xref: /openbmc/linux/net/xdp/xsk.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3  *
4  * AF_XDP sockets allows a channel between XDP programs and userspace
5  * applications.
6  * Copyright(c) 2018 Intel Corporation.
7  *
8  * Author(s): Björn Töpel <bjorn.topel@intel.com>
9  *	      Magnus Karlsson <magnus.karlsson@intel.com>
10  */
11 
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13 
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock.h>
26 #include <net/xdp.h>
27 
28 #include "xsk_queue.h"
29 #include "xdp_umem.h"
30 #include "xsk.h"
31 
32 #define TX_BATCH_SIZE 16
33 
34 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
35 
36 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
37 {
38 	return READ_ONCE(xs->rx) &&  READ_ONCE(xs->umem) &&
39 		READ_ONCE(xs->umem->fq);
40 }
41 
42 bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt)
43 {
44 	return xskq_cons_has_entries(umem->fq, cnt);
45 }
46 EXPORT_SYMBOL(xsk_umem_has_addrs);
47 
48 bool xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr)
49 {
50 	return xskq_cons_peek_addr(umem->fq, addr, umem);
51 }
52 EXPORT_SYMBOL(xsk_umem_peek_addr);
53 
54 void xsk_umem_release_addr(struct xdp_umem *umem)
55 {
56 	xskq_cons_release(umem->fq);
57 }
58 EXPORT_SYMBOL(xsk_umem_release_addr);
59 
60 void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
61 {
62 	if (umem->need_wakeup & XDP_WAKEUP_RX)
63 		return;
64 
65 	umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
66 	umem->need_wakeup |= XDP_WAKEUP_RX;
67 }
68 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
69 
70 void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
71 {
72 	struct xdp_sock *xs;
73 
74 	if (umem->need_wakeup & XDP_WAKEUP_TX)
75 		return;
76 
77 	rcu_read_lock();
78 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
79 		xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
80 	}
81 	rcu_read_unlock();
82 
83 	umem->need_wakeup |= XDP_WAKEUP_TX;
84 }
85 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
86 
87 void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
88 {
89 	if (!(umem->need_wakeup & XDP_WAKEUP_RX))
90 		return;
91 
92 	umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
93 	umem->need_wakeup &= ~XDP_WAKEUP_RX;
94 }
95 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
96 
97 void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
98 {
99 	struct xdp_sock *xs;
100 
101 	if (!(umem->need_wakeup & XDP_WAKEUP_TX))
102 		return;
103 
104 	rcu_read_lock();
105 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
106 		xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
107 	}
108 	rcu_read_unlock();
109 
110 	umem->need_wakeup &= ~XDP_WAKEUP_TX;
111 }
112 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
113 
114 bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
115 {
116 	return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
117 }
118 EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
119 
120 /* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for
121  * each page. This is only required in copy mode.
122  */
123 static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf,
124 			     u32 len, u32 metalen)
125 {
126 	void *to_buf = xdp_umem_get_data(umem, addr);
127 
128 	addr = xsk_umem_add_offset_to_addr(addr);
129 	if (xskq_cons_crosses_non_contig_pg(umem, addr, len + metalen)) {
130 		void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr;
131 		u64 page_start = addr & ~(PAGE_SIZE - 1);
132 		u64 first_len = PAGE_SIZE - (addr - page_start);
133 
134 		memcpy(to_buf, from_buf, first_len + metalen);
135 		memcpy(next_pg_addr, from_buf + first_len, len - first_len);
136 
137 		return;
138 	}
139 
140 	memcpy(to_buf, from_buf, len + metalen);
141 }
142 
143 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
144 {
145 	u64 offset = xs->umem->headroom;
146 	u64 addr, memcpy_addr;
147 	void *from_buf;
148 	u32 metalen;
149 	int err;
150 
151 	if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
152 	    len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
153 		xs->rx_dropped++;
154 		return -ENOSPC;
155 	}
156 
157 	if (unlikely(xdp_data_meta_unsupported(xdp))) {
158 		from_buf = xdp->data;
159 		metalen = 0;
160 	} else {
161 		from_buf = xdp->data_meta;
162 		metalen = xdp->data - xdp->data_meta;
163 	}
164 
165 	memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
166 	__xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen);
167 
168 	offset += metalen;
169 	addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
170 	err = xskq_prod_reserve_desc(xs->rx, addr, len);
171 	if (!err) {
172 		xskq_cons_release(xs->umem->fq);
173 		xdp_return_buff(xdp);
174 		return 0;
175 	}
176 
177 	xs->rx_dropped++;
178 	return err;
179 }
180 
181 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
182 {
183 	int err = xskq_prod_reserve_desc(xs->rx, xdp->handle, len);
184 
185 	if (err)
186 		xs->rx_dropped++;
187 
188 	return err;
189 }
190 
191 static bool xsk_is_bound(struct xdp_sock *xs)
192 {
193 	if (READ_ONCE(xs->state) == XSK_BOUND) {
194 		/* Matches smp_wmb() in bind(). */
195 		smp_rmb();
196 		return true;
197 	}
198 	return false;
199 }
200 
201 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
202 {
203 	u32 len;
204 
205 	if (!xsk_is_bound(xs))
206 		return -EINVAL;
207 
208 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
209 		return -EINVAL;
210 
211 	len = xdp->data_end - xdp->data;
212 
213 	return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ?
