xref: /openbmc/linux/net/wireless/util.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include "core.h"
23 #include "rdev-ops.h"
24 
25 
26 struct ieee80211_rate *
27 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
28 			    u32 basic_rates, int bitrate)
29 {
30 	struct ieee80211_rate *result = &sband->bitrates[0];
31 	int i;
32 
33 	for (i = 0; i < sband->n_bitrates; i++) {
34 		if (!(basic_rates & BIT(i)))
35 			continue;
36 		if (sband->bitrates[i].bitrate > bitrate)
37 			continue;
38 		result = &sband->bitrates[i];
39 	}
40 
41 	return result;
42 }
43 EXPORT_SYMBOL(ieee80211_get_response_rate);
44 
45 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
46 			      enum nl80211_bss_scan_width scan_width)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ) {
57 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
58 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
59 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
60 		else
61 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
62 	} else {
63 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
64 	}
65 
66 	bitrates = sband->bitrates;
67 	for (i = 0; i < sband->n_bitrates; i++)
68 		if (bitrates[i].flags & mandatory_flag)
69 			mandatory_rates |= BIT(i);
70 	return mandatory_rates;
71 }
72 EXPORT_SYMBOL(ieee80211_mandatory_rates);
73 
74 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
75 {
76 	/* see 802.11 17.3.8.3.2 and Annex J
77 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
78 	if (chan <= 0)
79 		return 0; /* not supported */
80 	switch (band) {
81 	case NL80211_BAND_2GHZ:
82 		if (chan == 14)
83 			return 2484;
84 		else if (chan < 14)
85 			return 2407 + chan * 5;
86 		break;
87 	case NL80211_BAND_5GHZ:
88 		if (chan >= 182 && chan <= 196)
89 			return 4000 + chan * 5;
90 		else
91 			return 5000 + chan * 5;
92 		break;
93 	case NL80211_BAND_60GHZ:
94 		if (chan < 7)
95 			return 56160 + chan * 2160;
96 		break;
97 	default:
98 		;
99 	}
100 	return 0; /* not supported */
101 }
102 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
103 
104 int ieee80211_frequency_to_channel(int freq)
105 {
106 	/* see 802.11 17.3.8.3.2 and Annex J */
107 	if (freq == 2484)
108 		return 14;
109 	else if (freq < 2484)
110 		return (freq - 2407) / 5;
111 	else if (freq >= 4910 && freq <= 4980)
112 		return (freq - 4000) / 5;
113 	else if (freq <= 45000) /* DMG band lower limit */
114 		return (freq - 5000) / 5;
115 	else if (freq >= 58320 && freq <= 70200)
116 		return (freq - 56160) / 2160;
117 	else
118 		return 0;
119 }
120 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
121 
122 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
123 {
124 	enum nl80211_band band;
125 	struct ieee80211_supported_band *sband;
126 	int i;
127 
128 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
129 		sband = wiphy->bands[band];
130 
131 		if (!sband)
132 			continue;
133 
134 		for (i = 0; i < sband->n_channels; i++) {
135 			if (sband->channels[i].center_freq == freq)
136 				return &sband->channels[i];
137 		}
138 	}
139 
140 	return NULL;
141 }
142 EXPORT_SYMBOL(ieee80211_get_channel);
143 
144 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
145 {
146 	int i, want;
147 
148 	switch (sband->band) {
149 	case NL80211_BAND_5GHZ:
150 		want = 3;
151 		for (i = 0; i < sband->n_bitrates; i++) {
152 			if (sband->bitrates[i].bitrate == 60 ||
153 			    sband->bitrates[i].bitrate == 120 ||
154 			    sband->bitrates[i].bitrate == 240) {
155 				sband->bitrates[i].flags |=
156 					IEEE80211_RATE_MANDATORY_A;
157 				want--;
158 			}
159 		}
160 		WARN_ON(want);
161 		break;
162 	case NL80211_BAND_2GHZ:
163 		want = 7;
164 		for (i = 0; i < sband->n_bitrates; i++) {
165 			switch (sband->bitrates[i].bitrate) {
166 			case 10:
167 			case 20:
168 			case 55:
169 			case 110:
170 				sband->bitrates[i].flags |=
171 					IEEE80211_RATE_MANDATORY_B |
172 					IEEE80211_RATE_MANDATORY_G;
173 				want--;
174 				break;
175 			case 60:
176 			case 120:
177 			case 240:
178 				sband->bitrates[i].flags |=
179 					IEEE80211_RATE_MANDATORY_G;
180 				want--;
181 				/* fall through */
182 			default:
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 				break;
186 			}
187 		}
188 		WARN_ON(want != 0 && want != 3);
189 		break;
190 	case NL80211_BAND_60GHZ:
191 		/* check for mandatory HT MCS 1..4 */
192 		WARN_ON(!sband->ht_cap.ht_supported);
193 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
194 		break;
195 	case NUM_NL80211_BANDS:
196 	default:
197 		WARN_ON(1);
198 		break;
199 	}
200 }
201 
202 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
203 {
204 	enum nl80211_band band;
205 
206 	for (band = 0; band < NUM_NL80211_BANDS; band++)
207 		if (wiphy->bands[band])
208 			set_mandatory_flags_band(wiphy->bands[band]);
209 }
210 
211 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
212 {
213 	int i;
214 	for (i = 0; i < wiphy->n_cipher_suites; i++)
215 		if (cipher == wiphy->cipher_suites[i])
216 			return true;
217 	return false;
218 }
219 
220 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
221 				   struct key_params *params, int key_idx,
222 				   bool pairwise, const u8 *mac_addr)
223 {
224 	if (key_idx < 0 || key_idx > 5)
225 		return -EINVAL;
226 
227 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
228 		return -EINVAL;
229 
230 	if (pairwise && !mac_addr)
231 		return -EINVAL;
232 
233 	switch (params->cipher) {
234 	case WLAN_CIPHER_SUITE_TKIP:
235 	case WLAN_CIPHER_SUITE_CCMP:
236 	case WLAN_CIPHER_SUITE_CCMP_256:
237 	case WLAN_CIPHER_SUITE_GCMP:
238 	case WLAN_CIPHER_SUITE_GCMP_256:
239 		/* Disallow pairwise keys with non-zero index unless it's WEP
240 		 * or a vendor specific cipher (because current deployments use
241 		 * pairwise WEP keys with non-zero indices and for vendor
242 		 * specific ciphers this should be validated in the driver or
243 		 * hardware level - but 802.11i clearly specifies to use zero)
244 		 */
245 		if (pairwise && key_idx)
246 			return -EINVAL;
247 		break;
248 	case WLAN_CIPHER_SUITE_AES_CMAC:
249 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
250 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
251 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
252 		/* Disallow BIP (group-only) cipher as pairwise cipher */
253 		if (pairwise)
254 			return -EINVAL;
255 		if (key_idx < 4)
256 			return -EINVAL;
257 		break;
258 	case WLAN_CIPHER_SUITE_WEP40:
259 	case WLAN_CIPHER_SUITE_WEP104:
260 		if (key_idx > 3)
261 			return -EINVAL;
262 	default:
263 		break;
264 	}
265 
266 	switch (params->cipher) {
267 	case WLAN_CIPHER_SUITE_WEP40:
268 		if (params->key_len != WLAN_KEY_LEN_WEP40)
269 			return -EINVAL;
270 		break;
271 	case WLAN_CIPHER_SUITE_TKIP:
272 		if (params->key_len != WLAN_KEY_LEN_TKIP)
273 			return -EINVAL;
274 		break;
275 	case WLAN_CIPHER_SUITE_CCMP:
276 		if (params->key_len != WLAN_KEY_LEN_CCMP)
277 			return -EINVAL;
278 		break;
279 	case WLAN_CIPHER_SUITE_CCMP_256:
280 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
281 			return -EINVAL;
282 		break;
283 	case WLAN_CIPHER_SUITE_GCMP:
284 		if (params->key_len != WLAN_KEY_LEN_GCMP)
285 			return -EINVAL;
286 		break;
287 	case WLAN_CIPHER_SUITE_GCMP_256:
288 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
289 			return -EINVAL;
290 		break;
291 	case WLAN_CIPHER_SUITE_WEP104:
292 		if (params->key_len != WLAN_KEY_LEN_WEP104)
293 			return -EINVAL;
294 		break;
295 	case WLAN_CIPHER_SUITE_AES_CMAC:
296 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
297 			return -EINVAL;
298 		break;
299 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
300 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
301 			return -EINVAL;
302 		break;
303 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
304 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
305 			return -EINVAL;
306 		break;
307 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
308 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
309 			return -EINVAL;
310 		break;
311 	default:
312 		/*
313 		 * We don't know anything about this algorithm,
314 		 * allow using it -- but the driver must check
315 		 * all parameters! We still check below whether
316 		 * or not the driver supports this algorithm,
317 		 * of course.
