs)
338 {
339 	struct net_device *dev = xs->dev;
340 
341 	return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id,
342 					       XDP_WAKEUP_TX);
343 }
344 
345 static void xsk_destruct_skb(struct sk_buff *skb)
346 {
347 	u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
348 	struct xdp_sock *xs = xdp_sk(skb->sk);
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&xs->tx_completion_lock, flags);
352 	WARN_ON_ONCE(xskq_produce_addr(xs->umem->cq, addr));
353 	spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
354 
355 	sock_wfree(skb);
356 }
357 
358 static int xsk_generic_xmit(struct sock *sk)
359 {
360 	struct xdp_sock *xs = xdp_sk(sk);
361 	u32 max_batch = TX_BATCH_SIZE;
362 	bool sent_frame = false;
363 	struct xdp_desc desc;
364 	struct sk_buff *skb;
365 	int err = 0;
366 
367 	mutex_lock(&xs->mutex);
368 
369 	if (xs->queue_id >= xs->dev->real_num_tx_queues)
370 		goto out;
371 
372 	while (xskq_peek_desc(xs->tx, &desc, xs->umem)) {
373 		char *buffer;
374 		u64 addr;
375 		u32 len;
376 
377 		if (max_batch-- == 0) {
378 			err = -EAGAIN;
379 			goto out;
380 		}
381 
382 		len = desc.len;
383 		skb = sock_alloc_send_skb(sk, len, 1, &err);
384 		if (unlikely(!skb)) {
385 			err = -EAGAIN;
386 			goto out;
387 		}
388 
389 		skb_put(skb, len);
390 		addr = desc.addr;
391 		buffer = xdp_umem_get_data(xs->umem, addr);
392 		err = skb_store_bits(skb, 0, buffer, len);
393 		if (unlikely(err) || xskq_reserve_addr(xs->umem->cq)) {
394 			kfree_skb(skb);
395 			goto out;
396 		}
397 
398 		skb->dev = xs->dev;
399 		skb->priority = sk->sk_priority;
400 		skb->mark = sk->sk_mark;
401 		skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
402 		skb->destructor = xsk_destruct_skb;
403 
404 		err = dev_direct_xmit(skb, xs->queue_id);
405 		xskq_discard_desc(xs->tx);
406 		/* Ignore NET_XMIT_CN as packet might have been sent */
407 		if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
408 			/* SKB completed but not sent */
409 			err = -EBUSY;
410 			goto out;
411 		}
412 
413 		sent_frame = true;
414 	}
415 
416 out:
417 	if (sent_frame)
418 		sk->sk_write_space(sk);
419 
420 	mutex_unlock(&xs->mutex);
421 	return err;
422 }
423 
424 static int __xsk_sendmsg(struct sock *sk)
425 {
426 	struct xdp_sock *xs = xdp_sk(sk);
427 
428 	if (unlikely(!(xs->dev->flags & IFF_UP)))
429 		return -ENETDOWN;
430 	if (unlikely(!xs->tx))
431 		return -ENOBUFS;
432 
433 	return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
434 }
435 
436 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
437 {
438 	bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
439 	struct sock *sk = sock->sk;
440 	struct xdp_sock *xs = xdp_sk(sk);
441 
442 	if (unlikely(!xsk_is_bound(xs)))
443 		return -ENXIO;
444 	if (unlikely(need_wait))
445 		return -EOPNOTSUPP;
446 
447 	return __xsk_sendmsg(sk);
448 }
449 
450 static __poll_t xsk_poll(struct file *file, struct socket *sock,
451 			     struct poll_table_struct *wait)
452 {
453 	__poll_t mask = datagram_poll(file, sock, wait);
454 	struct sock *sk = sock->sk;
455 	struct xdp_sock *xs = xdp_sk(sk);
456 	struct net_device *dev;
457 	struct xdp_umem *umem;
458 
459 	if (unlikely(!xsk_is_bound(xs)))
460 		return mask;
461 
462 	dev = xs->dev;
463 	umem = xs->umem;
464 
465 	if (umem->need_wakeup) {
466 		if (dev->netdev_ops->ndo_xsk_wakeup)
467 			dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id,
468 							umem->need_wakeup);
469 		else
470 			/* Poll needs to drive Tx also in copy mode */
471 			__xsk_sendmsg(sk);
472 	}
473 
474 	if (xs->rx && !xskq_empty_desc(xs->rx))
475 		mask |= EPOLLIN | EPOLLRDNORM;
476 	if (xs->tx && !xskq_full_desc(xs->tx))