214 		__xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len);
215 }
216 
217 static void xsk_flush(struct xdp_sock *xs)
218 {
219 	xskq_prod_submit(xs->rx);
220 	__xskq_cons_release(xs->umem->fq);
221 	sock_def_readable(&xs->sk);
222 }
223 
224 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
225 {
226 	u32 metalen = xdp->data - xdp->data_meta;
227 	u32 len = xdp->data_end - xdp->data;
228 	u64 offset = xs->umem->headroom;
229 	void *buffer;
230 	u64 addr;
231 	int err;
232 
233 	spin_lock_bh(&xs->rx_lock);
234 
235 	if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) {
236 		err = -EINVAL;
237 		goto out_unlock;
238 	}
239 
240 	if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
241 	    len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
242 		err = -ENOSPC;
243 		goto out_drop;
244 	}
245 
246 	addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
247 	buffer = xdp_umem_get_data(xs->umem, addr);
248 	memcpy(buffer, xdp->data_meta, len + metalen);
249 
250 	addr = xsk_umem_adjust_offset(xs->umem, addr, metalen);
251 	err = xskq_prod_reserve_desc(xs->rx, addr, len);
252 	if (err)
253 		goto out_drop;
254 
255 	xskq_cons_release(xs->umem->fq);
256 	xskq_prod_submit(xs->rx);
257 
258 	spin_unlock_bh(&xs->rx_lock);
259 
260 	xs->sk.sk_data_ready(&xs->sk);
261 	return 0;
262 
263 out_drop:
264 	xs->rx_dropped++;
265 out_unlock:
266 	spin_unlock_bh(&xs->rx_lock);
267 	return err;
268 }
269 
270 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
271 {
272 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
273 	int err;
274 
275 	err = xsk_rcv(xs, xdp);
276 	if (err)
277 		return err;
278 
279 	if (!xs->flush_node.prev)
280 		list_add(&xs->flush_node, flush_list);
281 
282 	return 0;
283 }
284 
285 void __xsk_map_flush(void)
286 {
287 	struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
288 	struct xdp_sock *xs, *tmp;
289 
290 	list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
291 		xsk_flush(xs);
292 		__list_del_clearprev(&xs->flush_node);
293 	}
294 }
295 
296 void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
297 {
298 	xskq_prod_submit_n(umem->cq, nb_entries);
299 }
300 EXPORT_SYMBOL(xsk_umem_complete_tx);
301 
302 void xsk_umem_consume_tx_done(struct xdp_umem *umem)
303 {
304 	struct xdp_sock *xs;
305 
306 	rcu_read_lock();
307 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
308 		__xskq_cons_release(xs->tx);
309 		xs->sk.sk_write_space(&xs->sk);
310 	}
311 	rcu_read_unlock();
312 }
313 EXPORT_SYMBOL(xsk_umem_consume_tx_done);
314 
315 bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
316 {
317 	struct xdp_sock *xs;
318 
319 	rcu_read_lock();
320 	list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
321 		if (!xskq_cons_peek_desc(xs->tx, desc, umem))
322 			continue;
323 
324 		/* This is the backpreassure mechanism for the Tx path.
325 		 * Reserve space in the completion queue and only proceed
326 		 * if there is space in it. This avoids having to implement
327 		 * any buffering in the Tx path.