318 		 */
319 		break;
320 	}
321 
322 	if (params->seq) {
323 		switch (params->cipher) {
324 		case WLAN_CIPHER_SUITE_WEP40:
325 		case WLAN_CIPHER_SUITE_WEP104:
326 			/* These ciphers do not use key sequence */
327 			return -EINVAL;
328 		case WLAN_CIPHER_SUITE_TKIP:
329 		case WLAN_CIPHER_SUITE_CCMP:
330 		case WLAN_CIPHER_SUITE_CCMP_256:
331 		case WLAN_CIPHER_SUITE_GCMP:
332 		case WLAN_CIPHER_SUITE_GCMP_256:
333 		case WLAN_CIPHER_SUITE_AES_CMAC:
334 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
335 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
336 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337 			if (params->seq_len != 6)
338 				return -EINVAL;
339 			break;
340 		}
341 	}
342 
343 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
344 		return -EINVAL;
345 
346 	return 0;
347 }
348 
349 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
350 {
351 	unsigned int hdrlen = 24;
352 
353 	if (ieee80211_is_data(fc)) {
354 		if (ieee80211_has_a4(fc))
355 			hdrlen = 30;
356 		if (ieee80211_is_data_qos(fc)) {
357 			hdrlen += IEEE80211_QOS_CTL_LEN;
358 			if (ieee80211_has_order(fc))
359 				hdrlen += IEEE80211_HT_CTL_LEN;
360 		}
361 		goto out;
362 	}
363 
364 	if (ieee80211_is_mgmt(fc)) {
365 		if (ieee80211_has_order(fc))
366 			hdrlen += IEEE80211_HT_CTL_LEN;
367 		goto out;
368 	}
369 
370 	if (ieee80211_is_ctl(fc)) {
371 		/*
372 		 * ACK and CTS are 10 bytes, all others 16. To see how
373 		 * to get this condition consider
374 		 *   subtype mask:   0b0000000011110000 (0x00F0)
375 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
376 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
377 		 *   bits that matter:         ^^^      (0x00E0)
378 		 *   value of those: 0b0000000011000000 (0x00C0)
379 		 */
380 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
381 			hdrlen = 10;
382 		else
383 			hdrlen = 16;
384 	}
385 out:
386 	return hdrlen;
387 }
388 EXPORT_SYMBOL(ieee80211_hdrlen);
389 
390 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
391 {
392 	const struct ieee80211_hdr *hdr =
393 			(const struct ieee80211_hdr *)skb->data;
394 	unsigned int hdrlen;
395 
396 	if (unlikely(skb->len < 10))
397 		return 0;
398 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
399 	if (unlikely(hdrlen > skb->len))
400 		return 0;
401 	return hdrlen;
402 }
403 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
404 
405 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
406 {
407 	int ae = flags & MESH_FLAGS_AE;
408 	/* 802.11-2012, 8.2.4.7.3 */
409 	switch (ae) {
410 	default:
411 	case 0:
412 		return 6;
413 	case MESH_FLAGS_AE_A4:
414 		return 12;
415 	case MESH_FLAGS_AE_A5_A6:
416 		return 18;
417 	}
418 }
419 
420 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
421 {
422 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
423 }
424 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
425 
426 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
427 				  const u8 *addr, enum nl80211_iftype iftype,
428 				  u8 data_offset)
429 {
430 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
431 	struct {
432 		u8 hdr[ETH_ALEN] __aligned(2);
433 		__be16 proto;
434 	} payload;
435 	struct ethhdr tmp;
436 	u16 hdrlen;
437 	u8 mesh_flags = 0;
438 
439 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
440 		return -1;
441 
442 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
443 	if (skb->len < hdrlen + 8)
444 		return -1;
445 
446 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
447 	 * header
448 	 * IEEE 802.11 address fields:
449 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
450 	 *   0     0   DA    SA    BSSID n/a
451 	 *   0     1   DA    BSSID SA    n/a
452 	 *   1     0   BSSID SA    DA    n/a
453 	 *   1     1   RA    TA    DA    SA
454 	 */
455 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
456 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
457 
458 	if (iftype == NL80211_IFTYPE_MESH_POINT)
459 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
460 
461 	mesh_flags &= MESH_FLAGS_AE;
462 
463 	switch (hdr->frame_control &
464 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
465 	case cpu_to_le16(IEEE80211_FCTL_TODS):
466 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
467 			     iftype != NL80211_IFTYPE_AP_VLAN &&
468 			     iftype != NL80211_IFTYPE_P2P_GO))
469 			return -1;
470 		break;
471 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
472 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
473 			     iftype != NL80211_IFTYPE_MESH_POINT &&
474 			     iftype != NL80211_IFTYPE_AP_VLAN &&
475 			     iftype != NL80211_IFTYPE_STATION))
476 			return -1;
477 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
478 			if (mesh_flags == MESH_FLAGS_AE_A4)
479 				return -1;
480 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
481 				skb_copy_bits(skb, hdrlen +
482 					offsetof(struct ieee80211s_hdr, eaddr1),
483 					tmp.h_dest, 2 * ETH_ALEN);
484 			}
485 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
486 		}
487 		break;
488 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
489 		if ((iftype != NL80211_IFTYPE_STATION &&
490 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
491 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
492 		    (is_multicast_ether_addr(tmp.h_dest) &&
493 		     ether_addr_equal(tmp.h_source, addr)))
494 			return -1;
495 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
496 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
497 				return -1;
498 			if (mesh_flags == MESH_FLAGS_AE_A4)
499 				skb_copy_bits(skb, hdrlen +
500 					offsetof(struct ieee80211s_hdr, eaddr1),
501 					tmp.h_source, ETH_ALEN);
502 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
503 		}
504 		break;
505 	case cpu_to_le16(0):
506 		if (iftype != NL80211_IFTYPE_ADHOC &&
507 		    iftype != NL80211_IFTYPE_STATION &&
508 		    iftype != NL80211_IFTYPE_OCB)
509 				return -1;
510 		break;
511 	}
512 
513 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
