1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 546 { 547 const __be16 *hdr_proto = hdr + ETH_ALEN; 548 549 if (!(ether_addr_equal(hdr, rfc1042_header) && 550 *hdr_proto != htons(ETH_P_AARP) && 551 *hdr_proto != htons(ETH_P_IPX)) && 552 !ether_addr_equal(hdr, bridge_tunnel_header)) 553 return false; 554 555 *proto = *hdr_proto; 556 557 return true; 558 } 559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 560 561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 562 { 563 const void *mesh_addr; 564 struct { 565 struct ethhdr eth; 566 u8 flags; 567 } payload; 568 int hdrlen; 569 int ret; 570 571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 572 if (ret) 573 return ret; 574 575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 576 577 if (likely(pskb_may_pull(skb, hdrlen + 8) && 578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 579 &payload.eth.h_proto))) 580 hdrlen += ETH_ALEN + 2; 581 else if (!pskb_may_pull(skb, hdrlen)) 582 return -EINVAL; 583 584 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 585 switch (payload.flags & MESH_FLAGS_AE) { 586 case MESH_FLAGS_AE_A4: 587 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 588 break; 589 case MESH_FLAGS_AE_A5_A6: 590 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 591 break; 592 default: 593 break; 594 } 595 596 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 597 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 598 599 return 0; 600 } 601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 602 603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 604 const u8 *addr, enum nl80211_iftype iftype, 605 u8 data_offset, bool is_amsdu) 606 { 607 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 608 struct { 609 u8 hdr[ETH_ALEN] __aligned(2); 610 __be16 proto; 611 } payload; 612 struct ethhdr tmp; 613 u16 hdrlen; 614 615 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 616 return -1; 617 618 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 619 if (skb->len < hdrlen) 620 return -1; 621 622 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 623 * header 624 * IEEE 802.11 address fields: 625 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 626 * 0 0 DA SA BSSID n/a 627 * 0 1 DA BSSID SA n/a 628 * 1 0 BSSID SA DA n/a 629 * 1 1 RA TA DA SA 630 */ 631 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 632 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 633 634 switch (hdr->frame_control & 635 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 636 case cpu_to_le16(IEEE80211_FCTL_TODS): 637 if (unlikely(iftype != NL80211_IFTYPE_AP && 638 iftype != NL80211_IFTYPE_AP_VLAN && 639 iftype != NL80211_IFTYPE_P2P_GO)) 640 return -1; 641 break; 642 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 643 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 644 iftype != NL80211_IFTYPE_AP_VLAN && 645 iftype != NL80211_IFTYPE_STATION)) 646 return -1; 647 break; 648 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 649 if ((iftype != NL80211_IFTYPE_STATION && 650 iftype != NL80211_IFTYPE_P2P_CLIENT && 651 iftype != NL80211_IFTYPE_MESH_POINT) || 652 (is_multicast_ether_addr(tmp.h_dest) && 653 ether_addr_equal(tmp.h_source, addr))) 654 return -1; 655 break; 656 case cpu_to_le16(0): 657 if (iftype != NL80211_IFTYPE_ADHOC && 658 iftype != NL80211_IFTYPE_STATION && 659 iftype != NL80211_IFTYPE_OCB) 660 return -1; 661 break; 662 } 663 664 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 665 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 666 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 667 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 668 hdrlen += ETH_ALEN + 2; 669 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 670 } else { 671 tmp.h_proto = htons(skb->len - hdrlen); 672 } 673 674 pskb_pull(skb, hdrlen); 675 676 if (!ehdr) 677 ehdr = skb_push(skb, sizeof(struct ethhdr)); 678 memcpy(ehdr, &tmp, sizeof(tmp)); 679 680 return 0; 681 } 682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 683 684 static void 685 __frame_add_frag(struct sk_buff *skb, struct page *page, 686 void *ptr, int len, int size) 687 { 688 struct skb_shared_info *sh = skb_shinfo(skb); 689 int page_offset; 690 691 get_page(page); 692 page_offset = ptr - page_address(page); 693 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 694 } 695 696 static void 697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 698 int offset, int len) 699 { 700 struct skb_shared_info *sh = skb_shinfo(skb); 701 const skb_frag_t *frag = &sh->frags[0]; 702 struct page *frag_page; 703 void *frag_ptr; 704 int frag_len, frag_size; 705 int head_size = skb->len - skb->data_len; 706 int cur_len; 707 708 frag_page = virt_to_head_page(skb->head); 709 frag_ptr = skb->data; 710 frag_size = head_size; 711 712 while (offset >= frag_size) { 713 offset -= frag_size; 714 frag_page = skb_frag_page(frag); 715 frag_ptr = skb_frag_address(frag); 716 frag_size = skb_frag_size(frag); 717 frag++; 718 } 719 720 frag_ptr += offset; 721 frag_len = frag_size - offset; 722 723 cur_len = min(len, frag_len); 724 725 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 726 len -= cur_len; 727 728 while (len > 0) { 729 frag_len = skb_frag_size(frag); 730 cur_len = min(len, frag_len); 731 __frame_add_frag(frame, skb_frag_page(frag), 732 skb_frag_address(frag), cur_len, frag_len); 733 len -= cur_len; 734 frag++; 735 } 736 } 737 738 static struct sk_buff * 739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 740 int offset, int len, bool reuse_frag, 741 int min_len) 742 { 743 struct sk_buff *frame; 744 int cur_len = len; 745 746 if (skb->len - offset < len) 747 return NULL; 748 749 /* 750 * When reusing framents, copy some data to the head to simplify 751 * ethernet header handling and speed up protocol header processing 752 * in the stack later. 753 */ 754 if (reuse_frag) 755 cur_len = min_t(int, len, min_len); 756 757 /* 758 * Allocate and reserve two bytes more for payload 759 * alignment since sizeof(struct ethhdr) is 14. 