328 		 */
329 		if (xskq_prod_reserve_addr(umem->cq, desc->addr))
330 			goto out;
331 
332 		xskq_cons_release(xs->tx);
333 		rcu_read_unlock();
334 		return true;
335 	}
336 
337 out:
338 	rcu_read_unlock();
339 	return false;
340 }
341 EXPORT_SYMBOL(xsk_umem_consume_tx);
342 
343 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
344 {
345 	struct net_device *dev = xs->dev;
346 	int err;
347 
348 	rcu_read_lock();
349 	err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
350 	rcu_read_unlock();
351 
352 	return err;
353 }
354 
355 static int xsk_zc_xmit(struct xdp_sock *xs)
356 {
357 	return xsk_wakeup(xs, XDP_WAKEUP_TX);
358 }
359 
360 static void xsk_destruct_skb(struct sk_buff *skb)
361 {
362 	u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
363 	struct xdp_sock *xs = xdp_sk(skb->sk);
364 	unsigned long flags;
365 
366 	spin_lock_irqsave(&xs->tx_completion_lock, flags);
367 	xskq_prod_submit_addr(xs->umem->cq, addr);
368 	spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
369 
370 	sock_wfree(skb);
371 }
372 
373 static int xsk_generic_xmit(struct sock *sk)
374 {
375 	struct xdp_sock *xs = xdp_sk(sk);
376 	u32 max_batch = TX_BATCH_SIZE;
377 	bool sent_frame = false;
378 	struct xdp_desc desc;
379 	struct sk_buff *skb;
380 	int err = 0;
381 
382 	mutex_lock(&xs->mutex);
383 
384 	if (xs->queue_id >= xs->dev->real_num_tx_queues)
385 		goto out;
386 
387 	while (xskq_cons_peek_desc(xs->tx, &desc, xs->umem)) {
388 		char *buffer;
389 		u64 addr;
390 		u32 len;
391 
392 		if (max_batch-- == 0) {
393 			err = -EAGAIN;
394 			goto out;
395 		}
396 
397 		len = desc.len;
398 		skb = sock_alloc_send_skb(sk, len, 1, &err);
399 		if (unlikely(!skb)) {
400 			err = -EAGAIN;
401 			goto out;
402 		}
403 
404 		skb_put(skb, len);
405 		addr = desc.addr;
406 		buffer = xdp_umem_get_data(xs->umem, addr);
407 		err = skb_store_bits(skb, 0, buffer, len);
408 		/* This is the backpreassure mechanism for the Tx path.
409 		 * Reserve space in the completion queue and only proceed
410 		 * if there is space in it. This avoids having to implement
411 		 * any buffering in the Tx path.
412 		 */
413 		if (unlikely(err) || xskq_prod_reserve(xs->umem->cq)) {
414 			kfree_skb(skb);
415 			goto out;
416 		}
417 
418 		skb->dev = xs->dev;
419 		skb->priority = sk->sk_priority;
420 		skb->mark = sk->sk_mark;
421 		skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
422 		skb->destructor = xsk_destruct_skb;
423 
424 		err = dev_direct_xmit(skb, xs->queue_id);
425 		xskq_cons_release(xs->tx);
426 		/* Ignore NET_XMIT_CN as packet might have been sent */
427 		if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
428 			/* SKB completed but not sent */
429 			err = -EBUSY;
430 			goto out;
431 		}
432 
433 		sent_frame = true;
434 	}
435 
436 out:
437 	if (sent_frame)
438 		sk->sk_write_space(sk);
439 
440 	mutex_unlock(&xs->mutex);
441 	return err;
442 }
443 
444 static int __xsk_sendmsg(struct sock *sk)
445 {
446 	struct xdp_sock *xs = xdp_sk(sk);
447 
448 	if (unlikely(!(xs->dev->flags & IFF_UP)))
449 		return -ENETDOWN;
450 	if (unlikely(!xs->tx))
451 		return -ENOBUFS;
452 
453 	return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
454 }
455 
456 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
457 {
458 	bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
459 	struct sock *sk = sock->sk;
460 	struct xdp_sock *xs = xdp_sk(sk);
461 
462 	if (unlikely(!xsk_is_bound(xs)))
463 		return -ENXIO;
464 	if (unlikely(need_wait))
465 		return -EOPNOTSUPP;
466 
467 	return __xsk_sendmsg(sk);
468 }
469 
470 static __poll_t xsk_poll(struct file *file, struct socket *sock,
471 			     struct poll_table_struct *wait)
472 {
473 	__poll_t mask = datagram_poll(file, sock, wait);
474 	struct sock *sk = sock->sk;
475 	struct xdp_sock *xs = xdp_sk(sk);
476 	struct xdp_umem *umem;
477 
478 	if (unlikely(!xsk_is_bound(xs)))
479 		return mask;
480 
481 	umem = xs->umem;
482 
483 	if (umem->need_wakeup) {
484 		if (xs->zc)
485 			xsk_wakeup(xs, umem->need_wakeup);
486 		else
487 			/* Poll needs to drive Tx also in copy mode */
488 			__xsk_sendmsg(sk);
489 	}
490 
491 	if (xs->rx && !xskq_prod_is_empty(xs->rx))