477 		mask |= EPOLLOUT | EPOLLWRNORM;
478 
479 	return mask;
480 }
481 
482 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
483 			  bool umem_queue)
484 {
485 	struct xsk_queue *q;
486 
487 	if (entries == 0 || *queue || !is_power_of_2(entries))
488 		return -EINVAL;
489 
490 	q = xskq_create(entries, umem_queue);
491 	if (!q)
492 		return -ENOMEM;
493 
494 	/* Make sure queue is ready before it can be seen by others */
495 	smp_wmb();
496 	WRITE_ONCE(*queue, q);
497 	return 0;
498 }
499 
500 static void xsk_unbind_dev(struct xdp_sock *xs)
501 {
502 	struct net_device *dev = xs->dev;
503 
504 	if (xs->state != XSK_BOUND)
505 		return;
506 	WRITE_ONCE(xs->state, XSK_UNBOUND);
507 
508 	/* Wait for driver to stop using the xdp socket. */
509 	xdp_del_sk_umem(xs->umem, xs);
510 	xs->dev = NULL;
511 	synchronize_net();
512 	dev_put(dev);
513 }
514 
515 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
516 					      struct xdp_sock ***map_entry)
517 {
518 	struct xsk_map *map = NULL;
519 	struct xsk_map_node *node;
520 
521 	*map_entry = NULL;
522 
523 	spin_lock_bh(&xs->map_list_lock);
524 	node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
525 					node);
526 	if (node) {
527 		WARN_ON(xsk_map_inc(node->map));
528 		map = node->map;
529 		*map_entry = node->map_entry;
530 	}
531 	spin_unlock_bh(&xs->map_list_lock);
532 	return map;
533 }
534 
535 static void xsk_delete_from_maps(struct xdp_sock *xs)
536 {
537 	/* This function removes the current XDP socket from all the
538 	 * maps it resides in. We need to take extra care here, due to
539 	 * the two locks involved. Each map has a lock synchronizing
540 	 * updates to the entries, and each socket has a lock that
541 	 * synchronizes access to the list of maps (map_list). For
542 	 * deadlock avoidance the locks need to be taken in the order
543 	 * "map lock"->"socket map list lock". We start off by
544 	 * accessing the socket map list, and take a reference to the
545 	 * map to guarantee existence between the
546 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
547 	 * calls. Then we ask the map to remove the socket, which
548 	 * tries to remove the socket from the map. Note that there
549 	 * might be updates to the map between
550 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
551 	 */
552 	struct xdp_sock **map_entry = NULL;
553 	struct xsk_map *map;
554 
555 	while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
556 		xsk_map_try_sock_delete(map, xs, map_entry);
557 		xsk_map_put(map);
558 	}
559 }
560 
561 static int xsk_release(struct socket *sock)
562 {
563 	struct sock *sk = sock->sk;
564 	struct xdp_sock *xs = xdp_sk(sk);
565 	struct net *net;
566 
567 	if (!sk)
568 		return 0;
569 
570 	net = sock_net(sk);
571 
572 	mutex_lock(&net->xdp.lock);
573 	sk_del_node_init_rcu(sk);
574 	mutex_unlock(&net->xdp.lock);
575 
576 	local_bh_disable();
577 	sock_prot_inuse_add(net, sk->sk_prot, -1);
578 	local_bh_enable();
579 
580 	xsk_delete_from_maps(xs);
581 	mutex_lock(&xs->mutex);
582 	xsk_unbind_dev(xs);
583 	mutex_unlock(&xs->mutex);
584 
585 	xskq_destroy(xs->rx);
586 	xskq_destroy(xs->tx);
587 
588 	sock_orphan(sk);
589 	sock->sk = NULL;
590 
591 	sk_refcnt_debug_release(sk);
592 	sock_put(sk);
593 
594 	return 0;
595 }
596 
597 static struct socket *xsk_lookup_xsk_from_fd(int fd)
598 {
599 	struct socket *sock;
600 	int err;
601 
602 	sock = sockfd_lookup(fd, &err);
603 	if (!sock)
604 		return ERR_PTR(-ENOTSOCK);
605 
606 	if (sock->sk->sk_family != PF_XDP) {
607 		sockfd_put(sock);
608 		return ERR_PTR(-ENOPROTOOPT);
609 	}
610 
611 	return sock;
612 }
613 
614 /* Check if umem pages are contiguous.