760 */ 761 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 762 if (!frame) 763 return NULL; 764 765 frame->priority = skb->priority; 766 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 767 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 768 769 len -= cur_len; 770 if (!len) 771 return frame; 772 773 offset += cur_len; 774 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 775 776 return frame; 777 } 778 779 static u16 780 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 781 { 782 __le16 *field_le = field; 783 __be16 *field_be = field; 784 u16 len; 785 786 if (hdr_type >= 2) 787 len = le16_to_cpu(*field_le); 788 else 789 len = be16_to_cpu(*field_be); 790 if (hdr_type) 791 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 792 793 return len; 794 } 795 796 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 797 { 798 int offset = 0, remaining, subframe_len, padding; 799 800 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 801 struct { 802 __be16 len; 803 u8 mesh_flags; 804 } hdr; 805 u16 len; 806 807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 808 return false; 809 810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 811 mesh_hdr); 812 subframe_len = sizeof(struct ethhdr) + len; 813 padding = (4 - subframe_len) & 0x3; 814 remaining = skb->len - offset; 815 816 if (subframe_len > remaining) 817 return false; 818 } 819 820 return true; 821 } 822 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 823 824 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 825 const u8 *addr, enum nl80211_iftype iftype, 826 const unsigned int extra_headroom, 827 const u8 *check_da, const u8 *check_sa, 828 u8 mesh_control) 829 { 830 unsigned int hlen = ALIGN(extra_headroom, 4); 831 struct sk_buff *frame = NULL; 832 int offset = 0, remaining; 833 struct { 834 struct ethhdr eth; 835 uint8_t flags; 836 } hdr; 837 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 838 bool reuse_skb = false; 839 bool last = false; 840 int copy_len = sizeof(hdr.eth); 841 842 if (iftype == NL80211_IFTYPE_MESH_POINT) 843 copy_len = sizeof(hdr); 844 845 while (!last) { 846 unsigned int subframe_len; 847 int len, mesh_len = 0; 848 u8 padding; 849 850 skb_copy_bits(skb, offset, &hdr, copy_len); 851 if (iftype == NL80211_IFTYPE_MESH_POINT) 852 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 853 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 854 mesh_control); 855 subframe_len = sizeof(struct ethhdr) + len; 856 padding = (4 - subframe_len) & 0x3; 857 858 /* the last MSDU has no padding */ 859 remaining = skb->len - offset; 860 if (subframe_len > remaining) 861 goto purge; 862 /* mitigate A-MSDU aggregation injection attacks */ 863 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 864 goto purge; 865 866 offset += sizeof(struct ethhdr); 867 last = remaining <= subframe_len + padding; 868 869 /* FIXME: should we really accept multicast DA? */ 870 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 871 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 872 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 873 offset += len + padding; 874 continue; 875 } 876 877 /* reuse skb for the last subframe */ 878 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 879 skb_pull(skb, offset); 880 frame = skb; 881 reuse_skb = true; 882 } else { 883 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 884 reuse_frag, 32 + mesh_len); 885 if (!frame) 886 goto purge; 887 888 offset += len + padding; 889 } 890 891 skb_reset_network_header(frame); 892 frame->dev = skb->dev; 893 frame->priority = skb->priority; 894 895 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 896 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 897 skb_pull(frame, ETH_ALEN + 2); 898 899 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 900 __skb_queue_tail(list, frame); 901 } 902 903 if (!reuse_skb) 904 dev_kfree_skb(skb); 905 906 return; 907 908 purge: 909 __skb_queue_purge(list); 910 dev_kfree_skb(skb); 911 } 912 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 913 914 /* Given a data frame determine the 802.1p/1d tag to use. */ 915 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 916 struct cfg80211_qos_map *qos_map) 917 { 918 unsigned int dscp; 919 unsigned char vlan_priority; 920 unsigned int ret; 921 922 /* skb->priority values from 256->263 are magic values to 923 * directly indicate a specific 802.1d priority. This is used 924 * to allow 802.1d priority to be passed directly in from VLAN 925 * tags, etc. 926 */ 927 if (skb->priority >= 256 && skb->priority <= 263) { 928 ret = skb->priority - 256; 929 goto out; 930 } 931 932 if (skb_vlan_tag_present(skb)) { 933 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 934 >> VLAN_PRIO_SHIFT; 935 if (vlan_priority > 0) { 936 ret = vlan_priority; 937 goto out; 938 } 939 } 940 941 switch (skb->protocol) { 942 case htons(ETH_P_IP): 943 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 944 break; 945 case htons(ETH_P_IPV6): 946 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 947 break; 948 case htons(ETH_P_MPLS_UC): 949 case htons(ETH_P_MPLS_MC): { 950 struct mpls_label mpls_tmp, *mpls; 951 952 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 953 sizeof(*mpls), &mpls_tmp); 954 if (!mpls) 955 return 0; 956 957 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 958 >> MPLS_LS_TC_SHIFT; 959 goto out; 960 } 961 case htons(ETH_P_80221): 962 /* 802.21 is always network control traffic */ 963 return 7; 964 default: 965 return 0; 966 } 967 968 if (qos_map) { 969 unsigned int i, tmp_dscp = dscp >> 2; 970 971 for (i = 0; i < qos_map->num_des; i++) { 972 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 973 ret = qos_map->dscp_exception[i].up; 974 goto out; 975 } 976 } 977 978 for (i = 0; i < 8; i++) { 979 if (tmp_dscp >= qos_map->up[i].low && 980 tmp_dscp <= qos_map->up[i].high) { 981 ret = i; 982 goto out; 983 } 984 } 985 } 986 987 ret = dscp >> 5; 988 out: 989 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 990 } 991 EXPORT_SYMBOL(cfg80211_classify8021d); 992 993 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 994 { 995 const struct cfg80211_bss_ies *ies; 996 997 ies = rcu_dereference(bss->ies); 998 if (!ies) 999 return NULL; 1000 1001 return cfg80211_find_elem(id, ies->data, ies->len); 1002 } 1003 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1004 1005 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1006 { 1007 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1008 struct net_device *dev = wdev->netdev; 1009 int i; 1010 1011 if (!wdev->connect_keys) 1012 return; 1013 1014 for (i = 0; i < 4; i++) { 1015 if (!wdev->connect_keys->params[i].cipher) 1016 continue; 1017 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1018 &wdev->connect_keys->params[i])) { 1019 netdev_err(dev, "failed to set key %d\n", i); 1020 continue; 1021 } 1022 if (wdev->connect_keys->def == i && 1023 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1024 netdev_err(dev, "failed to set defkey %d\n", i); 1025 continue; 1026 } 1027 } 1028 1029 kfree_sensitive(wdev->connect_keys); 1030 wdev->connect_keys = NULL; 1031 } 1032 1033 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1034 { 1035 struct cfg80211_event *ev; 1036 unsigned long flags; 1037 1038 spin_lock_irqsave(&wdev->event_lock, flags); 1039 while (!list_empty(&wdev->event_list)) { 1040 ev = list_first_entry(&wdev->event_list, 1041 struct cfg80211_event, list); 1042 list_del(&ev->list); 1043 spin_unlock_irqrestore(&wdev->event_lock, flags); 1044 1045 