492 		mask |= EPOLLIN | EPOLLRDNORM;
493 	if (xs->tx && !xskq_cons_is_full(xs->tx))
494 		mask |= EPOLLOUT | EPOLLWRNORM;
495 
496 	return mask;
497 }
498 
499 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
500 			  bool umem_queue)
501 {
502 	struct xsk_queue *q;
503 
504 	if (entries == 0 || *queue || !is_power_of_2(entries))
505 		return -EINVAL;
506 
507 	q = xskq_create(entries, umem_queue);
508 	if (!q)
509 		return -ENOMEM;
510 
511 	/* Make sure queue is ready before it can be seen by others */
512 	smp_wmb();
513 	WRITE_ONCE(*queue, q);
514 	return 0;
515 }
516 
517 static void xsk_unbind_dev(struct xdp_sock *xs)
518 {
519 	struct net_device *dev = xs->dev;
520 
521 	if (xs->state != XSK_BOUND)
522 		return;
523 	WRITE_ONCE(xs->state, XSK_UNBOUND);
524 
525 	/* Wait for driver to stop using the xdp socket. */
526 	xdp_del_sk_umem(xs->umem, xs);
527 	xs->dev = NULL;
528 	synchronize_net();
529 	dev_put(dev);
530 }
531 
532 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
533 					      struct xdp_sock ***map_entry)
534 {
535 	struct xsk_map *map = NULL;
536 	struct xsk_map_node *node;
537 
538 	*map_entry = NULL;
539 
540 	spin_lock_bh(&xs->map_list_lock);
541 	node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
542 					node);
543 	if (node) {
544 		WARN_ON(xsk_map_inc(node->map));
545 		map = node->map;
546 		*map_entry = node->map_entry;
547 	}
548 	spin_unlock_bh(&xs->map_list_lock);
549 	return map;
550 }
551 
552 static void xsk_delete_from_maps(struct xdp_sock *xs)
553 {
554 	/* This function removes the current XDP socket from all the
555 	 * maps it resides in. We need to take extra care here, due to
556 	 * the two locks involved. Each map has a lock synchronizing
557 	 * updates to the entries, and each socket has a lock that
558 	 * synchronizes access to the list of maps (map_list). For
559 	 * deadlock avoidance the locks need to be taken in the order
560 	 * "map lock"->"socket map list lock". We start off by
561 	 * accessing the socket map list, and take a reference to the
562 	 * map to guarantee existence between the
563 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
564 	 * calls. Then we ask the map to remove the socket, which
565 	 * tries to remove the socket from the map. Note that there
566 	 * might be updates to the map between
567 	 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
568 	 */
569 	struct xdp_sock **map_entry = NULL;
570 	struct xsk_map *map;
571 
572 	while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
573 		xsk_map_try_sock_delete(map, xs, map_entry);
574 		xsk_map_put(map);
575 	}
576 }
577 
578 static int xsk_release(struct socket *sock)
579 {
580 	struct sock *sk = sock->sk;
581 	struct xdp_sock *xs = xdp_sk(sk);
582 	struct net *net;
583 
584 	if (!sk)
585 		return 0;
586 
587 	net = sock_net(sk);
588 
589 	mutex_lock(&net->xdp.lock);
590 	sk_del_node_init_rcu(sk);
591 	mutex_unlock(&net->xdp.lock);
592 
593 	local_bh_disable();
594 	sock_prot_inuse_add(net, sk->sk_prot, -1);
595 	local_bh_enable();
596 
597 	xsk_delete_from_maps(xs);
598 	mutex_lock(&xs->mutex);
599 	xsk_unbind_dev(xs);
600 	mutex_unlock(&xs->mutex);
601 
602 	xskq_destroy(xs->rx);
603 	xskq_destroy(xs->tx);
604 
605 	sock_orphan(sk);
606 	sock->sk = NULL;
607 
608 	sk_refcnt_debug_release(sk);
609 	sock_put(sk);
610 
611 	return 0;
612 }
613 
614 static struct socket *xsk_lookup_xsk_from_fd(int fd)
615 {
616 	struct socket *sock;
617 	int err;
618 
619 	sock = sockfd_lookup(fd, &err);
620 	if (!sock)
621 		return ERR_PTR(-ENOTSOCK);
622 
623 	if (sock->sk->sk_family != PF_XDP) {
624 		sockfd_put(sock);
625 		return ERR_PTR(-ENOPROTOOPT);
626 	}
627 
628 	return sock;
629 }
630 
631 /* Check if umem pages are contiguous.
632  * If zero-copy mode, use the DMA address to do the page contiguity check
633  * For all other modes we use addr (kernel virtual address)
634  * Store the result in the low bits of addr.
635  */
636 static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags)
637 {
638 	struct xdp_umem_page *pgs = umem->pages;
639 	int i, is_contig;
640 
641 	for (i = 0; i < umem->npgs - 1; i++) {
642 		is_contig = (flags & XDP_ZEROCOPY) ?