615  * If zero-copy mode, use the DMA address to do the page contiguity check
616  * For all other modes we use addr (kernel virtual address)
617  * Store the result in the low bits of addr.
618  */
619 static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags)
620 {
621 	struct xdp_umem_page *pgs = umem->pages;
622 	int i, is_contig;
623 
624 	for (i = 0; i < umem->npgs - 1; i++) {
625 		is_contig = (flags & XDP_ZEROCOPY) ?
626 			(pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) :
627 			(pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr);
628 		pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT;
629 	}
630 }
631 
632 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
633 {
634 	struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
635 	struct sock *sk = sock->sk;
636 	struct xdp_sock *xs = xdp_sk(sk);
637 	struct net_device *dev;
638 	u32 flags, qid;
639 	int err = 0;
640 
641 	if (addr_len < sizeof(struct sockaddr_xdp))
642 		return -EINVAL;
643 	if (sxdp->sxdp_family != AF_XDP)
644 		return -EINVAL;
645 
646 	flags = sxdp->sxdp_flags;
647 	if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
648 		      XDP_USE_NEED_WAKEUP))
649 		return -EINVAL;
650 
651 	rtnl_lock();
652 	mutex_lock(&xs->mutex);
653 	if (xs->state != XSK_READY) {
654 		err = -EBUSY;
655 		goto out_release;
656 	}
657 
658 	dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
659 	if (!dev) {
660 		err = -ENODEV;
661 		goto out_release;
662 	}
663 
664 	if (!xs->rx && !xs->tx) {
665 		err = -EINVAL;
666 		goto out_unlock;
667 	}
668 
669 	qid = sxdp->sxdp_queue_id;
670 
671 	if (flags & XDP_SHARED_UMEM) {
672 		struct xdp_sock *umem_xs;
673 		struct socket *sock;
674 
675 		if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
676 		    (flags & XDP_USE_NEED_WAKEUP)) {
677 			/* Cannot specify flags for shared sockets. */
678 			err = -EINVAL;
679 			goto out_unlock;
680 		}
681 
682 		if (xs->umem) {
683 			/* We have already our own. */
684 			err = -EINVAL;
685 			goto out_unlock;
686 		}
687 
688 		sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
689 		if (IS_ERR(sock)) {
690 			err = PTR_ERR(sock);
691 			goto out_unlock;
692 		}
693 
694 		umem_xs = xdp_sk(sock->sk);
695 		if (!xsk_is_bound(umem_xs)) {
696 			err = -EBADF;
697 			sockfd_put(sock);
698 			goto out_unlock;
699 		}
700 		if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
701 			err = -EINVAL;
702 			sockfd_put(sock);
703 			goto out_unlock;
704 		}
705 
706 		xdp_get_umem(umem_xs->umem);
707 		WRITE_ONCE(xs->umem, umem_xs->umem);
708 		sockfd_put(sock);
709 	} else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
710 		err = -EINVAL;
711 		goto out_unlock;
712 	} else {
713 		/* This xsk has its own umem. */
714 		xskq_set_umem(xs->umem->fq, xs->umem->size,
715 			      xs->umem->chunk_mask);
716 		xskq_set_umem(xs->umem->cq, xs->umem->size,
717 			      xs->umem->chunk_mask);
718 
719 		err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
720 		if (err)
721 			goto out_unlock;
722 
723 		xsk_check_page_contiguity(xs->umem, flags);
724 	}
725 
726 	xs->dev = dev;
727 	xs->zc = xs->umem->zc;
728 	xs->queue_id = qid;
729 	xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask);
730 	xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask);
731 	xdp_add_sk_umem(xs->umem, xs);
732 
733 out_unlock:
734 	if (err) {
735 		dev_put(dev);
736 	} else {
737 		/* Matches smp_rmb() in bind() for shared umem
738 		 * sockets, and xsk_is_bound().