514 	tmp.h_proto = payload.proto;
515 
516 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
517 		    tmp.h_proto != htons(ETH_P_AARP) &&
518 		    tmp.h_proto != htons(ETH_P_IPX)) ||
519 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
520 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
521 		 * replace EtherType */
522 		hdrlen += ETH_ALEN + 2;
523 	else
524 		tmp.h_proto = htons(skb->len - hdrlen);
525 
526 	pskb_pull(skb, hdrlen);
527 
528 	if (!ehdr)
529 		ehdr = skb_push(skb, sizeof(struct ethhdr));
530 	memcpy(ehdr, &tmp, sizeof(tmp));
531 
532 	return 0;
533 }
534 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
535 
536 static void
537 __frame_add_frag(struct sk_buff *skb, struct page *page,
538 		 void *ptr, int len, int size)
539 {
540 	struct skb_shared_info *sh = skb_shinfo(skb);
541 	int page_offset;
542 
543 	page_ref_inc(page);
544 	page_offset = ptr - page_address(page);
545 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
546 }
547 
548 static void
549 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
550 			    int offset, int len)
551 {
552 	struct skb_shared_info *sh = skb_shinfo(skb);
553 	const skb_frag_t *frag = &sh->frags[0];
554 	struct page *frag_page;
555 	void *frag_ptr;
556 	int frag_len, frag_size;
557 	int head_size = skb->len - skb->data_len;
558 	int cur_len;
559 
560 	frag_page = virt_to_head_page(skb->head);
561 	frag_ptr = skb->data;
562 	frag_size = head_size;
563 
564 	while (offset >= frag_size) {
565 		offset -= frag_size;
566 		frag_page = skb_frag_page(frag);
567 		frag_ptr = skb_frag_address(frag);
568 		frag_size = skb_frag_size(frag);
569 		frag++;
570 	}
571 
572 	frag_ptr += offset;
573 	frag_len = frag_size - offset;
574 
575 	cur_len = min(len, frag_len);
576 
577 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
578 	len -= cur_len;
579 
580 	while (len > 0) {
581 		frag_len = skb_frag_size(frag);
582 		cur_len = min(len, frag_len);
583 		__frame_add_frag(frame, skb_frag_page(frag),
584 				 skb_frag_address(frag), cur_len, frag_len);
585 		len -= cur_len;
586 		frag++;
587 	}
588 }
589 
590 static struct sk_buff *
591 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
592 		       int offset, int len, bool reuse_frag)
593 {
594 	struct sk_buff *frame;
595 	int cur_len = len;
596 
597 	if (skb->len - offset < len)
598 		return NULL;
599 
600 	/*
601 	 * When reusing framents, copy some data to the head to simplify
602 	 * ethernet header handling and speed up protocol header processing
603 	 * in the stack later.
604 	 */
605 	if (reuse_frag)
606 		cur_len = min_t(int, len, 32);
607 
608 	/*
609 	 * Allocate and reserve two bytes more for payload
610 	 * alignment since sizeof(struct ethhdr) is 14.
611 	 */
612 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
613 	if (!frame)
614 		return NULL;
615 
616 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
618 
619 	len -= cur_len;
620 	if (!len)
621 		return frame;
622 
623 	offset += cur_len;
624 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
625 
626 	return frame;
627 }
628 
629 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
630 			      const u8 *addr, enum nl80211_iftype iftype,
631 			      const unsigned int extra_headroom,
632 			      const u8 *check_da, const u8 *check_sa)
633 {
634 	unsigned int hlen = ALIGN(extra_headroom, 4);
635 	struct sk_buff *frame = NULL;
636 	u16 ethertype;
637 	u8 *payload;
638 	int offset = 0, remaining;
639 	struct ethhdr eth;
640 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
641 	bool reuse_skb = false;
642 	bool last = false;
643 
644 	while (!last) {
645 		unsigned int subframe_len;
646 		int len;
647 		u8 padding;
648 
649 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
650 		len = ntohs(eth.h_proto);
651 		subframe_len = sizeof(struct ethhdr) + len;
652 		padding = (4 - subframe_len) & 0x3;
653 
654 		/* the last MSDU has no padding */
655 		remaining = skb->len - offset;
656 		if (subframe_len > remaining)
657 			goto purge;
658 
659 		offset += sizeof(struct ethhdr);
660 		last = remaining <= subframe_len + padding;
661 
662 		/* FIXME: should we really accept multicast DA? */
663 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
664 		     !ether_addr_equal(check_da, eth.h_dest)) ||
665 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
666 			offset += len + padding;
667 			continue;
668 		}
669 
670 		/* reuse skb for the last subframe */
671 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
672 			skb_pull(skb, offset);
673 			frame = skb;
674 			reuse_skb = true;
675 		} else {
676 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
677 						       reuse_frag);
678 			if (!frame)
679 				goto purge;
680 
681 			offset += len + padding;
682 		}
683 
684 		skb_reset_network_header(frame);
685 		frame->dev = skb->dev;
686 		frame->priority = skb->priority;
687 
688 		payload = frame->data;
689 		ethertype = (payload[6] << 8) | payload[7];
690 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
691 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
692 			   ether_addr_equal(payload, bridge_tunnel_header))) {
693 			eth.h_proto = htons(ethertype);
694 			skb_pull(frame, ETH_ALEN + 2);
695 		}
696 
697 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
698 		__skb_queue_tail(list, frame);
699 	}
700 
701 	if (!reuse_skb)
702 		dev_kfree_skb(skb);
703 
704 	return;
705 
706  purge:
707 	__skb_queue_purge(list);
708 	dev_kfree_skb(skb);
709 }
710 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
711 
712 /* Given a data frame determine the 802.1p/1d tag to use. */
713 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
714 				    struct cfg80211_qos_map *qos_map)
715 {
716 	unsigned int dscp;
717 	unsigned char vlan_priority;
718 
719 	/* skb->priority values from 256->263 are magic values to
720 	 * directly indicate a specific 802.1d priority.  This is used
721 	 * to allow 802.1d priority to be passed directly in from VLAN
722 	 * tags, etc.