643 			(pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) :
644 			(pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr);
645 		pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT;
646 	}
647 }
648 
649 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
650 {
651 	struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
652 	struct sock *sk = sock->sk;
653 	struct xdp_sock *xs = xdp_sk(sk);
654 	struct net_device *dev;
655 	u32 flags, qid;
656 	int err = 0;
657 
658 	if (addr_len < sizeof(struct sockaddr_xdp))
659 		return -EINVAL;
660 	if (sxdp->sxdp_family != AF_XDP)
661 		return -EINVAL;
662 
663 	flags = sxdp->sxdp_flags;
664 	if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
665 		      XDP_USE_NEED_WAKEUP))
666 		return -EINVAL;
667 
668 	rtnl_lock();
669 	mutex_lock(&xs->mutex);
670 	if (xs->state != XSK_READY) {
671 		err = -EBUSY;
672 		goto out_release;
673 	}
674 
675 	dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
676 	if (!dev) {
677 		err = -ENODEV;
678 		goto out_release;
679 	}
680 
681 	if (!xs->rx && !xs->tx) {
682 		err = -EINVAL;
683 		goto out_unlock;
684 	}
685 
686 	qid = sxdp->sxdp_queue_id;
687 
688 	if (flags & XDP_SHARED_UMEM) {
689 		struct xdp_sock *umem_xs;
690 		struct socket *sock;
691 
692 		if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
693 		    (flags & XDP_USE_NEED_WAKEUP)) {
694 			/* Cannot specify flags for shared sockets. */
695 			err = -EINVAL;
696 			goto out_unlock;
697 		}
698 
699 		if (xs->umem) {
700 			/* We have already our own. */
701 			err = -EINVAL;
702 			goto out_unlock;
703 		}
704 
705 		sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
706 		if (IS_ERR(sock)) {
707 			err = PTR_ERR(sock);
708 			goto out_unlock;
709 		}
710 
711 		umem_xs = xdp_sk(sock->sk);
712 		if (!xsk_is_bound(umem_xs)) {
713 			err = -EBADF;
714 			sockfd_put(sock);
715 			goto out_unlock;
716 		}
717 		if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
718 			err = -EINVAL;
719 			sockfd_put(sock);
720 			goto out_unlock;
721 		}
722 
723 		xdp_get_umem(umem_xs->umem);
724 		WRITE_ONCE(xs->umem, umem_xs->umem);
725 		sockfd_put(sock);
726 	} else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
727 		err = -EINVAL;
728 		goto out_unlock;
729 	} else {
730 		/* This xsk has its own umem. */
731 		xskq_set_umem(xs->umem->fq, xs->umem->size,
732 			      xs->umem->chunk_mask);
733 		xskq_set_umem(xs->umem->cq, xs->umem->size,
734 			      xs->umem->chunk_mask);
735 
736 		err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
737 		if (err)
738 			goto out_unlock;
739 
740 		xsk_check_page_contiguity(xs->umem, flags);
741 	}
742 
743 	xs->dev = dev;
744 	xs->zc = xs->umem->zc;
745 	xs->queue_id = qid;
746 	xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask);
747 	xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask);
748 	xdp_add_sk_umem(xs->umem, xs);
749 
750 out_unlock:
751 	if (err) {
752 		dev_put(dev);
753 	} else {
754 		/* Matches smp_rmb() in bind() for shared umem
755 		 * sockets, and xsk_is_bound().
756 		 */
757 		smp_wmb();
758 		WRITE_ONCE(xs->state, XSK_BOUND);
759 	}
760 out_release:
761 	mutex_unlock(&xs->mutex);
762 	rtnl_unlock();
763 	return err;
764 }
765 
766 struct xdp_umem_reg_v1 {
767 	__u64 addr; /* Start of packet data area */
768 	__u64 len; /* Length of packet data area */
769 	__u32 chunk_size;
770 	__u32 headroom;
771 };
772 
773 static int xsk_setsockopt(struct socket *sock, int level, int optname,
774 			  char __user *optval, unsigned int optlen)
775 {
776 	struct sock *sk = sock->sk;
777 	struct xdp_sock *xs = xdp_sk(sk);
778 	int err;
779 
780 	if (level != SOL_XDP)
781 		return -ENOPROTOOPT;
782 
783 	switch (optname) {
784 	case XDP_RX_RING:
785 	case XDP_TX_RING:
786 	{
787 		struct xsk_queue **q;
788 		int entries;
789 
790 		if (optlen < sizeof(entries))
791 			return -EINVAL;
792 		if (copy_from_user(&entries, optval, sizeof(entries)))