739 		 */
740 		smp_wmb();
741 		WRITE_ONCE(xs->state, XSK_BOUND);
742 	}
743 out_release:
744 	mutex_unlock(&xs->mutex);
745 	rtnl_unlock();
746 	return err;
747 }
748 
749 struct xdp_umem_reg_v1 {
750 	__u64 addr; /* Start of packet data area */
751 	__u64 len; /* Length of packet data area */
752 	__u32 chunk_size;
753 	__u32 headroom;
754 };
755 
756 static int xsk_setsockopt(struct socket *sock, int level, int optname,
757 			  char __user *optval, unsigned int optlen)
758 {
759 	struct sock *sk = sock->sk;
760 	struct xdp_sock *xs = xdp_sk(sk);
761 	int err;
762 
763 	if (level != SOL_XDP)
764 		return -ENOPROTOOPT;
765 
766 	switch (optname) {
767 	case XDP_RX_RING:
768 	case XDP_TX_RING:
769 	{
770 		struct xsk_queue **q;
771 		int entries;
772 
773 		if (optlen < sizeof(entries))
774 			return -EINVAL;
775 		if (copy_from_user(&entries, optval, sizeof(entries)))
776 			return -EFAULT;
777 
778 		mutex_lock(&xs->mutex);
779 		if (xs->state != XSK_READY) {
780 			mutex_unlock(&xs->mutex);
781 			return -EBUSY;
782 		}
783 		q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
784 		err = xsk_init_queue(entries, q, false);
785 		if (!err && optname == XDP_TX_RING)
786 			/* Tx needs to be explicitly woken up the first time */
787 			xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
788 		mutex_unlock(&xs->mutex);
789 		return err;
790 	}
791 	case XDP_UMEM_REG:
792 	{
793 		size_t mr_size = sizeof(struct xdp_umem_reg);
794 		struct xdp_umem_reg mr = {};
795 		struct xdp_umem *umem;
796 
797 		if (optlen < sizeof(struct xdp_umem_reg_v1))
798 			return -EINVAL;
799 		else if (optlen < sizeof(mr))
800 			mr_size = sizeof(struct xdp_umem_reg_v1);
801 
802 		if (copy_from_user(&mr, optval, mr_size))
803 			return -EFAULT;
804 
805 		mutex_lock(&xs->mutex);
806 		if (xs->state != XSK_READY || xs->umem) {
807 			mutex_unlock(&xs->mutex);
808 			return -EBUSY;
809 		}
810 
811 		umem = xdp_umem_create(&mr);
812 		if (IS_ERR(umem)) {
813 			mutex_unlock(&xs->mutex);
814 			return PTR_ERR(umem);
815 		}
816 
817 		/* Make sure umem is ready before it can be seen by others */
818 		smp_wmb();
819 		WRITE_ONCE(xs->umem, umem);
820 		mutex_unlock(&xs->mutex);
821 		return 0;
822 	}
823 	case XDP_UMEM_FILL_RING:
824 	case XDP_UMEM_COMPLETION_RING:
825 	{
826 		struct xsk_queue **q;
827 		int entries;
828 
829 		if (copy_from_user(&entries, optval, sizeof(entries)))
830 			return -EFAULT;
831 
832 		mutex_lock(&xs->mutex);
833 		if (xs->state != XSK_READY) {
834 			mutex_unlock(&xs->mutex);
835 			return -EBUSY;
836 		}
837 		if (!xs->umem) {
838 			mutex_unlock(&xs->mutex);
839 			return -EINVAL;
840 		}
841 
842 		q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
843 			&xs->umem->cq;
844 		err = xsk_init_queue(entries, q, true);
845 		mutex_unlock(&xs->mutex);
846 		return err;
847 	}
848 	default:
849 		break;
850 	}
851 
852 	return -ENOPROTOOPT;
853 }
854 
855 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
856 {
857 	ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