723 	 */
724 	if (skb->priority >= 256 && skb->priority <= 263)
725 		return skb->priority - 256;
726 
727 	if (skb_vlan_tag_present(skb)) {
728 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
729 			>> VLAN_PRIO_SHIFT;
730 		if (vlan_priority > 0)
731 			return vlan_priority;
732 	}
733 
734 	switch (skb->protocol) {
735 	case htons(ETH_P_IP):
736 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
737 		break;
738 	case htons(ETH_P_IPV6):
739 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
740 		break;
741 	case htons(ETH_P_MPLS_UC):
742 	case htons(ETH_P_MPLS_MC): {
743 		struct mpls_label mpls_tmp, *mpls;
744 
745 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
746 					  sizeof(*mpls), &mpls_tmp);
747 		if (!mpls)
748 			return 0;
749 
750 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
751 			>> MPLS_LS_TC_SHIFT;
752 	}
753 	case htons(ETH_P_80221):
754 		/* 802.21 is always network control traffic */
755 		return 7;
756 	default:
757 		return 0;
758 	}
759 
760 	if (qos_map) {
761 		unsigned int i, tmp_dscp = dscp >> 2;
762 
763 		for (i = 0; i < qos_map->num_des; i++) {
764 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
765 				return qos_map->dscp_exception[i].up;
766 		}
767 
768 		for (i = 0; i < 8; i++) {
769 			if (tmp_dscp >= qos_map->up[i].low &&
770 			    tmp_dscp <= qos_map->up[i].high)
771 				return i;
772 		}
773 	}
774 
775 	return dscp >> 5;
776 }
777 EXPORT_SYMBOL(cfg80211_classify8021d);
778 
779 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
780 {
781 	const struct cfg80211_bss_ies *ies;
782 
783 	ies = rcu_dereference(bss->ies);
784 	if (!ies)
785 		return NULL;
786 
787 	return cfg80211_find_ie(ie, ies->data, ies->len);
788 }
789 EXPORT_SYMBOL(ieee80211_bss_get_ie);
790 
791 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
792 {
793 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
794 	struct net_device *dev = wdev->netdev;
795 	int i;
796 
797 	if (!wdev->connect_keys)
798 		return;
799 
800 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
801 		if (!wdev->connect_keys->params[i].cipher)
802 			continue;
803 		if (rdev_add_key(rdev, dev, i, false, NULL,
804 				 &wdev->connect_keys->params[i])) {
805 			netdev_err(dev, "failed to set key %d\n", i);
806 			continue;
807 		}
808 		if (wdev->connect_keys->def == i &&
809 		    rdev_set_default_key(rdev, dev, i, true, true)) {
810 			netdev_err(dev, "failed to set defkey %d\n", i);
811 			continue;
812 		}
813 	}
814 
815 	kzfree(wdev->connect_keys);
816 	wdev->connect_keys = NULL;
817 }
818 
819 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
820 {
821 	struct cfg80211_event *ev;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&wdev->event_lock, flags);
825 	while (!list_empty(&wdev->event_list)) {
826 		ev = list_first_entry(&wdev->event_list,
827 				      struct cfg80211_event, list);
828 		list_del(&ev->list);
829 		spin_unlock_irqrestore(&wdev->event_lock, flags);
830 
831 		wdev_lock(wdev);
832 		switch (ev->type) {
833 		case EVENT_CONNECT_RESULT:
834 			__cfg80211_connect_result(
835 				wdev->netdev,
836 				&ev->cr,
837 				ev->cr.status == WLAN_STATUS_SUCCESS);
838 			break;
839 		case EVENT_ROAMED:
840 			__cfg80211_roamed(wdev, &ev->rm);
841 			break;
842 		case EVENT_DISCONNECTED:
843 			__cfg80211_disconnected(wdev->netdev,
844 						ev->dc.ie, ev->dc.ie_len,
845 						ev->dc.reason,
846 						!ev->dc.locally_generated);
847 			break;
848 		case EVENT_IBSS_JOINED:
849 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
850 					       ev->ij.channel);
851 			break;
852 		case EVENT_STOPPED:
853 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
854 			break;
855 		case EVENT_PORT_AUTHORIZED:
856 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
857 			break;
858 		}
859 		wdev_unlock(wdev);
860 
861 		kfree(ev);
862 
863 		spin_lock_irqsave(&wdev->event_lock, flags);
864 	}
865 	spin_unlock_irqrestore(&wdev->event_lock, flags);
866 }
867 
868 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
869 {
870 	struct wireless_dev *wdev;
871 
872 	ASSERT_RTNL();
873 
874 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
875 		cfg80211_process_wdev_events(wdev);
876 }
877 
878 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
879 			  struct net_device *dev, enum nl80211_iftype ntype,
880 			  struct vif_params *params)
881 {
882 	int err;
883 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
884 
885 	ASSERT_RTNL();
886 
887 	/* don't support changing VLANs, you just re-create them */
888 	if (otype == NL80211_IFTYPE_AP_VLAN)
889 		return -EOPNOTSUPP;
890 
891 	/* cannot change into P2P device or NAN */
892 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
893 	    ntype == NL80211_IFTYPE_NAN)
894 		return -EOPNOTSUPP;
895 
896 	if (!rdev->ops->change_virtual_intf ||
897 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
898 		return -EOPNOTSUPP;
899 
900 	/* if it's part of a bridge, reject changing type to station/ibss */
901 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
902 	    (ntype == NL80211_IFTYPE_ADHOC ||
903 	     ntype == NL80211_IFTYPE_STATION ||
904 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
905 		return -EBUSY;
906 
907 	if (ntype != otype) {
908 		dev->ieee80211_ptr->use_4addr = false;
909 		dev->ieee80211_ptr->mesh_id_up_len = 0;
910 		wdev_lock(dev->ieee80211_ptr);
911 		rdev_set_qos_map(rdev, dev, NULL);
912 		wdev_unlock(dev->ieee80211_ptr);
913 
914 		switch (otype) {
915 		case NL80211_IFTYPE_AP:
916 			cfg80211_stop_ap(rdev, dev, true);
917 			break;
918 		case NL80211_IFTYPE_ADHOC:
919 			cfg80211_leave_ibss(rdev, dev, false);
920 			break;
921 		case NL80211_IFTYPE_STATION:
922 		case NL80211_IFTYPE_P2P_CLIENT:
923 			wdev_lock(dev->ieee80211_ptr);
924 			cfg80211_disconnect(rdev, dev,
925 					    WLAN_REASON_DEAUTH_LEAVING, true);
926 			wdev_unlock(dev->ieee80211_ptr);
927 			break;
928 		case NL80211_IFTYPE_MESH_POINT:
929 			/* mesh should be handled? */
930 			break;
931 		default:
932 			break;
933 		}
934 
935 		cfg80211_process_rdev_events(rdev);
936 	}
937 
938 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
939 
940 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
941 
942 	if (!err && params && params->use_4addr != -1)
943 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
944 
945 	if (!err) {
946 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
947 		switch (ntype) {
948 		case NL80211_IFTYPE_STATION:
949 			if (dev->ieee80211_ptr->use_4addr)
950 				break;
951 			/* fall through */
952 		case NL80211_IFTYPE_OCB:
953 		case NL80211_IFTYPE_P2P_CLIENT:
954 		case NL80211_IFTYPE_ADHOC:
955 			dev->priv_flags |= IFF_DONT_BRIDGE;
956 			break;
957 		case NL80211_IFTYPE_P2P_GO:
958 		case NL80211_IFTYPE_AP:
959 		case NL80211_IFTYPE_AP_VLAN:
960 		case NL80211_IFTYPE_WDS:
961 		case NL80211_IFTYPE_MESH_POINT:
962 			/* bridging OK */
963 			break;
964 		case NL80211_IFTYPE_MONITOR:
965 			/* monitor can't bridge anyway */
966 			break;
967 		case NL80211_IFTYPE_UNSPECIFIED:
968 		case NUM_NL80211_IFTYPES:
969 			/* not happening */
970 			break;
971 		case NL80211_IFTYPE_P2P_DEVICE:
972 		case NL80211_IFTYPE_NAN:
973 			WARN_ON(1);
974 			break;
975 		}
976 	}
977 
978 	if (!err && ntype != otype && netif_running(dev)) {
979 		cfg80211_update_iface_num(rdev, ntype, 1);
980 		cfg80211_update_iface_num(rdev, otype, -1);
981 	}
982 
983 	return err;
984 }
985 
986 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
987 {
988 	int modulation, streams, bitrate;
989 
990 	/* the formula below does only work for MCS values smaller than 32 */
991 	if (WARN_ON_ONCE(rate->mcs >= 32))
992 		return 0;
993 
994 	modulation = rate->mcs & 7;
995 	streams = (rate->mcs >> 3) + 1;
996 
997 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
998 
999 	if (modulation < 4)
1000 		bitrate *= (modulation + 1);
1001 	else if (modulation == 4)
1002 		bitrate *= (modulation + 2);
1003 	else
1004 		bitrate *= (modulation + 3);
1005 
1006 	bitrate *= streams;
1007 
1008 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1009 		bitrate = (bitrate / 9) * 10;