793 			return -EFAULT;
794 
795 		mutex_lock(&xs->mutex);
796 		if (xs->state != XSK_READY) {
797 			mutex_unlock(&xs->mutex);
798 			return -EBUSY;
799 		}
800 		q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
801 		err = xsk_init_queue(entries, q, false);
802 		if (!err && optname == XDP_TX_RING)
803 			/* Tx needs to be explicitly woken up the first time */
804 			xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
805 		mutex_unlock(&xs->mutex);
806 		return err;
807 	}
808 	case XDP_UMEM_REG:
809 	{
810 		size_t mr_size = sizeof(struct xdp_umem_reg);
811 		struct xdp_umem_reg mr = {};
812 		struct xdp_umem *umem;
813 
814 		if (optlen < sizeof(struct xdp_umem_reg_v1))
815 			return -EINVAL;
816 		else if (optlen < sizeof(mr))
817 			mr_size = sizeof(struct xdp_umem_reg_v1);
818 
819 		if (copy_from_user(&mr, optval, mr_size))
820 			return -EFAULT;
821 
822 		mutex_lock(&xs->mutex);
823 		if (xs->state != XSK_READY || xs->umem) {
824 			mutex_unlock(&xs->mutex);
825 			return -EBUSY;
826 		}
827 
828 		umem = xdp_umem_create(&mr);
829 		if (IS_ERR(umem)) {
830 			mutex_unlock(&xs->mutex);
831 			return PTR_ERR(umem);
832 		}
833 
834 		/* Make sure umem is ready before it can be seen by others */
835 		smp_wmb();
836 		WRITE_ONCE(xs->umem, umem);
837 		mutex_unlock(&xs->mutex);
838 		return 0;
839 	}
840 	case XDP_UMEM_FILL_RING:
841 	case XDP_UMEM_COMPLETION_RING:
842 	{
843 		struct xsk_queue **q;
844 		int entries;
845 
846 		if (copy_from_user(&entries, optval, sizeof(entries)))
847 			return -EFAULT;
848 
849 		mutex_lock(&xs->mutex);
850 		if (xs->state != XSK_READY) {
851 			mutex_unlock(&xs->mutex);
852 			return -EBUSY;
853 		}
854 		if (!xs->umem) {
855 			mutex_unlock(&xs->mutex);
856 			return -EINVAL;
857 		}
858 
859 		q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
860 			&xs->umem->cq;
861 		err = xsk_init_queue(entries, q, true);
862 		mutex_unlock(&xs->mutex);
863 		return err;
864 	}
865 	default:
866 		break;
867 	}
868 
869 	return -ENOPROTOOPT;
870 }
871 
872 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
873 {
874 	ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
875 	ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
876 	ring->desc = offsetof(struct xdp_rxtx_ring, desc);
877 }
878 
879 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
880 {
881 	ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
882 	ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
883 	ring->desc = offsetof(struct xdp_umem_ring, desc);
884 }
885 
886 static int xsk_getsockopt(struct socket *sock, int level, int optname,
887 			  char __user *optval, int __user *optlen)
888 {
889 	struct sock *sk = sock->sk;
890 	struct xdp_sock *xs = xdp_sk(sk);
891 	int len;
892 
893 	if (level != SOL_XDP)
894 		return -ENOPROTOOPT;
895 
896 	if (get_user(len, optlen))
897 		return -EFAULT;
898 	if (len < 0)
899 		return -EINVAL;
900 
901 	switch (optname) {
902 	case XDP_STATISTICS:
903 	{
904 		struct xdp_statistics stats;
905 
906 		if (len < sizeof(stats))
907 			return -EINVAL;
908 
909 		mutex_lock(&xs->mutex);
910 		stats.rx_dropped = xs->rx_dropped;
911 		stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
912 		stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
913 		mutex_unlock(&xs->mutex);
914 
915 		if (copy_to_user(optval, &stats, sizeof(stats)))
916 			return -EFAULT;
917 		if (put_user(sizeof(stats), optlen))
918 			return -EFAULT;
919 
920 		return 0;
921 	}
922 	case XDP_MMAP_OFFSETS:
923 	{
924 		struct xdp_mmap_offsets off;
925 		struct xdp_mmap_offsets_v1 off_v1;
926 		bool flags_supported = true;
927 		void *to_copy;
928 
929 		if (len < sizeof(off_v1))
930 			return -EINVAL;
931 		else if (len < sizeof(off))
932 			flags_supported = false;
933 
934 		if (flags_supported) {
935 			/* xdp_ring_offset is identical to xdp_ring_offset_v1
936 			 * except for the flags field added to the end.