wdev_lock(wdev); 1046 switch (ev->type) { 1047 case EVENT_CONNECT_RESULT: 1048 __cfg80211_connect_result( 1049 wdev->netdev, 1050 &ev->cr, 1051 ev->cr.status == WLAN_STATUS_SUCCESS); 1052 break; 1053 case EVENT_ROAMED: 1054 __cfg80211_roamed(wdev, &ev->rm); 1055 break; 1056 case EVENT_DISCONNECTED: 1057 __cfg80211_disconnected(wdev->netdev, 1058 ev->dc.ie, ev->dc.ie_len, 1059 ev->dc.reason, 1060 !ev->dc.locally_generated); 1061 break; 1062 case EVENT_IBSS_JOINED: 1063 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1064 ev->ij.channel); 1065 break; 1066 case EVENT_STOPPED: 1067 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1068 break; 1069 case EVENT_PORT_AUTHORIZED: 1070 __cfg80211_port_authorized(wdev, ev->pa.bssid, 1071 ev->pa.td_bitmap, 1072 ev->pa.td_bitmap_len); 1073 break; 1074 } 1075 wdev_unlock(wdev); 1076 1077 kfree(ev); 1078 1079 spin_lock_irqsave(&wdev->event_lock, flags); 1080 } 1081 spin_unlock_irqrestore(&wdev->event_lock, flags); 1082 } 1083 1084 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1085 { 1086 struct wireless_dev *wdev; 1087 1088 lockdep_assert_held(&rdev->wiphy.mtx); 1089 1090 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1091 cfg80211_process_wdev_events(wdev); 1092 } 1093 1094 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1095 struct net_device *dev, enum nl80211_iftype ntype, 1096 struct vif_params *params) 1097 { 1098 int err; 1099 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1100 1101 lockdep_assert_held(&rdev->wiphy.mtx); 1102 1103 /* don't support changing VLANs, you just re-create them */ 1104 if (otype == NL80211_IFTYPE_AP_VLAN) 1105 return -EOPNOTSUPP; 1106 1107 /* cannot change into P2P device or NAN */ 1108 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1109 ntype == NL80211_IFTYPE_NAN) 1110 return -EOPNOTSUPP; 1111 1112 if (!rdev->ops->change_virtual_intf || 1113 !(rdev->wiphy.interface_modes & (1 << ntype))) 1114 return -EOPNOTSUPP; 1115 1116 if (ntype != otype) { 1117 /* if it's part of a bridge, reject changing type to station/ibss */ 1118 if (netif_is_bridge_port(dev) && 1119 (ntype == NL80211_IFTYPE_ADHOC || 1120 ntype == NL80211_IFTYPE_STATION || 1121 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1122 return -EBUSY; 1123 1124 dev->ieee80211_ptr->use_4addr = false; 1125 wdev_lock(dev->ieee80211_ptr); 1126 rdev_set_qos_map(rdev, dev, NULL); 1127 wdev_unlock(dev->ieee80211_ptr); 1128 1129 switch (otype) { 1130 case NL80211_IFTYPE_AP: 1131 case NL80211_IFTYPE_P2P_GO: 1132 cfg80211_stop_ap(rdev, dev, -1, true); 1133 break; 1134 case NL80211_IFTYPE_ADHOC: 1135 cfg80211_leave_ibss(rdev, dev, false); 1136 break; 1137 case NL80211_IFTYPE_STATION: 1138 case NL80211_IFTYPE_P2P_CLIENT: 1139 wdev_lock(dev->ieee80211_ptr); 1140 cfg80211_disconnect(rdev, dev, 1141 WLAN_REASON_DEAUTH_LEAVING, true); 1142 wdev_unlock(dev->ieee80211_ptr); 1143 break; 1144 case NL80211_IFTYPE_MESH_POINT: 1145 /* mesh should be handled? */ 1146 break; 1147 case NL80211_IFTYPE_OCB: 1148 cfg80211_leave_ocb(rdev, dev); 1149 break; 1150 default: 1151 break; 1152 } 1153 1154 cfg80211_process_rdev_events(rdev); 1155 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1156 1157 memset(&dev->ieee80211_ptr->u, 0, 1158 sizeof(dev->ieee80211_ptr->u)); 1159 memset(&dev->ieee80211_ptr->links, 0, 1160 sizeof(dev->ieee80211_ptr->links)); 1161 } 1162 1163 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1164 1165 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1166 1167 if (!err && params && params->use_4addr != -1) 1168 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1169 1170 if (!err) { 1171 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1172 switch (ntype) { 1173 case NL80211_IFTYPE_STATION: 1174 if (dev->ieee80211_ptr->use_4addr) 1175 break; 1176 fallthrough; 1177 case NL80211_IFTYPE_OCB: 1178 case NL80211_IFTYPE_P2P_CLIENT: 1179 case NL80211_IFTYPE_ADHOC: 1180 dev->priv_flags |= IFF_DONT_BRIDGE; 1181 break; 1182 case NL80211_IFTYPE_P2P_GO: 1183 case NL80211_IFTYPE_AP: 1184 case NL80211_IFTYPE_AP_VLAN: 1185 case NL80211_IFTYPE_MESH_POINT: 1186 /* bridging OK */ 1187 break; 1188 case NL80211_IFTYPE_MONITOR: 1189 /* monitor can't bridge anyway */ 1190 break; 1191 case NL80211_IFTYPE_UNSPECIFIED: 1192 case NUM_NL80211_IFTYPES: 1193 /* not happening */ 1194 break; 1195 case NL80211_IFTYPE_P2P_DEVICE: 1196 case NL80211_IFTYPE_WDS: 1197 case NL80211_IFTYPE_NAN: 1198 WARN_ON(1); 1199 break; 1200 } 1201 } 1202 1203 if (!err && ntype != otype && netif_running(dev)) { 1204 cfg80211_update_iface_num(rdev, ntype, 1); 1205 cfg80211_update_iface_num(rdev, otype, -1); 1206 } 1207 1208 return err; 1209 } 1210 1211 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1212 { 1213 int modulation, streams, bitrate; 1214 1215 /* the formula below does only work for MCS values smaller than 32 */ 1216 if (WARN_ON_ONCE(rate->mcs >= 32)) 1217 return 0; 1218 1219 modulation = rate->mcs & 7; 1220 streams = (rate->mcs >> 3) + 1; 1221 1222 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1223 1224 if (modulation < 4) 1225 bitrate *= (modulation + 1); 1226 else if (modulation == 4) 1227 bitrate *= (modulation + 2); 1228 else 1229 bitrate *= (modulation + 3); 1230 1231 bitrate *= streams; 1232 1233 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1234 bitrate = (bitrate / 9) * 10; 1235 1236 /* do NOT round down here */ 1237 return (bitrate + 50000) / 100000; 1238 } 1239 1240 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1241 { 1242 static const u32 __mcs2bitrate[] = { 1243 /* control PHY */ 1244 [0] = 275, 1245 /* SC PHY */ 1246 [1] = 3850, 1247 [2] = 7700, 1248 [3] = 9625, 1249 [4] = 11550, 1250 [5] = 12512, /* 1251.25 mbps */ 1251 [6] = 15400, 1252 [7] = 19250, 1253 [8] = 23100, 1254 [9] = 25025, 1255 [10] = 30800, 1256 [11] = 38500, 1257 [12] = 46200, 1258 /* OFDM PHY */ 1259 [13] = 6930, 1260 [14] = 8662, /* 866.25 mbps */ 1261 [15] = 13860, 1262 [16] = 17325, 1263 [17] = 20790, 1264 [18] = 27720, 1265 [19] = 34650, 1266 [20] = 41580, 1267 [21] = 45045, 1268 [22] = 51975, 1269 [23] = 62370, 1270 [24] = 67568, /* 6756.75 mbps */ 1271 /* LP-SC PHY */ 1272 [25] = 6260, 1273 [26] = 8340, 1274 [27] = 11120, 1275 [28] = 12510, 1276 [29] = 16680, 1277 [30] = 22240, 1278 [31] = 25030, 1279 }; 1280 1281 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1282 return 0; 1283 1284 return __mcs2bitrate[rate->mcs]; 1285 } 1286 1287 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1288 { 1289 static const u32 __mcs2bitrate[] = { 1290 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1291 [7 - 6] = 50050, /* MCS 12.1 */ 1292 [8 - 6] = 53900, 1293 [9 - 6] = 57750, 1294 [10 - 6] = 63900, 1295 [11 - 6] = 75075, 1296 [12 - 6] = 80850, 1297 }; 1298 1299 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1300 