1010 
1011 	/* do NOT round down here */
1012 	return (bitrate + 50000) / 100000;
1013 }
1014 
1015 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1016 {
1017 	static const u32 __mcs2bitrate[] = {
1018 		/* control PHY */
1019 		[0] =   275,
1020 		/* SC PHY */
1021 		[1] =  3850,
1022 		[2] =  7700,
1023 		[3] =  9625,
1024 		[4] = 11550,
1025 		[5] = 12512, /* 1251.25 mbps */
1026 		[6] = 15400,
1027 		[7] = 19250,
1028 		[8] = 23100,
1029 		[9] = 25025,
1030 		[10] = 30800,
1031 		[11] = 38500,
1032 		[12] = 46200,
1033 		/* OFDM PHY */
1034 		[13] =  6930,
1035 		[14] =  8662, /* 866.25 mbps */
1036 		[15] = 13860,
1037 		[16] = 17325,
1038 		[17] = 20790,
1039 		[18] = 27720,
1040 		[19] = 34650,
1041 		[20] = 41580,
1042 		[21] = 45045,
1043 		[22] = 51975,
1044 		[23] = 62370,
1045 		[24] = 67568, /* 6756.75 mbps */
1046 		/* LP-SC PHY */
1047 		[25] =  6260,
1048 		[26] =  8340,
1049 		[27] = 11120,
1050 		[28] = 12510,
1051 		[29] = 16680,
1052 		[30] = 22240,
1053 		[31] = 25030,
1054 	};
1055 
1056 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1057 		return 0;
1058 
1059 	return __mcs2bitrate[rate->mcs];
1060 }
1061 
1062 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1063 {
1064 	static const u32 base[4][10] = {
1065 		{   6500000,
1066 		   13000000,
1067 		   19500000,
1068 		   26000000,
1069 		   39000000,
1070 		   52000000,
1071 		   58500000,
1072 		   65000000,
1073 		   78000000,
1074 		/* not in the spec, but some devices use this: */
1075 		   86500000,
1076 		},
1077 		{  13500000,
1078 		   27000000,
1079 		   40500000,
1080 		   54000000,
1081 		   81000000,
1082 		  108000000,
1083 		  121500000,
1084 		  135000000,
1085 		  162000000,
1086 		  180000000,
1087 		},
1088 		{  29300000,
1089 		   58500000,
1090 		   87800000,
1091 		  117000000,
1092 		  175500000,
1093 		  234000000,
1094 		  263300000,
1095 		  292500000,
1096 		  351000000,
1097 		  390000000,
1098 		},
1099 		{  58500000,
1100 		  117000000,
1101 		  175500000,
1102 		  234000000,
1103 		  351000000,
1104 		  468000000,
1105 		  526500000,
1106 		  585000000,
1107 		  702000000,
1108 		  780000000,
1109 		},
1110 	};
1111 	u32 bitrate;
1112 	int idx;
1113 
1114 	if (rate->mcs > 9)
1115 		goto warn;
1116 
1117 	switch (rate->bw) {
1118 	case RATE_INFO_BW_160:
1119 		idx = 3;
1120 		break;
1121 	case RATE_INFO_BW_80:
1122 		idx = 2;
1123 		break;
1124 	case RATE_INFO_BW_40:
1125 		idx = 1;
1126 		break;
1127 	case RATE_INFO_BW_5:
1128 	case RATE_INFO_BW_10:
1129 	default:
1130 		goto warn;
1131 	case RATE_INFO_BW_20:
1132 		idx = 0;
1133 	}
1134 
1135 	bitrate = base[idx][rate->mcs];
1136 	bitrate *= rate->nss;
1137 
1138 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1139 		bitrate = (bitrate / 9) * 10;
1140 
1141 	/* do NOT round down here */
1142 	return (bitrate + 50000) / 100000;
1143  warn:
1144 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1145 		  rate->bw, rate->mcs, rate->nss);
1146 	return 0;
1147 }
1148 
1149 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1150 {
1151 #define SCALE 2048
1152 	u16 mcs_divisors[12] = {
1153 		34133, /* 16.666666... */
1154 		17067, /*  8.333333... */
1155 		11378, /*  5.555555... */
1156 		 8533, /*  4.166666... */
1157 		 5689, /*  2.777777... */
1158 		 4267, /*  2.083333... */
1159 		 3923, /*  1.851851... */
1160 		 3413, /*  1.666666... */
1161 		 2844, /*  1.388888... */
1162 		 2560, /*  1.250000... */
1163 		 2276, /*  1.111111... */
1164 		 2048, /*  1.000000... */
1165 	};
1166 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1167 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1168 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1169 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1170 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1171 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1172 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1173 	u64 tmp;
1174 	u32 result;
1175 
1176 	if (WARN_ON_ONCE(rate->mcs > 11))
1177 		return 0;
1178 
1179 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1180 		return 0;
1181 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1182 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1183 		return 0;
1184 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1185 		return 0;
1186 
1187 	if (rate->bw == RATE_INFO_BW_160)
1188 		result = rates_160M[rate->he_gi];
1189 	else if (rate->bw == RATE_INFO_BW_80 ||
1190 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1191 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1192 		result = rates_969[rate->he_gi];
1193 	else if (rate->bw == RATE_INFO_BW_40 ||
1194 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1195 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1196 		result = rates_484[rate->he_gi];
1197 	else if (rate->bw == RATE_INFO_BW_20 ||
1198 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1199 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1200 		result = rates_242[rate->he_gi];
1201 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1203 		result = rates_106[rate->he_gi];
1204 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1206 		result = rates_52[rate->he_gi];
1207 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1208 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1209 		result = rates_26[rate->he_gi];
1210 	else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1211 		      rate->bw, rate->he_ru_alloc))
1212 		return 0;
1213 
1214 	/* now scale to the appropriate MCS */
1215 	tmp = result;
1216 	tmp *= SCALE;
1217 	do_div(tmp, mcs_divisors[rate->mcs]);
1218 	result = tmp;
1219 
1220 	/* and take NSS, DCM into account */
1221 	result = (result * rate->nss) / 8;
1222 	if (rate->he_dcm)
1223 		result /= 2;
1224 
1225 	return result;
1226 }
1227 
1228 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1229 {
1230 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1231 		return cfg80211_calculate_bitrate_ht(rate);
1232 	if (rate->flags & RATE_INFO_FLAGS_60G)
1233 		return cfg80211_calculate_bitrate_60g(rate);
1234 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1235 		return cfg80211_calculate_bitrate_vht(rate);
1236 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1237 		return cfg80211_calculate_bitrate_he(rate);
1238 
1239 	return rate->legacy;
1240 }
1241 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1242 
1243 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1244 			  enum ieee80211_p2p_attr_id attr,
1245 			  u8 *buf, unsigned int bufsize)
1246 {
1247 	u8 *out = buf;
1248 	u16 attr_remaining = 0;
1249 	bool desired_attr = false;
1250 	u16 desired_len = 0;
1251 
1252 	while (len > 0) {
1253 		unsigned int iedatalen;
1254 		unsigned int copy;
1255 		const u8 *iedata;
1256 
1257 		if (len < 2)
1258 			return -EILSEQ;
1259 		iedatalen = ies[1];
1260 		if (iedatalen + 2 > len)
1261 			return -EILSEQ;
1262 
1263 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1264 			goto cont;
1265 
1266 		if (iedatalen < 4)
1267 			goto cont;
1268 
1269 		iedata = ies + 2;
1270 
1271 		/* check WFA OUI, P2P subtype */
1272 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1273 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1274 			goto cont;
1275 
1276 		iedatalen -= 4;
1277 		iedata += 4;
1278 
1279 		/* check attribute continuation into this IE */
1280 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1281 		if (copy && desired_attr) {
1282 			desired_len += copy;
1283 			if (out) {
1284 				memcpy(out, iedata, min(bufsize, copy));
1285 				out += min(bufsize, copy);
1286 				bufsize -= min(bufsize, copy);
1287 			}
1288 
1289 
1290 			if (copy == attr_remaining)
1291 				return desired_len;
1292 		}
1293 
1294 		attr_remaining -= copy;
1295 		if (attr_remaining)
1296 			goto cont;
1297 
1298 		iedatalen -= copy;
1299 		iedata += copy;
1300 
1301 		while (iedatalen > 0) {
1302 			u16 attr_len;
1303 
1304 			/* P2P attribute ID & size must fit */
1305 			if (iedatalen < 3)
1306 				return -EILSEQ;
1307 			desired_attr = iedata[0] == attr;