937 			 */
938 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
939 					       &off.rx);
940 			xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
941 					       &off.tx);
942 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
943 					       &off.fr);
944 			xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
945 					       &off.cr);
946 			off.rx.flags = offsetof(struct xdp_rxtx_ring,
947 						ptrs.flags);
948 			off.tx.flags = offsetof(struct xdp_rxtx_ring,
949 						ptrs.flags);
950 			off.fr.flags = offsetof(struct xdp_umem_ring,
951 						ptrs.flags);
952 			off.cr.flags = offsetof(struct xdp_umem_ring,
953 						ptrs.flags);
954 
955 			len = sizeof(off);
956 			to_copy = &off;
957 		} else {
958 			xsk_enter_rxtx_offsets(&off_v1.rx);
959 			xsk_enter_rxtx_offsets(&off_v1.tx);
960 			xsk_enter_umem_offsets(&off_v1.fr);
961 			xsk_enter_umem_offsets(&off_v1.cr);
962 
963 			len = sizeof(off_v1);
964 			to_copy = &off_v1;
965 		}
966 
967 		if (copy_to_user(optval, to_copy, len))
968 			return -EFAULT;
969 		if (put_user(len, optlen))
970 			return -EFAULT;
971 
972 		return 0;
973 	}
974 	case XDP_OPTIONS:
975 	{
976 		struct xdp_options opts = {};
977 
978 		if (len < sizeof(opts))
979 			return -EINVAL;
980 
981 		mutex_lock(&xs->mutex);
982 		if (xs->zc)
983 			opts.flags |= XDP_OPTIONS_ZEROCOPY;
984 		mutex_unlock(&xs->mutex);
985 
986 		len = sizeof(opts);
987 		if (copy_to_user(optval, &opts, len))
988 			return -EFAULT;
989 		if (put_user(len, optlen))
990 			return -EFAULT;
991 
992 		return 0;
993 	}
994 	default:
995 		break;
996 	}
997 
998 	return -EOPNOTSUPP;
999 }
1000 
1001 static int xsk_mmap(struct file *file, struct socket *sock,
1002 		    struct vm_area_struct *vma)
1003 {
1004 	loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1005 	unsigned long size = vma->vm_end - vma->vm_start;
1006 	struct xdp_sock *xs = xdp_sk(sock->sk);
1007 	struct xsk_queue *q = NULL;
1008 	struct xdp_umem *umem;
1009 	unsigned long pfn;
1010 	struct page *qpg;
1011 
1012 	if (READ_ONCE(xs->state) != XSK_READY)
1013 		return -EBUSY;
1014 
1015 	if (offset == XDP_PGOFF_RX_RING) {
1016 		q = READ_ONCE(xs->rx);
1017 	} else if (offset == XDP_PGOFF_TX_RING) {
1018 		q = READ_ONCE(xs->tx);
1019 	} else {
1020 		umem = READ_ONCE(xs->umem);
1021 		if (!umem)
1022 			return -EINVAL;
1023 
1024 		/* Matches the smp_wmb() in XDP_UMEM_REG */
1025 		smp_rmb();
1026 		if (offset == XDP_UMEM_PGOFF_FILL_RING)
1027 			q = READ_ONCE(umem->fq);
1028 		else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1029 			q = READ_ONCE(umem->cq);
1030 	}
1031 
1032 	if (!q)
1033 		return -EINVAL;
1034 
1035 	/* Matches the smp_wmb() in xsk_init_queue */
1036 	smp_rmb();
1037 	qpg = virt_to_head_page(q->ring);
1038 	if (size > page_size(qpg))
1039 		return -EINVAL;
1040 
1041 	pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
1042 	return remap_pfn_range(vma, vma->vm_start, pfn,
1043 			       size, vma->vm_page_prot);
1044 }
1045 
1046 static int xsk_notifier(struct notifier_block *this,
1047 			unsigned long msg, void *ptr)
1048 {
1049 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1050 	struct net *net = dev_net(dev);
1051 	struct sock *sk;
1052 
1053 	switch (msg) {
1054 	case NETDEV_UNREGISTER:
1055 		mutex_lock(&net->xdp.lock);
1056 		sk_for_each(sk, &net->xdp.list) {
1057 			struct xdp_sock *xs = xdp_sk(sk);
1058 
1059 			mutex_lock(&xs->mutex);
1060 			if (xs->dev == dev) {
1061 				sk->sk_err = ENETDOWN;
1062 				if (!sock_flag(sk, SOCK_DEAD))
1063 					sk->sk_error_report(sk);
1064 
1065 				xsk_unbind_dev(xs);
1066 
1067 				/* Clear device references in umem. */
1068 				xdp_umem_clear_dev(xs->umem);
1069 			}
1070 			mutex_unlock(&xs->mutex);
1071 		}
1072 		mutex_unlock(&net->xdp.lock);
1073 		break;
1074 	}