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1301 return 0; 1302 1303 return __mcs2bitrate[rate->mcs - 6]; 1304 } 1305 1306 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1307 { 1308 static const u32 __mcs2bitrate[] = { 1309 /* control PHY */ 1310 [0] = 275, 1311 /* SC PHY */ 1312 [1] = 3850, 1313 [2] = 7700, 1314 [3] = 9625, 1315 [4] = 11550, 1316 [5] = 12512, /* 1251.25 mbps */ 1317 [6] = 13475, 1318 [7] = 15400, 1319 [8] = 19250, 1320 [9] = 23100, 1321 [10] = 25025, 1322 [11] = 26950, 1323 [12] = 30800, 1324 [13] = 38500, 1325 [14] = 46200, 1326 [15] = 50050, 1327 [16] = 53900, 1328 [17] = 57750, 1329 [18] = 69300, 1330 [19] = 75075, 1331 [20] = 80850, 1332 }; 1333 1334 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1335 return 0; 1336 1337 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1338 } 1339 1340 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1341 { 1342 static const u32 base[4][12] = { 1343 { 6500000, 1344 13000000, 1345 19500000, 1346 26000000, 1347 39000000, 1348 52000000, 1349 58500000, 1350 65000000, 1351 78000000, 1352 /* not in the spec, but some devices use this: */ 1353 86700000, 1354 97500000, 1355 108300000, 1356 }, 1357 { 13500000, 1358 27000000, 1359 40500000, 1360 54000000, 1361 81000000, 1362 108000000, 1363 121500000, 1364 135000000, 1365 162000000, 1366 180000000, 1367 202500000, 1368 225000000, 1369 }, 1370 { 29300000, 1371 58500000, 1372 87800000, 1373 117000000, 1374 175500000, 1375 234000000, 1376 263300000, 1377 292500000, 1378 351000000, 1379 390000000, 1380 438800000, 1381 487500000, 1382 }, 1383 { 58500000, 1384 117000000, 1385 175500000, 1386 234000000, 1387 351000000, 1388 468000000, 1389 526500000, 1390 585000000, 1391 702000000, 1392 780000000, 1393 877500000, 1394 975000000, 1395 }, 1396 }; 1397 u32 bitrate; 1398 int idx; 1399 1400 if (rate->mcs > 11) 1401 goto warn; 1402 1403 switch (rate->bw) { 1404 case RATE_INFO_BW_160: 1405 idx = 3; 1406 break; 1407 case RATE_INFO_BW_80: 1408 idx = 2; 1409 break; 1410 case RATE_INFO_BW_40: 1411 idx = 1; 1412 break; 1413 case RATE_INFO_BW_5: 1414 case RATE_INFO_BW_10: 1415 default: 1416 goto warn; 1417 case RATE_INFO_BW_20: 1418 idx = 0; 1419 } 1420 1421 bitrate = base[idx][rate->mcs]; 1422 bitrate *= rate->nss; 1423 1424 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1425 bitrate = (bitrate / 9) * 10; 1426 1427 /* do NOT round down here */ 1428 return (bitrate + 50000) / 100000; 1429 warn: 1430 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1431 rate->bw, rate->mcs, rate->nss); 1432 return 0; 1433 } 1434 1435 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1436 { 1437 #define SCALE 6144 1438 u32 mcs_divisors[14] = { 1439 102399, /* 16.666666... */ 1440 51201, /* 8.333333... */ 1441 34134, /* 5.555555... */ 1442 25599, /* 4.166666... */ 1443 17067, /* 2.777777... */ 1444 12801, /* 2.083333... */ 1445 11377, /* 1.851725... */ 1446 10239, /* 1.666666... */ 1447 8532, /* 1.388888... */ 1448 7680, /* 1.250000... */ 1449 6828, /* 1.111111... */ 1450 6144, /* 1.000000... */ 1451 5690, /* 0.926106... */ 1452 5120, /* 0.833333... */ 1453 }; 1454 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1455 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1456 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1457 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1458 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1459 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1460 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1461 u64 tmp; 1462 u32 result; 1463 1464 if (WARN_ON_ONCE(rate->mcs > 13)) 1465 return 0; 1466 1467 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1468 return 0; 1469 if (WARN_ON_ONCE(rate->he_ru_alloc > 1470 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1471 return 0; 1472 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1473 return 0; 1474 1475 if (rate->bw == RATE_INFO_BW_160) 1476 result = rates_160M[rate->he_gi]; 1477 else if (rate->bw == RATE_INFO_BW_80 || 1478 (rate->bw == RATE_INFO_BW_HE_RU && 1479 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1480 result = rates_969[rate->he_gi]; 1481 else if (rate->bw == RATE_INFO_BW_40 || 1482 (rate->bw == RATE_INFO_BW_HE_RU && 1483 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1484 result = rates_484[rate->he_gi]; 1485 else if (rate->bw == RATE_INFO_BW_20 || 1486 (rate->bw == RATE_INFO_BW_HE_RU && 1487 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1488 result = rates_242[rate->he_gi]; 1489 else if (rate->bw == RATE_INFO_BW_HE_RU && 1490 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1491 result = rates_106[rate->he_gi]; 1492 else if (rate->bw == RATE_INFO_BW_HE_RU && 1493 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1494 result = rates_52[rate->he_gi]; 1495 else if (rate->bw == RATE_INFO_BW_HE_RU && 1496 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1497 result = rates_26[rate->he_gi]; 1498 else { 1499 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1500 rate->bw, rate->he_ru_alloc); 1501 return 0; 1502 } 1503 1504 /* now scale to the appropriate MCS */ 1505 tmp = result; 1506 tmp *= SCALE; 1507 do_div(tmp, mcs_divisors[rate->mcs]); 1508 result = tmp; 1509 1510 /* and take NSS, DCM into account */ 1511 result = (result * rate->nss) / 8; 1512 if (rate->he_dcm) 1513 result /= 2; 1514 1515 return result / 10000; 1516 } 1517 1518 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1519 { 1520 #define SCALE 6144 1521 static const u32 mcs_divisors[16] = { 1522 102399, /* 16.666666... */ 1523 51201, /* 8.333333... */ 1524 34134, /* 5.555555... */ 1525 25599, /* 4.166666... */ 1526 17067, /* 2.777777... */ 1527 12801, /* 2.083333... */ 1528 11377, /* 1.851725... */ 1529 10239, /* 1.666666... */ 1530 8532, /* 1.388888... */ 1531 7680, /* 1.250000... */ 1532 6828, /* 1.111111... */ 1533 6144, /* 1.000000... */ 1534 5690, /* 0.926106... */ 1535 5120, /* 0.833333... */ 1536 409600, /* 66.666666... */ 1537 204800, /* 33.333333... */ 1538 }; 1539 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1540 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1541 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1542 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1543 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1544 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1545 u64 tmp; 1546 u32 result; 1547 1548 if (WARN_ON_ONCE(rate->mcs > 15)) 1549 return 0; 1550 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1551 return 0; 1552 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1553 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1554 return 0; 1555 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1556 return 0; 1557 1558 /* Bandwidth checks