1308 			attr_len = get_unaligned_le16(iedata + 1);
1309 			iedatalen -= 3;
1310 			iedata += 3;
1311 
1312 			copy = min_t(unsigned int, attr_len, iedatalen);
1313 
1314 			if (desired_attr) {
1315 				desired_len += copy;
1316 				if (out) {
1317 					memcpy(out, iedata, min(bufsize, copy));
1318 					out += min(bufsize, copy);
1319 					bufsize -= min(bufsize, copy);
1320 				}
1321 
1322 				if (copy == attr_len)
1323 					return desired_len;
1324 			}
1325 
1326 			iedata += copy;
1327 			iedatalen -= copy;
1328 			attr_remaining = attr_len - copy;
1329 		}
1330 
1331  cont:
1332 		len -= ies[1] + 2;
1333 		ies += ies[1] + 2;
1334 	}
1335 
1336 	if (attr_remaining && desired_attr)
1337 		return -EILSEQ;
1338 
1339 	return -ENOENT;
1340 }
1341 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1342 
1343 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1344 {
1345 	int i;
1346 
1347 	/* Make sure array values are legal */
1348 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1349 		return false;
1350 
1351 	i = 0;
1352 	while (i < n_ids) {
1353 		if (ids[i] == WLAN_EID_EXTENSION) {
1354 			if (id_ext && (ids[i + 1] == id))
1355 				return true;
1356 
1357 			i += 2;
1358 			continue;
1359 		}
1360 
1361 		if (ids[i] == id && !id_ext)
1362 			return true;
1363 
1364 		i++;
1365 	}
1366 	return false;
1367 }
1368 
1369 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1370 {
1371 	/* we assume a validly formed IEs buffer */
1372 	u8 len = ies[pos + 1];
1373 
1374 	pos += 2 + len;
1375 
1376 	/* the IE itself must have 255 bytes for fragments to follow */
1377 	if (len < 255)
1378 		return pos;
1379 
1380 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1381 		len = ies[pos + 1];
1382 		pos += 2 + len;
1383 	}
1384 
1385 	return pos;
1386 }
1387 
1388 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1389 			      const u8 *ids, int n_ids,
1390 			      const u8 *after_ric, int n_after_ric,
1391 			      size_t offset)
1392 {
1393 	size_t pos = offset;
1394 
1395 	while (pos < ielen) {
1396 		u8 ext = 0;
1397 
1398 		if (ies[pos] == WLAN_EID_EXTENSION)
1399 			ext = 2;
1400 		if ((pos + ext) >= ielen)
1401 			break;
1402 
1403 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1404 					  ies[pos] == WLAN_EID_EXTENSION))
1405 			break;
1406 
1407 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1408 			pos = skip_ie(ies, ielen, pos);
1409 
1410 			while (pos < ielen) {
1411 				if (ies[pos] == WLAN_EID_EXTENSION)
1412 					ext = 2;
1413 				else
1414 					ext = 0;
1415 
1416 				if ((pos + ext) >= ielen)
1417 					break;
1418 
1419 				if (!ieee80211_id_in_list(after_ric,
1420 							  n_after_ric,
1421 							  ies[pos + ext],
1422 							  ext == 2))
1423 					pos = skip_ie(ies, ielen, pos);
1424 				else
1425 					break;
1426 			}
1427 		} else {
1428 			pos = skip_ie(ies, ielen, pos);
1429 		}
1430 	}
1431 
1432 	return pos;
1433 }
1434 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1435 
1436 bool ieee80211_operating_class_to_band(u8 operating_class,
1437 				       enum nl80211_band *band)
1438 {
1439 	switch (operating_class) {
1440 	case 112:
1441 	case 115 ... 127:
1442 	case 128 ... 130:
1443 		*band = NL80211_BAND_5GHZ;
1444 		return true;
1445 	case 81:
1446 	case 82:
1447 	case 83:
1448 	case 84:
1449 		*band = NL80211_BAND_2GHZ;
1450 		return true;
1451 	case 180:
1452 		*band = NL80211_BAND_60GHZ;
1453 		return true;
1454 	}
1455 
1456 	return false;
1457 }
1458 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1459 
1460 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1461 					  u8 *op_class)
1462 {
1463 	u8 vht_opclass;
1464 	u32 freq = chandef->center_freq1;
1465 
1466 	if (freq >= 2412 && freq <= 2472) {
1467 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1468 			return false;
1469 
1470 		/* 2.407 GHz, channels 1..13 */
1471 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1472 			if (freq > chandef->chan->center_freq)
1473 				*op_class = 83; /* HT40+ */
1474 			else
1475 				*op_class = 84; /* HT40- */
1476 		} else {
1477 			*op_class = 81;
1478 		}
1479 
1480 		return true;
1481 	}
1482 
1483 	if (freq == 2484) {
1484 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1485 			return false;
1486 
1487 		*op_class = 82; /* channel 14 */
1488 		return true;
1489 	}
1490 
1491 	switch (chandef->width) {
1492 	case NL80211_CHAN_WIDTH_80:
1493 		vht_opclass = 128;
1494 		break;
1495 	case NL80211_CHAN_WIDTH_160:
1496 		vht_opclass = 129;
1497 		break;
1498 	case NL80211_CHAN_WIDTH_80P80:
1499 		vht_opclass = 130;
1500 		break;
1501 	case NL80211_CHAN_WIDTH_10:
1502 	case NL80211_CHAN_WIDTH_5:
1503 		return false; /* unsupported for now */
1504 	default:
1505 		vht_opclass = 0;
1506 		break;
1507 	}
1508 
1509 	/* 5 GHz, channels 36..48 */
1510 	if (freq >= 5180 && freq <= 5240) {
1511 		if (vht_opclass) {
1512 			*op_class = vht_opclass;
1513 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1514 			if (freq > chandef->chan->center_freq)
1515 				*op_class = 116;
1516 			else
1517 				*op_class = 117;
1518 		} else {
1519 			*op_class = 115;
1520 		}
1521 
1522 		return true;
1523 	}
1524 
1525 	/* 5 GHz, channels 52..64 */
1526 	if (freq >= 5260 && freq <= 5320) {
1527 		if (vht_opclass) {
1528 			*op_class = vht_opclass;
1529 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1530 			if (freq > chandef->chan->center_freq)
1531 				*op_class = 119;
1532 			else
1533 				*op_class = 120;
1534 		} else {
1535 			*op_class = 118;
1536 		}
1537 
1538 		return true;
1539 	}
1540 
1541 	/* 5 GHz, channels 100..144 */
1542 	if (freq >= 5500 && freq <= 5720) {
1543 		if (vht_opclass) {
1544 			*op_class = vht_opclass;
1545 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1546 			if (freq > chandef->chan->center_freq)
1547 				*op_class = 122;
1548 			else
1549 				*op_class = 123;
1550 		} else {
1551 			*op_class = 121;
1552 		}
1553 
1554 		return true;
1555 	}
1556 
1557 	/* 5 GHz, channels 149..169 */
1558 	if (freq >= 5745 && freq <= 5845) {
1559 		if (vht_opclass) {
1560 			*op_class = vht_opclass;
1561 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1562 			if (freq > chandef->chan->center_freq)
1563 				*op_class = 126;
1564 			else
1565 				*op_class = 127;
1566 		} else if (freq <= 5805) {
1567 			*op_class = 124;
1568 		} else {
1569 			*op_class = 125;
1570 		}
1571 
1572 		return true;
1573 	}
1574 
1575 	/* 56.16 GHz, channel 1..4 */
1576 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1577 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1578 			return false;
1579 
1580 		*op_class = 180;
1581 		return true;
1582 	}
1583 
1584 	/* not supported yet */
1585 	return false;
1586 }
1587 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1588 
1589 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1590 				       u32 *beacon_int_gcd,
1591 				       bool *beacon_int_different)
1592 {
1593 	struct wireless_dev *wdev;
1594 
1595 	*beacon_int_gcd = 0;
1596 	*beacon_int_different = false;
1597 
1598 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1599 		if (!wdev->beacon_interval)
1600 			continue;
1601 
1602 		if (!*beacon_int_gcd) {
1603 			*beacon_int_gcd = wdev->beacon_interval;
1604 			continue;
1605 		}
1606 
1607 		if (wdev->beacon_interval == *beacon_int_gcd)
1608 			continue;
1609 
1610 		*beacon_int_different = true;
1611 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1612 	}
1613 
1614 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1615 		if (*beacon_int_gcd)
1616 			*beacon_int_different = true;
1617 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1618 	}
1619 }
1620 
1621 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1622 				 enum nl80211_iftype iftype, u32 beacon_int)
1623 {
1624 	/*
1625 	 * This is just a basic pre-condition check; if interface combinations
1626 	 * are possible the driver must already be checking those with a call
1627 	 * to cfg80211_check_combinations(), in which case we'll validate more
1628 	 * through the cfg80211_calculate_bi_data() call and code in
1629 	 * cfg80211_iter_combinations().