858 	ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
859 	ring->desc = offsetof(struct xdp_rxtx_ring, desc);
860 }
861 
862 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
863 {
864 	ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
865 	ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
866 	ring->desc = offsetof(struct xdp_umem_ring, desc);
867 }
868 
869 static int xsk_getsockopt(struct socket *sock, int level, int optname,
870 			  char __user *optval, int __user *optlen)
871 {
872 	struct sock *sk = sock->sk;
873 	struct xdp_sock *xs = xdp_sk(sk);
874 	int len;
875 
876 	if (level != SOL_XDP)
877 		return -ENOPROTOOPT;
878 
879 	if (get_user(len, optlen))
880 		return -EFAULT;
881 	if (len < 0)
882 		return -EINVAL;
883 
884 	switch (optname) {
885 	case XDP_STATISTICS:
886 	{
887 		struct xdp_statistics stats;
888 
889 		if (len < sizeof(stats))
890 			return -EINVAL;
891 
892 		mutex_lock(&xs->mutex);
893 		stats.rx_dropped = xs->rx_dropped;
894 		stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
895 		stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
896 		mutex_unlock(&xs->mutex);
897 
898 		if (copy_to_user(optval, &stats, sizeof(stats)))
899 			return -EFAULT;
900 		if (put_user(sizeof(stats), optlen))
901 			return -EFAULT;
902 
903 		return 0;
904 	}
905 	case XDP_MMAP_OFFSETS:
906 	{
907 		struct xdp_mmap_offsets off;
908 		struct xdp_mmap_offsets_v1 off_v1;
909 		bool flags_supported = true;
910 		void *to_copy;
911 
912 		if (len < sizeof(off_v1))
913 			return -EINVAL;
914 		else if (len < sizeof(off))
915 			flags_supported = false;
916 
917 		if (flags_supported) {
918 			/* xdp_ring_offset is identical to xdp_ring_offset_v1
919 			 * except for the flags field added to the end.
920 			 */
921 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
922 					       &off.rx);
923 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
924 					       &off.tx);
925 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
926 					       &off.fr);
927 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
928 					       &off.cr);
929 			off.rx.flags = offsetof(struct xdp_rxtx_ring,
930 						ptrs.flags);
931 			off.tx.flags = offsetof(struct xdp_rxtx_ring,
932 						ptrs.flags);
933 			off.fr.flags = offsetof(struct xdp_umem_ring,
934 						ptrs.flags);
935 			off.cr.flags = offsetof(struct xdp_umem_ring,
936 						ptrs.flags);
937 
938 			len = sizeof(off);
939 			to_copy = &off;
940 		} else {
941 			xsk_enter_rxtx_offsets(&off_v1.rx);
942 			xsk_enter_rxtx_offsets(&off_v1.tx);
943 			xsk_enter_umem_offsets(&off_v1.fr);
944 			xsk_enter_umem_offsets(&off_v1.cr);
945 
946 			len = sizeof(off_v1);
947 			to_copy = &off_v1;
948 		}
949 
950 		if (copy_to_user(optval, to_copy, len))
951 			return -EFAULT;
952 		if (put_user(len, optlen))
953 			return -EFAULT;
954 
955 		return 0;
956 	}
957 	case XDP_OPTIONS:
958 	{
959 		struct xdp_options opts = {};
960 
961 		if (len < sizeof(opts))
962 			return -EINVAL;
963 
964 		mutex_lock(&xs->mutex);
965 		if (xs->zc)
966 			opts.flags |= XDP_OPTIONS_ZEROCOPY;