for MCS 14 */ 1559 if (rate->mcs == 14) { 1560 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1561 rate->bw != RATE_INFO_BW_80 && 1562 rate->bw != RATE_INFO_BW_160 && 1563 rate->bw != RATE_INFO_BW_320) || 1564 (rate->bw == RATE_INFO_BW_EHT_RU && 1565 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1566 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1567 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1568 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1569 rate->bw, rate->eht_ru_alloc); 1570 return 0; 1571 } 1572 } 1573 1574 if (rate->bw == RATE_INFO_BW_320 || 1575 (rate->bw == RATE_INFO_BW_EHT_RU && 1576 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1577 result = 4 * rates_996[rate->eht_gi]; 1578 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1579 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1580 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1581 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1582 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1583 result = 3 * rates_996[rate->eht_gi]; 1584 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1585 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1586 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1587 else if (rate->bw == RATE_INFO_BW_160 || 1588 (rate->bw == RATE_INFO_BW_EHT_RU && 1589 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1590 result = 2 * rates_996[rate->eht_gi]; 1591 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1592 rate->eht_ru_alloc == 1593 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1594 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1595 + rates_242[rate->eht_gi]; 1596 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1597 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1598 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1599 else if (rate->bw == RATE_INFO_BW_80 || 1600 (rate->bw == RATE_INFO_BW_EHT_RU && 1601 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1602 result = rates_996[rate->eht_gi]; 1603 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1604 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1605 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1606 else if (rate->bw == RATE_INFO_BW_40 || 1607 (rate->bw == RATE_INFO_BW_EHT_RU && 1608 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1609 result = rates_484[rate->eht_gi]; 1610 else if (rate->bw == RATE_INFO_BW_20 || 1611 (rate->bw == RATE_INFO_BW_EHT_RU && 1612 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1613 result = rates_242[rate->eht_gi]; 1614 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1615 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1616 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1617 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1618 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1619 result = rates_106[rate->eht_gi]; 1620 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1621 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1622 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1623 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1624 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1625 result = rates_52[rate->eht_gi]; 1626 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1627 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1628 result = rates_26[rate->eht_gi]; 1629 else { 1630 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1631 rate->bw, rate->eht_ru_alloc); 1632 return 0; 1633 } 1634 1635 /* now scale to the appropriate MCS */ 1636 tmp = result; 1637 tmp *= SCALE; 1638 do_div(tmp, mcs_divisors[rate->mcs]); 1639 1640 /* and take NSS */ 1641 tmp *= rate->nss; 1642 do_div(tmp, 8); 1643 1644 result = tmp; 1645 1646 return result / 10000; 1647 } 1648 1649 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1650 { 1651 if (rate->flags & RATE_INFO_FLAGS_MCS) 1652 return cfg80211_calculate_bitrate_ht(rate); 1653 if (rate->flags & RATE_INFO_FLAGS_DMG) 1654 return cfg80211_calculate_bitrate_dmg(rate); 1655 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1656 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1657 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1658 return cfg80211_calculate_bitrate_edmg(rate); 1659 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1660 return cfg80211_calculate_bitrate_vht(rate); 1661 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1662 return cfg80211_calculate_bitrate_he(rate); 1663 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1664 return cfg80211_calculate_bitrate_eht(rate); 1665 1666 return rate->legacy; 1667 } 1668 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1669 1670 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1671 enum ieee80211_p2p_attr_id attr, 1672 u8 *buf, unsigned int bufsize) 1673 { 1674 u8 *out = buf; 1675 u16 attr_remaining = 0; 1676 bool desired_attr = false; 1677 u16 desired_len = 0; 1678 1679 while (len > 0) { 1680 unsigned int iedatalen; 1681 unsigned int copy; 1682 const u8 *iedata; 1683 1684 if (len < 2) 1685 return -EILSEQ; 1686 iedatalen = ies[1]; 1687 if (iedatalen + 2 > len) 1688 return -EILSEQ; 1689 1690 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1691 goto cont; 1692 1693 if (iedatalen < 4) 1694 goto cont; 1695 1696 iedata = ies + 2; 1697 1698 /* check WFA OUI, P2P subtype */ 1699 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1700 iedata[2] != 0x9a || iedata[3] != 0x09) 1701 goto cont; 1702 1703 iedatalen -= 4; 1704 iedata += 4; 1705 1706 /* check attribute continuation into this IE */ 1707 copy = min_t(unsigned int, attr_remaining, iedatalen); 1708 if (copy && desired_attr) { 1709 desired_len += copy; 1710 if (out) { 1711 memcpy(out, iedata, min(bufsize, copy)); 1712 out += min(bufsize, copy); 1713 bufsize -= min(bufsize, copy); 1714 } 1715 1716 1717 if (copy == attr_remaining) 1718 return desired_len; 1719 } 1720 1721 attr_remaining -= copy; 1722 if (attr_remaining) 1723 goto cont; 1724 1725 iedatalen -= copy; 1726 iedata += copy; 1727 1728 while (iedatalen > 0) { 1729 u16 attr_len; 1730 1731 /* P2P attribute ID & size must fit */ 1732 if (iedatalen < 3) 1733 return -EILSEQ; 1734 desired_attr = iedata[0] == attr; 1735 attr_len = get_unaligned_le16(iedata + 1); 1736 iedatalen -= 3; 1737 iedata += 3; 1738 1739 copy = min_t(unsigned int, attr_len, iedatalen); 1740 1741 if (desired_attr) { 1742 desired_len += copy; 1743 if (out) { 1744 memcpy(out, iedata, min(bufsize, copy)); 1745 out += min(bufsize, copy); 1746 bufsize -= min(bufsize, copy); 1747 } 1748 1749 if (copy == attr_len) 1750 return desired_len; 1751 } 1752 1753 iedata += copy; 1754 iedatalen -= copy; 1755 attr_remaining = attr_len - copy; 1756 } 1757 1758 cont: 1759 len -= ies[1] + 2; 1760 ies += ies[1] + 