1075 	return NOTIFY_DONE;
1076 }
1077 
1078 static struct proto xsk_proto = {
1079 	.name =		"XDP",
1080 	.owner =	THIS_MODULE,
1081 	.obj_size =	sizeof(struct xdp_sock),
1082 };
1083 
1084 static const struct proto_ops xsk_proto_ops = {
1085 	.family		= PF_XDP,
1086 	.owner		= THIS_MODULE,
1087 	.release	= xsk_release,
1088 	.bind		= xsk_bind,
1089 	.connect	= sock_no_connect,
1090 	.socketpair	= sock_no_socketpair,
1091 	.accept		= sock_no_accept,
1092 	.getname	= sock_no_getname,
1093 	.poll		= xsk_poll,
1094 	.ioctl		= sock_no_ioctl,
1095 	.listen		= sock_no_listen,
1096 	.shutdown	= sock_no_shutdown,
1097 	.setsockopt	= xsk_setsockopt,
1098 	.getsockopt	= xsk_getsockopt,
1099 	.sendmsg	= xsk_sendmsg,
1100 	.recvmsg	= sock_no_recvmsg,
1101 	.mmap		= xsk_mmap,
1102 	.sendpage	= sock_no_sendpage,
1103 };
1104 
1105 static void xsk_destruct(struct sock *sk)
1106 {
1107 	struct xdp_sock *xs = xdp_sk(sk);
1108 
1109 	if (!sock_flag(sk, SOCK_DEAD))
1110 		return;
1111 
1112 	xdp_put_umem(xs->umem);
1113 
1114 	sk_refcnt_debug_dec(sk);
1115 }
1116 
1117 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1118 		      int kern)
1119 {
1120 	struct sock *sk;
1121 	struct xdp_sock *xs;
1122 
1123 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
1124 		return -EPERM;
1125 	if (sock->type != SOCK_RAW)
1126 		return -ESOCKTNOSUPPORT;
1127 
1128 	if (protocol)
1129 		return -EPROTONOSUPPORT;
1130 
1131 	sock->state = SS_UNCONNECTED;
1132 
1133 	sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1134 	if (!sk)
1135 		return -ENOBUFS;
1136 
1137 	sock->ops = &xsk_proto_ops;
1138 
1139 	sock_init_data(sock, sk);
1140 
1141 	sk->sk_family = PF_XDP;
1142 
1143 	sk->sk_destruct = xsk_destruct;
1144 	sk_refcnt_debug_inc(sk);
1145 
1146 	sock_set_flag(sk, SOCK_RCU_FREE);
1147 
1148 	xs = xdp_sk(sk);
1149 	xs->state = XSK_READY;
1150 	mutex_init(&xs->mutex);
1151 	spin_lock_init(&xs->rx_lock);
1152 	spin_lock_init(&xs->tx_completion_lock);
1153 
1154 	INIT_LIST_HEAD(&xs->map_list);
1155 	spin_lock_init(&xs->map_list_lock);
1156 
1157 	mutex_lock(&net->xdp.lock);
1158 	sk_add_node_rcu(sk, &net->xdp.list);
1159 	mutex_unlock(&net->xdp.lock);
1160 
1161 	local_bh_disable();
1162 	sock_prot_inuse_add(net, &xsk_proto, 1);
1163 	local_bh_enable();
1164 
1165 	return 0;
1166 }
1167 
1168 static const struct net_proto_family xsk_family_ops = {
1169 	.family = PF_XDP,
1170 	.create = xsk_create,
1171 	.owner	= THIS_MODULE,
1172 };
1173 
1174 static struct notifier_block xsk_netdev_notifier = {
1175 	.notifier_call	= xsk_notifier,
1176 };
1177 
1178 static int __net_init xsk_net_init(struct net *net)
1179 {
1180 	mutex_init(&net->xdp.lock);
1181 	INIT_HLIST_HEAD(&net->xdp.list);
1182 	return 0;
1183 }
1184 
1185 static void __net_exit xsk_net_exit(struct net *net)
1186 {
1187 	WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1188 }
1189 
1190 static struct pernet_operations xsk_net_ops = {
1191 	.init = xsk_net_init,
1192 	.exit = xsk_net_exit,
1193 };
1194 
1195 static int __init xsk_init(void)
1196 {
1197 	int err, cpu;
1198 
1199 	err = proto_register(&xsk_proto, 0 /* no slab */);
1200 	if (err)
1201 		goto out;
1202 
1203 	err = sock_register(&xsk_family_ops);
1204 	if (err)
1205 		goto out_proto;
1206 
1207 	err = register_pernet_subsys(&xsk_net_ops);
1208 	if (err)
1209 		goto out_sk;
1210 
1211 	err = register_netdevice_notifier(&xsk_netdev_notifier);
1212 	if (err)
1213 		goto out_pernet;
1214 
1215 	for_each_possible_cpu(cpu)
1216 		INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1217 	return 0;
1218 
1219 out_pernet:
1220 	unregister_pernet_subsys(&xsk_net_ops);
1221 out_sk:
1222 	sock_unregister(PF_XDP);
1223 out_proto:
1224 	proto_unregister(&xsk_proto);
1225 out:
1226 	return err;
1227 }
1228 
1229 fs_initcall(xsk_init);
1230