967 		mutex_unlock(&xs->mutex);
968 
969 		len = sizeof(opts);
970 		if (copy_to_user(optval, &opts, len))
971 			return -EFAULT;
972 		if (put_user(len, optlen))
973 			return -EFAULT;
974 
975 		return 0;
976 	}
977 	default:
978 		break;
979 	}
980 
981 	return -EOPNOTSUPP;
982 }
983 
984 static int xsk_mmap(struct file *file, struct socket *sock,
985 		    struct vm_area_struct *vma)
986 {
987 	loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
988 	unsigned long size = vma->vm_end - vma->vm_start;
989 	struct xdp_sock *xs = xdp_sk(sock->sk);
990 	struct xsk_queue *q = NULL;
991 	struct xdp_umem *umem;
992 	unsigned long pfn;
993 	struct page *qpg;
994 
995 	if (READ_ONCE(xs->state) != XSK_READY)
996 		return -EBUSY;
997 
998 	if (offset == XDP_PGOFF_RX_RING) {
999 		q = READ_ONCE(xs->rx);
1000 	} else if (offset == XDP_PGOFF_TX_RING) {
1001 		q = READ_ONCE(xs->tx);
1002 	} else {
1003 		umem = READ_ONCE(xs->umem);
1004 		if (!umem)
1005 			return -EINVAL;
1006 
1007 		/* Matches the smp_wmb() in XDP_UMEM_REG */
1008 		smp_rmb();
1009 		if (offset == XDP_UMEM_PGOFF_FILL_RING)
1010 			q = READ_ONCE(umem->fq);
1011 		else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1012 			q = READ_ONCE(umem->cq);
1013 	}
1014 
1015 	if (!q)
1016 		return -EINVAL;
1017 
1018 	/* Matches the smp_wmb() in xsk_init_queue */
1019 	smp_rmb();
1020 	qpg = virt_to_head_page(q->ring);
1021 	if (size > page_size(qpg))
1022 		return -EINVAL;
1023 
1024 	pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
1025 	return remap_pfn_range(vma, vma->vm_start, pfn,
1026 			       size, vma->vm_page_prot);
1027 }
1028 
1029 static int xsk_notifier(struct notifier_block *this,
1030 			unsigned long msg, void *ptr)
1031 {
1032 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1033 	struct net *net = dev_net(dev);
1034 	struct sock *sk;
1035 
1036 	switch (msg) {
1037 	case NETDEV_UNREGISTER:
1038 		mutex_lock(&net->xdp.lock);
1039 		sk_for_each(sk, &net->xdp.list) {
1040 			struct xdp_sock *xs = xdp_sk(sk);
1041 
1042 			mutex_lock(&xs->mutex);
1043 			if (xs->dev == dev) {
1044 				sk->sk_err = ENETDOWN;
1045 				if (!sock_flag(sk, SOCK_DEAD))
1046 					sk->sk_error_report(sk);
1047 
1048 				xsk_unbind_dev(xs);
1049 
1050 				/* Clear device references in umem. */
1051 				xdp_umem_clear_dev(xs->umem);
1052 			}
1053 			mutex_unlock(&xs->mutex);
1054 		}
1055 		mutex_unlock(&net->xdp.lock);
1056 		break;
1057 	}
1058 	return NOTIFY_DONE;
1059 }
1060 
1061 static struct proto xsk_proto = {
1062 	.name =		"XDP",
1063 	.owner =	THIS_MODULE,
1064 	.obj_size =	sizeof(struct xdp_sock),
1065 };
1066 
1067 static const struct proto_ops xsk_proto_ops = {
1068 	.family		= PF_XDP,
1069 	.owner		= THIS_MODULE,
1070 	.release	= xsk_release,
1071 	.bind		= xsk_bind,
1072 	.connect	= sock_no_connect,
1073 	.socketpair	= sock_no_socketpair,
1074 	.accept		= sock_no_accept,
1075 	.getname	= sock_no_getname,
1076 	.poll		= xsk_poll,
1077 	.ioctl		= sock_no_ioctl,
1078 	.listen		= sock_no_listen,
1079 	.shutdown	= sock_no_shutdown,