1630 	 */
1631 
1632 	if (beacon_int < 10 || beacon_int > 10000)
1633 		return -EINVAL;
1634 
1635 	return 0;
1636 }
1637 
1638 int cfg80211_iter_combinations(struct wiphy *wiphy,
1639 			       struct iface_combination_params *params,
1640 			       void (*iter)(const struct ieee80211_iface_combination *c,
1641 					    void *data),
1642 			       void *data)
1643 {
1644 	const struct ieee80211_regdomain *regdom;
1645 	enum nl80211_dfs_regions region = 0;
1646 	int i, j, iftype;
1647 	int num_interfaces = 0;
1648 	u32 used_iftypes = 0;
1649 	u32 beacon_int_gcd;
1650 	bool beacon_int_different;
1651 
1652 	/*
1653 	 * This is a bit strange, since the iteration used to rely only on
1654 	 * the data given by the driver, but here it now relies on context,
1655 	 * in form of the currently operating interfaces.
1656 	 * This is OK for all current users, and saves us from having to
1657 	 * push the GCD calculations into all the drivers.
1658 	 * In the future, this should probably rely more on data that's in
1659 	 * cfg80211 already - the only thing not would appear to be any new
1660 	 * interfaces (while being brought up) and channel/radar data.
1661 	 */
1662 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1663 				   &beacon_int_gcd, &beacon_int_different);
1664 
1665 	if (params->radar_detect) {
1666 		rcu_read_lock();
1667 		regdom = rcu_dereference(cfg80211_regdomain);
1668 		if (regdom)
1669 			region = regdom->dfs_region;
1670 		rcu_read_unlock();
1671 	}
1672 
1673 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1674 		num_interfaces += params->iftype_num[iftype];
1675 		if (params->iftype_num[iftype] > 0 &&
1676 		    !(wiphy->software_iftypes & BIT(iftype)))
1677 			used_iftypes |= BIT(iftype);
1678 	}
1679 
1680 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1681 		const struct ieee80211_iface_combination *c;
1682 		struct ieee80211_iface_limit *limits;
1683 		u32 all_iftypes = 0;
1684 
1685 		c = &wiphy->iface_combinations[i];
1686 
1687 		if (num_interfaces > c->max_interfaces)
1688 			continue;
1689 		if (params->num_different_channels > c->num_different_channels)
1690 			continue;
1691 
1692 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1693 				 GFP_KERNEL);
1694 		if (!limits)
1695 			return -ENOMEM;
1696 
1697 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1698 			if (wiphy->software_iftypes & BIT(iftype))
1699 				continue;
1700 			for (j = 0; j < c->n_limits; j++) {
1701 				all_iftypes |= limits[j].types;
1702 				if (!(limits[j].types & BIT(iftype)))
1703 					continue;
1704 				if (limits[j].max < params->iftype_num[iftype])
1705 					goto cont;
1706 				limits[j].max -= params->iftype_num[iftype];
1707 			}
1708 		}
1709 
1710 		if (params->radar_detect !=
1711 			(c->radar_detect_widths & params->radar_detect))
1712 			goto cont;
1713 
1714 		if (params->radar_detect && c->radar_detect_regions &&
1715 		    !(c->radar_detect_regions & BIT(region)))
1716 			goto cont;
1717 
1718 		/* Finally check that all iftypes that we're currently
1719 		 * using are actually part of this combination. If they
1720 		 * aren't then we can't use this combination and have
1721 		 * to continue to the next.
1722 		 */
1723 		if ((all_iftypes & used_iftypes) != used_iftypes)
1724 			goto cont;
1725 
1726 		if (beacon_int_gcd) {
1727 			if (c->beacon_int_min_gcd &&
1728 			    beacon_int_gcd < c->beacon_int_min_gcd)
1729 				goto cont;
1730 			if (!c->beacon_int_min_gcd && beacon_int_different)
1731 				goto cont;
1732 		}
1733 
1734 		/* This combination covered all interface types and
1735 		 * supported the requested numbers, so we're good.