2; 1761 } 1762 1763 if (attr_remaining && desired_attr) 1764 return -EILSEQ; 1765 1766 return -ENOENT; 1767 } 1768 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1769 1770 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1771 { 1772 int i; 1773 1774 /* Make sure array values are legal */ 1775 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1776 return false; 1777 1778 i = 0; 1779 while (i < n_ids) { 1780 if (ids[i] == WLAN_EID_EXTENSION) { 1781 if (id_ext && (ids[i + 1] == id)) 1782 return true; 1783 1784 i += 2; 1785 continue; 1786 } 1787 1788 if (ids[i] == id && !id_ext) 1789 return true; 1790 1791 i++; 1792 } 1793 return false; 1794 } 1795 1796 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1797 { 1798 /* we assume a validly formed IEs buffer */ 1799 u8 len = ies[pos + 1]; 1800 1801 pos += 2 + len; 1802 1803 /* the IE itself must have 255 bytes for fragments to follow */ 1804 if (len < 255) 1805 return pos; 1806 1807 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1808 len = ies[pos + 1]; 1809 pos += 2 + len; 1810 } 1811 1812 return pos; 1813 } 1814 1815 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1816 const u8 *ids, int n_ids, 1817 const u8 *after_ric, int n_after_ric, 1818 size_t offset) 1819 { 1820 size_t pos = offset; 1821 1822 while (pos < ielen) { 1823 u8 ext = 0; 1824 1825 if (ies[pos] == WLAN_EID_EXTENSION) 1826 ext = 2; 1827 if ((pos + ext) >= ielen) 1828 break; 1829 1830 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1831 ies[pos] == WLAN_EID_EXTENSION)) 1832 break; 1833 1834 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1835 pos = skip_ie(ies, ielen, pos); 1836 1837 while (pos < ielen) { 1838 if (ies[pos] == WLAN_EID_EXTENSION) 1839 ext = 2; 1840 else 1841 ext = 0; 1842 1843 if ((pos + ext) >= ielen) 1844 break; 1845 1846 if (!ieee80211_id_in_list(after_ric, 1847 n_after_ric, 1848 ies[pos + ext], 1849 ext == 2)) 1850 pos = skip_ie(ies, ielen, pos); 1851 else 1852 break; 1853 } 1854 } else { 1855 pos = skip_ie(ies, ielen, pos); 1856 } 1857 } 1858 1859 return pos; 1860 } 1861 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1862 1863 bool ieee80211_operating_class_to_band(u8 operating_class, 1864 enum nl80211_band *band) 1865 { 1866 switch (operating_class) { 1867 case 112: 1868 case 115 ... 127: 1869 case 128 ... 130: 1870 *band = NL80211_BAND_5GHZ; 1871 return true; 1872 case 131 ... 135: 1873 *band = NL80211_BAND_6GHZ; 1874 return true; 1875 case 81: 1876 case 82: 1877 case 83: 1878 case 84: 1879 *band = NL80211_BAND_2GHZ; 1880 return true; 1881 case 180: 1882 *band = NL80211_BAND_60GHZ; 1883 return true; 1884 } 1885 1886 return false; 1887 } 1888 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1889 1890 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1891 u8 *op_class) 1892 { 1893 u8 vht_opclass; 1894 u32 freq = chandef->center_freq1; 1895 1896 if (freq >= 2412 && freq <= 2472) { 1897 if (chandef->width > NL80211_CHAN_WIDTH_40) 1898 return false; 1899 1900 /* 2.407 GHz, channels 1..13 */ 1901 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1902 if (freq > chandef->chan->center_freq) 1903 *op_class = 83; /* HT40+ */ 1904 else 1905 *op_class = 84; /* HT40- */ 1906 } else { 1907 *op_class = 81; 1908 } 1909 1910 return true; 1911 } 1912 1913 if (freq == 2484) { 1914 /* channel 14 is only for IEEE 802.11b */ 1915 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1916 return false; 1917 1918 *op_class = 82; /* channel 14 */ 1919 return true; 1920 } 1921 1922 switch (chandef->width) { 1923 case NL80211_CHAN_WIDTH_80: 1924 vht_opclass = 128; 1925 break; 1926 case NL80211_CHAN_WIDTH_160: 1927 vht_opclass = 129; 1928 break; 1929 case NL80211_CHAN_WIDTH_80P80: 1930 vht_opclass = 130; 1931 break; 1932 case NL80211_CHAN_WIDTH_10: 1933 case NL80211_CHAN_WIDTH_5: 1934 return false; /* unsupported for now */ 1935 default: 1936 vht_opclass = 0; 1937 break; 1938 } 1939 1940 /* 5 GHz, channels 36..48 */ 1941 if (freq >= 5180 && freq <= 5240) { 1942 if (vht_opclass) { 1943 *op_class = vht_opclass; 1944 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1945 if (freq > chandef->chan->center_freq) 1946 *op_class = 116; 1947 else 1948 *op_class = 117; 1949 } else { 1950 *op_class = 115; 1951 } 1952 1953 return true; 1954 } 1955 1956 /* 5 GHz, channels 52..64 */ 1957 if (freq >= 5260 && freq <= 5320) { 1958 if (vht_opclass) { 1959 *op_class = vht_opclass; 1960 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1961 if (freq > chandef->chan->center_freq) 1962 *op_class = 119; 1963 else 1964 *op_class = 120; 1965 } else { 1966 *op_class = 118; 1967 } 1968 1969 return true; 1970 } 1971 1972 /* 5 GHz, channels 100..144 */ 1973 if (freq >= 5500 && freq <= 5720) { 1974 if (vht_opclass) { 1975 *op_class = vht_opclass; 1976 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1977 if (freq > chandef->chan->center_freq) 1978 *op_class = 122; 1979 else 1980 *op_class = 123; 1981 } else { 1982 *op_class = 121; 1983 } 1984 1985 return true; 1986 } 1987 1988 /* 5 GHz, channels 149..169 */ 1989 if (freq >= 5745 && freq <= 5845) { 1990 if (vht_opclass) { 1991 *op_class = vht_opclass; 1992 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1993 if (freq > chandef->chan->center_freq) 1994 *op_class = 126; 1995 else 1996 *op_class = 127; 1997 } else if (freq <= 5805) { 1998 *op_class = 124; 1999 } else { 2000 *op_class = 125; 2001 } 2002 2003 return true; 2004 } 2005 2006 /* 56.16 GHz, channel 1..4 */ 2007 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2008 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2009 return false; 2010 2011 *op_class = 180; 2012 return true; 2013 } 2014 2015 /* not supported yet */ 2016 return false; 2017 } 2018 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2019 2020 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2021 { 2022 switch (wdev->iftype) { 2023 case NL80211_IFTYPE_AP: 2024 case NL80211_IFTYPE_P2P_GO: 2025 WARN_ON(wdev->valid_links); 2026 return wdev->links[0].ap.beacon_interval; 2027 case NL80211_IFTYPE_MESH_POINT: 2028 return wdev->u.mesh.beacon_interval; 2029 case NL80211_IFTYPE_ADHOC: 2030 return wdev->u.ibss.beacon_interval; 2031 default: 2032 break; 2033 } 2034 2035 return 0; 2036 } 2037 2038 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2039 u32 *beacon_int_gcd, 2040 bool *beacon_int_different) 2041 { 2042 struct wireless_dev *wdev; 2043 2044 *beacon_int_gcd = 0; 2045 *beacon_int_different = false; 2046 2047 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2048 int wdev_bi; 2049 2050 /* this feature isn't supported with MLO */ 2051 if (wdev->valid_links) 2052 continue; 2053 2054 wdev_bi = cfg80211_wdev_bi(wdev); 2055 2056 if (!wdev_bi) 2057 continue; 2058 2059 if (!