1080 	.setsockopt	= xsk_setsockopt,
1081 	.getsockopt	= xsk_getsockopt,
1082 	.sendmsg	= xsk_sendmsg,
1083 	.recvmsg	= sock_no_recvmsg,
1084 	.mmap		= xsk_mmap,
1085 	.sendpage	= sock_no_sendpage,
1086 };
1087 
1088 static void xsk_destruct(struct sock *sk)
1089 {
1090 	struct xdp_sock *xs = xdp_sk(sk);
1091 
1092 	if (!sock_flag(sk, SOCK_DEAD))
1093 		return;
1094 
1095 	xdp_put_umem(xs->umem);
1096 
1097 	sk_refcnt_debug_dec(sk);
1098 }
1099 
1100 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1101 		      int kern)
1102 {
1103 	struct sock *sk;
1104 	struct xdp_sock *xs;
1105 
1106 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
1107 		return -EPERM;
1108 	if (sock->type != SOCK_RAW)
1109 		return -ESOCKTNOSUPPORT;
1110 
1111 	if (protocol)
1112 		return -EPROTONOSUPPORT;
1113 
1114 	sock->state = SS_UNCONNECTED;
1115 
1116 	sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1117 	if (!sk)
1118 		return -ENOBUFS;
1119 
1120 	sock->ops = &xsk_proto_ops;
1121 
1122 	sock_init_data(sock, sk);
1123 
1124 	sk->sk_family = PF_XDP;
1125 
1126 	sk->sk_destruct = xsk_destruct;
1127 	sk_refcnt_debug_inc(sk);
1128 
1129 	sock_set_flag(sk, SOCK_RCU_FREE);
1130 
1131 	xs = xdp_sk(sk);
1132 	xs->state = XSK_READY;
1133 	mutex_init(&xs->mutex);
1134 	spin_lock_init(&xs->rx_lock);
1135 	spin_lock_init(&xs->tx_completion_lock);
1136 
1137 	INIT_LIST_HEAD(&xs->map_list);
1138 	spin_lock_init(&xs->map_list_lock);
1139 
1140 	mutex_lock(&net->xdp.lock);
1141 	sk_add_node_rcu(sk, &net->xdp.list);
1142 	mutex_unlock(&net->xdp.lock);
1143 
1144 	local_bh_disable();
1145 	sock_prot_inuse_add(net, &xsk_proto, 1);
1146 	local_bh_enable();
1147 
1148 	return 0;
1149 }
1150 
1151 static const struct net_proto_family xsk_family_ops = {
1152 	.family = PF_XDP,
1153 	.create = xsk_create,
1154 	.owner	= THIS_MODULE,
1155 };
1156 
1157 static struct notifier_block xsk_netdev_notifier = {
1158 	.notifier_call	= xsk_notifier,
1159 };
1160 
1161 static int __net_init xsk_net_init(struct net *net)
1162 {
1163 	mutex_init(&net->xdp.lock);
1164 	INIT_HLIST_HEAD(&net->xdp.list);
1165 	return 0;
1166 }
1167 
1168 static void __net_exit xsk_net_exit(struct net *net)
1169 {
1170 	WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1171 }
1172 
1173 static struct pernet_operations xsk_net_ops = {
1174 	.init = xsk_net_init,
1175 	.exit = xsk_net_exit,
1176 };
1177 
1178 static int __init xsk_init(void)
1179 {
1180 	int err;
1181 
1182 	err = proto_register(&xsk_proto, 0 /* no slab */);
1183 	if (err)
1184 		goto out;
1185 
1186 	err = sock_register(&xsk_family_ops);
1187 	if (err)
1188 		goto out_proto;
1189 
1190 	err = register_pernet_subsys(&xsk_net_ops);
1191 	if (err)
1192 		goto out_sk;
1193 
1194 	err = register_netdevice_notifier(&xsk_netdev_notifier);
1195 	if (err)
1196 		goto out_pernet;
1197 
1198 	return 0;
1199 
1200 out_pernet:
1201 	unregister_pernet_subsys(&xsk_net_ops);
1202 out_sk:
1203 	sock_unregister(PF_XDP);
1204 out_proto:
1205 	proto_unregister(&xsk_proto);
1206 out:
1207 	return err;
1208 }
1209 
1210 fs_initcall(xsk_init);
1211