1736 		 */
1737 
1738 		(*iter)(c, data);
1739  cont:
1740 		kfree(limits);
1741 	}
1742 
1743 	return 0;
1744 }
1745 EXPORT_SYMBOL(cfg80211_iter_combinations);
1746 
1747 static void
1748 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1749 			  void *data)
1750 {
1751 	int *num = data;
1752 	(*num)++;
1753 }
1754 
1755 int cfg80211_check_combinations(struct wiphy *wiphy,
1756 				struct iface_combination_params *params)
1757 {
1758 	int err, num = 0;
1759 
1760 	err = cfg80211_iter_combinations(wiphy, params,
1761 					 cfg80211_iter_sum_ifcombs, &num);
1762 	if (err)
1763 		return err;
1764 	if (num == 0)
1765 		return -EBUSY;
1766 
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(cfg80211_check_combinations);
1770 
1771 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1772 			   const u8 *rates, unsigned int n_rates,
1773 			   u32 *mask)
1774 {
1775 	int i, j;
1776 
1777 	if (!sband)
1778 		return -EINVAL;
1779 
1780 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1781 		return -EINVAL;
1782 
1783 	*mask = 0;
1784 
1785 	for (i = 0; i < n_rates; i++) {
1786 		int rate = (rates[i] & 0x7f) * 5;
1787 		bool found = false;
1788 
1789 		for (j = 0; j < sband->n_bitrates; j++) {
1790 			if (sband->bitrates[j].bitrate == rate) {
1791 				found = true;
1792 				*mask |= BIT(j);
1793 				break;
1794 			}
1795 		}
1796 		if (!found)
1797 			return -EINVAL;
1798 	}
1799 
1800 	/*
1801 	 * mask must have at least one bit set here since we
1802 	 * didn't accept a 0-length rates array nor allowed
1803 	 * entries in the array that didn't exist
1804 	 */
1805 
1806 	return 0;
1807 }
1808 
1809 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1810 {
1811 	enum nl80211_band band;
1812 	unsigned int n_channels = 0;
1813 
1814 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1815 		if (wiphy->bands[band])
1816 			n_channels += wiphy->bands[band]->n_channels;
1817 
1818 	return n_channels;
1819 }
1820 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1821 
1822 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1823 			 struct station_info *sinfo)
1824 {
1825 	struct cfg80211_registered_device *rdev;
1826 	struct wireless_dev *wdev;
1827 
1828 	wdev = dev->ieee80211_ptr;
1829 	if (!wdev)
1830 		return -EOPNOTSUPP;
1831 
1832 	rdev = wiphy_to_rdev(wdev->wiphy);
1833 	if (!rdev->ops->get_station)
1834 		return -EOPNOTSUPP;
1835 
1836 	memset(sinfo, 0, sizeof(*sinfo));
1837 
1838 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1839 }
1840 EXPORT_SYMBOL(cfg80211_get_station);
1841 
1842 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1843 {
1844 	int i;
1845 
1846 	if (!f)
1847 		return;
1848 
1849 	kfree(f->serv_spec_info);
1850 	kfree(f->srf_bf);
1851 	kfree(f->srf_macs);
1852 	for (i = 0; i < f->num_rx_filters; i++)
1853 		kfree(f->rx_filters[i].filter);
1854 
1855 	for (i = 0; i < f->num_tx_filters; i++)
1856 		kfree(f->tx_filters[i].filter);
1857 
1858 	kfree(f->rx_filters);
1859 	kfree(f->tx_filters);
1860 	kfree(f);
1861 }
1862 EXPORT_SYMBOL(cfg80211_free_nan_func);
1863 
1864 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1865 				u32 center_freq_khz, u32 bw_khz)
1866 {
1867 	u32 start_freq_khz, end_freq_khz;
1868 
1869 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1870 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1871 
1872 	if (start_freq_khz >= freq_range->start_freq_khz &&
1873 	    end_freq_khz <= freq_range->end_freq_khz)
1874 		return true;
1875 
1876 	return false;
1877 }
1878 
1879 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1880 {
1881 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1882 				sizeof(*(sinfo->pertid)),
1883 				gfp);
1884 	if (!sinfo->pertid)
1885 		return -ENOMEM;
1886 
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1890 
1891 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1892 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1893 const unsigned char rfc1042_header[] __aligned(2) =
1894 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1895 EXPORT_SYMBOL(rfc1042_header);
1896 
1897 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1898 const unsigned char bridge_tunnel_header[] __aligned(2) =
1899 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1900 EXPORT_SYMBOL(bridge_tunnel_header);
1901 
1902 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1903 struct iapp_layer2_update {
1904 	u8 da[ETH_ALEN];	/* broadcast */
1905 	u8 sa[ETH_ALEN];	/* STA addr */
1906 	__be16 len;		/* 6 */
1907 	u8 dsap;		/* 0 */
1908 	u8 ssap;		/* 0 */
1909 	u8 control;
1910 	u8 xid_info[3];
1911 } __packed;
1912 
1913 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1914 {
1915 	struct iapp_layer2_update *msg;
1916 	struct sk_buff *skb;
1917 
1918 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1919 	 * bridge devices */
1920 
1921 	skb = dev_alloc_skb(sizeof(*msg));
1922 	if (!skb)
1923 		return;
1924 	msg = skb_put(skb, sizeof(*msg));
1925 
1926 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1927 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1928 
1929 	eth_broadcast_addr(msg->da);
1930 	ether_addr_copy(msg->sa, addr);
1931 	msg->len = htons(6);
1932 	msg->dsap = 0;
1933 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
1934 	msg->control = 0xaf;	/* XID response lsb.1111F101.
1935 				 * F=0 (no poll command; unsolicited frame) */
1936 	msg->xid_info[0] = 0x81;	/* XID format identifier */
1937 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
1938 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
1939 
1940 	skb->dev = dev;
1941 	skb->protocol = eth_type_trans(skb, dev);
1942 	memset(skb->cb, 0, sizeof(skb->cb));
1943 	netif_rx_ni(skb);
1944 }
1945 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1946 
1947 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1948 			      enum ieee80211_vht_chanwidth bw,
1949 			      int mcs, bool ext_nss_bw_capable)
1950 {
1951 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1952 	int max_vht_nss = 0;
1953 	int ext_nss_bw;
1954 	int supp_width;
1955 	int i, mcs_encoding;
1956 
1957 	if (map == 0xffff)
1958 		return 0;
1959 
1960 	if (WARN_ON(mcs > 9))
1961 		return 0;
1962 	if (mcs <= 7)
1963 		mcs_encoding = 0;
1964 	else if (mcs == 8)
1965 		mcs_encoding = 1;
1966 	else
1967 		mcs_encoding = 2;
1968 
1969 	/* find max_vht_nss for the given MCS */
1970 	for (i = 7; i >= 0; i--) {
1971 		int supp = (map >> (2 * i)) & 3;
1972 
1973 		if (supp == 3)
1974 			continue;
1975 
1976 		if (supp >= mcs_encoding) {
1977 			max_vht_nss = i;
1978 			break;
1979 		}
1980 	}
1981 
1982 	if (!(cap->supp_mcs.tx_mcs_map &
1983 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
1984 		return max_vht_nss;
1985 
1986 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
1987 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
1988 	supp_width = le32_get_bits(cap->vht_cap_info,
1989 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
1990 
1991 	/* if not capable, treat ext_nss_bw as 0 */
1992 	if (!ext_nss_bw_capable)
1993 		ext_nss_bw = 0;
1994 
1995 	/* This is invalid */
1996 	if (supp_width == 3)
1997 		return 0;
1998 
1999 	/* This is an invalid combination so pretend nothing is supported */
2000 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2001 		return 0;
2002 
2003 	/*
2004 	 * Cover all the special cases according to IEEE 802.11-2016
2005 	 * Table 9-250. All other cases are either factor of 1 or not
2006 	 * valid/supported.
2007 	 */
2008 	switch (bw) {
2009 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2010 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2011 		if ((supp_width == 1 || supp_width == 2) &&
2012 		    ext_nss_bw == 3)
2013 			return 2 * max_vht_nss;
2014 		break;
2015 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2016 		if (supp_width == 0 &&
2017 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2018 			return DIV_ROUND_UP(max_vht_nss, 2);
2019 		if (supp_width == 0 &&
2020 		    ext_nss_bw == 3)
2021 			return DIV_ROUND_UP(3 * max_vht_nss, 4);
2022 		if (supp_width == 1 &&
2023 		    ext_nss_bw == 3)
2024 			return 2 * max_vht_nss;
2025 		break;
2026 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2027 		if (supp_width == 0 &&
2028 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2029 			return 0; /* not possible */
2030 		if (supp_width == 0 &&
2031 		    ext_nss_bw == 2)
2032 			return DIV_ROUND_UP(max_vht_nss, 2);
2033 		if (supp_width == 0 &&
2034 		    ext_nss_bw == 3)
2035 			return DIV_ROUND_UP(3 * max_vht_nss, 4);
2036 		if (supp_width == 1 &&
2037 		    ext_nss_bw == 0)
2038 			return 0; /* not possible */
2039 		if (supp_width == 1 &&
2040 		    ext_nss_bw == 1)
2041 			return DIV_ROUND_UP(max_vht_nss, 2);
2042 		if (supp_width == 1 &&
2043 		    ext_nss_bw == 2)
2044 			return DIV_ROUND_UP(3 * max_vht_nss, 4);
2045 		break;
2046 	}
2047 
2048 	/* not covered or invalid combination received */
2049 	return max_vht_nss;
2050 }
2051 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2052