*beacon_int_gcd) { 2060 *beacon_int_gcd = wdev_bi; 2061 continue; 2062 } 2063 2064 if (wdev_bi == *beacon_int_gcd) 2065 continue; 2066 2067 *beacon_int_different = true; 2068 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2069 } 2070 2071 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2072 if (*beacon_int_gcd) 2073 *beacon_int_different = true; 2074 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2075 } 2076 } 2077 2078 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2079 enum nl80211_iftype iftype, u32 beacon_int) 2080 { 2081 /* 2082 * This is just a basic pre-condition check; if interface combinations 2083 * are possible the driver must already be checking those with a call 2084 * to cfg80211_check_combinations(), in which case we'll validate more 2085 * through the cfg80211_calculate_bi_data() call and code in 2086 * cfg80211_iter_combinations(). 2087 */ 2088 2089 if (beacon_int < 10 || beacon_int > 10000) 2090 return -EINVAL; 2091 2092 return 0; 2093 } 2094 2095 int cfg80211_iter_combinations(struct wiphy *wiphy, 2096 struct iface_combination_params *params, 2097 void (*iter)(const struct ieee80211_iface_combination *c, 2098 void *data), 2099 void *data) 2100 { 2101 const struct ieee80211_regdomain *regdom; 2102 enum nl80211_dfs_regions region = 0; 2103 int i, j, iftype; 2104 int num_interfaces = 0; 2105 u32 used_iftypes = 0; 2106 u32 beacon_int_gcd; 2107 bool beacon_int_different; 2108 2109 /* 2110 * This is a bit strange, since the iteration used to rely only on 2111 * the data given by the driver, but here it now relies on context, 2112 * in form of the currently operating interfaces. 2113 * This is OK for all current users, and saves us from having to 2114 * push the GCD calculations into all the drivers. 2115 * In the future, this should probably rely more on data that's in 2116 * cfg80211 already - the only thing not would appear to be any new 2117 * interfaces (while being brought up) and channel/radar data. 2118 */ 2119 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2120 &beacon_int_gcd, &beacon_int_different); 2121 2122 if (params->radar_detect) { 2123 rcu_read_lock(); 2124 regdom = rcu_dereference(cfg80211_regdomain); 2125 if (regdom) 2126 region = regdom->dfs_region; 2127 rcu_read_unlock(); 2128 } 2129 2130 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2131 num_interfaces += params->iftype_num[iftype]; 2132 if (params->iftype_num[iftype] > 0 && 2133 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2134 used_iftypes |= BIT(iftype); 2135 } 2136 2137 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2138 const struct ieee80211_iface_combination *c; 2139 struct ieee80211_iface_limit *limits; 2140 u32 all_iftypes = 0; 2141 2142 c = &wiphy->iface_combinations[i]; 2143 2144 if (num_interfaces > c->max_interfaces) 2145 continue; 2146 if (params->num_different_channels > c->num_different_channels) 2147 continue; 2148 2149 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2150 GFP_KERNEL); 2151 if (!limits) 2152 return -ENOMEM; 2153 2154 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2155 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2156 continue; 2157 for (j = 0; j < c->n_limits; j++) { 2158 all_iftypes |= limits[j].types; 2159 if (!(limits[j].types & BIT(iftype))) 2160 continue; 2161 if (limits[j].max < params->iftype_num[iftype]) 2162 goto cont; 2163 limits[j].max -= params->iftype_num[iftype]; 2164 } 2165 } 2166 2167 if (params->radar_detect != 2168 (c->radar_detect_widths & params->radar_detect)) 2169 goto cont; 2170 2171 if (params->radar_detect && c->radar_detect_regions && 2172 !(c->radar_detect_regions & BIT(region))) 2173 goto cont; 2174 2175 /* Finally check that all iftypes that we're currently 2176 * using are actually part of this combination. If they 2177 * aren't then we can't use this combination and have 2178 * to continue to the next. 2179 */ 2180 if ((all_iftypes & used_iftypes) != used_iftypes) 2181 goto cont; 2182 2183 if (beacon_int_gcd) { 2184 if (c->beacon_int_min_gcd && 2185 beacon_int_gcd < c->beacon_int_min_gcd) 2186 goto cont; 2187 if (!c->beacon_int_min_gcd && beacon_int_different) 2188 goto cont; 2189 } 2190 2191 /* This combination covered all interface types and 2192 * supported the requested numbers, so we're good. 2193 */ 2194 2195 (*iter)(c, data); 2196 cont: 2197 kfree(limits); 2198 } 2199 2200 return 0; 2201 } 2202 EXPORT_SYMBOL(cfg80211_iter_combinations); 2203 2204 static void 2205 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2206 void *data) 2207 { 2208 int *num = data; 2209 (*num)++; 2210 } 2211 2212 int cfg80211_check_combinations(struct wiphy *wiphy, 2213 struct iface_combination_params *params) 2214 { 2215 int err, num = 0; 2216 2217 err = cfg80211_iter_combinations(wiphy, params, 2218 cfg80211_iter_sum_ifcombs, &num); 2219 if (err) 2220 return err; 2221 if (num == 0) 2222 return -EBUSY; 2223 2224 return 0; 2225 } 2226 EXPORT_SYMBOL(cfg80211_check_combinations); 2227 2228 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2229 const u8 *rates, unsigned int n_rates, 2230 u32 *mask) 2231 { 2232 int i, j; 2233 2234 if (!sband) 2235 return -EINVAL; 2236 2237 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2238 return -EINVAL; 2239 2240 *mask = 0; 2241 2242 for (i = 0; i < n_rates; i++) { 2243 int rate = (rates[i] & 0x7f) * 5; 2244 bool found = false; 2245 2246 for (j = 0; j < sband->n_bitrates; j++) { 2247 if (sband->bitrates[j].bitrate == rate) { 2248 found = true; 2249 *mask |= BIT(j); 2250 break; 2251 } 2252 } 2253 if (!found) 2254 return -EINVAL; 2255 } 2256 2257 /* 2258 * mask must have at least one bit set here since we 2259 * didn't accept a 0-length rates array nor allowed 2260 * entries in the array that didn't exist 2261 */ 2262 2263 return 0; 2264 } 2265 2266 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2267 { 2268 enum nl80211_band band; 2269 unsigned int n_channels = 0; 2270 2271 for (band = 0; band < NUM_NL80211_BANDS; band++) 2272 if (wiphy->bands[band]) 2273 n_channels += wiphy->bands[band]->n_channels; 2274 2275 return n_channels; 2276 } 2277 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2278 2279 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2280 struct station_info *sinfo) 2281 { 2282 struct cfg80211_registered_device *rdev; 2283 struct wireless_dev *wdev; 2284 2285 wdev = dev->ieee80211_ptr; 2286 if (!wdev) 2287 return -EOPNOTSUPP; 2288 2289 rdev = wiphy_to_rdev(wdev->wiphy); 2290 if (!rdev->ops->get_station) 2291 return -EOPNOTSUPP; 2292 2293 memset(sinfo, 0, sizeof(*sinfo)); 2294 2295 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2296 } 2297 EXPORT_SYMBOL(cfg80211_get_station); 2298 2299 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2300 { 2301 int i; 2302 2303 if (!f) 2304 return; 2305 2306 kfree(f->serv_spec_info); 2307 kfree(f->srf_bf); 2308 kfree(f->srf_macs); 2309 for (i = 0; i < f->num_rx_filters; i++) 2310 kfree(f->rx_filters[i].filter); 2311 2312 for (i = 0; i < f->num_tx_filters; i++) 2313 kfree(f->tx_filters[i].filter); 2314 2315 kfree(f->rx_filters); 2316 kfree(f->tx_filters); 2317 kfree(f); 2318 } 2319 EXPORT_SYMBOL(cfg80211_free_nan_func); 2320 2321 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2322 u32 center_freq_khz, u32 bw_khz) 2323 { 2324 u32 start_freq_khz, end_freq_khz; 2325 2326 start_freq_khz = center_freq_khz - (bw_khz / 2); 2327 end_freq_khz = center_freq_khz + (bw_khz / 2); 2328 2329 if (start_freq_khz >= freq_range->start_freq_khz && 2330 end_freq_khz <= freq_range->end_freq_khz) 2331 return true; 2332 2333 return false; 2334 } 2335 2336 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2337 { 2338 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2339 sizeof(*(sinfo->pertid)), 2340 gfp); 2341 if (!sinfo->pertid) 2342 return -ENOMEM; 2343 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2347 2348 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2349 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2350 const unsigned char rfc1042_header[] __aligned(2) = 2351 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2352 EXPORT_SYMBOL(rfc1042_header); 2353 2354 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2355 const unsigned char bridge_tunnel_header[] __aligned(2) = 2356 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2357 EXPORT_SYMBOL(bridge_tunnel_header); 2358 2359 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2360 struct iapp_layer2_update { 2361 u8 da[ETH_ALEN]; /* broadcast */ 2362 u8 sa[ETH_ALEN]; /* STA addr */ 2363 __be16 len; /* 6 */ 2364 u8 dsap; /* 0 */ 2365 u8 ssap; /* 0 */ 2366 u8 control; 2367 u8 xid_info[3]; 2368 } __packed; 2369 2370 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2371 { 2372 struct iapp_layer2_update *msg; 2373 struct sk_buff *skb; 2374 2375 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2376 * bridge devices */ 2377 2378 skb = dev_alloc_skb(sizeof(*msg)); 2379 if (!skb) 2380 return; 2381 msg = skb_put(skb, sizeof(*msg)); 2382 2383 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2384 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2385 2386 eth_broadcast_addr(msg->da); 2387 ether_addr_copy(msg->sa, addr); 2388 msg->len = htons(6); 2389 msg->dsap = 0; 2390 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2391 msg->control = 0xaf; /* XID response lsb.1111F101. 2392 * F=0 (no poll command; unsolicited frame) */ 2393 msg->xid_info[0] = 0x81; /* XID format identifier */ 2394 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2395 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2396 2397 skb->dev = dev; 2398 skb->protocol = eth_type_trans(skb, dev); 2399 memset(skb->cb, 0, sizeof(skb->cb)); 2400 netif_rx(skb); 2401 } 2402 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2403 2404 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2405 enum ieee80211_vht_chanwidth bw, 2406 int mcs, bool ext_nss_bw_capable, 2407 unsigned int max_vht_nss) 2408 { 2409 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2410 int ext_nss_bw; 2411 int supp_width; 2412 int i, mcs_encoding; 2413 2414 if (map == 0xffff) 2415 return 0; 2416 2417 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2418 return 0; 2419 if (mcs <= 7) 2420 mcs_encoding = 0; 2421 else if (mcs == 8) 2422 mcs_encoding = 1; 2423 else 2424 mcs_encoding = 2; 2425 2426 if (!max_vht_nss) { 2427 /* find max_vht_nss for the given MCS */ 2428 for (i = 7; i >= 0; i--) { 2429 int supp = (map >> (2 * i)) & 3; 2430 2431 if (supp == 3) 2432 continue; 2433 2434 if (supp >= mcs_encoding) { 2435 max_vht_nss = i + 1; 2436 break; 2437 } 2438 } 2439 } 2440 2441 if (!(cap->supp_mcs.tx_mcs_map & 2442 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2443 return max_vht_nss; 2444 2445 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2446 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2447 supp_width = le32_get_bits(cap->vht_cap_info, 2448 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2449 2450 /* if not capable, treat ext_nss_bw as 0 */ 2451 if (!ext_nss_bw_capable) 2452 ext_nss_bw = 0; 2453 2454 /* This is invalid */ 2455 if (supp_width == 3) 2456 return 0; 2457 2458 /* This is an invalid combination so pretend nothing is supported */ 2459 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2460 return 0; 2461 2462 /* 2463 * Cover all the special cases according to IEEE 802.11-2016 2464 * Table 9-250. All other cases are either factor of 1 or not 2465 * valid/supported. 2466 */ 2467 switch (bw) { 2468 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2469 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2470 if ((supp_width == 1 || supp_width == 2) && 2471 ext_nss_bw == 3) 2472 return 2 * max_vht_nss; 2473 break; 2474 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2475 if (supp_width == 0 && 2476 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2477 return max_vht_nss / 2; 2478 if (supp_width == 0 && 2479 ext_nss_bw == 3) 2480 return (3 * max_vht_nss) / 4; 2481 if (supp_width == 1 && 2482 ext_nss_bw == 3) 2483 return 2 * max_vht_nss; 2484 break; 2485 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2486 if (supp_width == 0 && ext_nss_bw == 1) 2487 return 0; /* not possible */ 2488 if (supp_width == 0 && 2489 ext_nss_bw == 2) 2490 return max_vht_nss / 2; 2491 if (supp_width == 0 && 2492 ext_nss_bw == 3) 2493 return (3 * max_vht_nss) / 4; 2494 if (supp_width == 1 && 2495 ext_nss_bw == 0) 2496 return 0; /* not possible */ 2497 if (supp_width == 1 && 2498 ext_nss_bw == 1) 2499 return max_vht_nss / 2; 2500 if (supp_width == 1 && 2501 ext_nss_bw == 2) 2502 return (3 * max_vht_nss) / 4; 2503 break; 2504 } 2505 2506 /* not covered or invalid combination received */ 2507 return max_vht_nss; 2508 } 2509 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2510 2511 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2512 bool is_4addr, u8 check_swif) 2513 2514 { 2515 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2516 2517 switch (check_swif) { 2518 case 0: 2519 if (is_vlan && is_4addr) 2520 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2521 return wiphy->interface_modes & BIT(iftype); 2522 case 1: 2523 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2524 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2525 return wiphy->software_iftypes & BIT(iftype); 2526 default: 2527 break; 2528 } 2529 2530 return false; 2531 } 2532 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2533 2534 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2535 { 2536 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2537 2538 ASSERT_WDEV_LOCK(wdev); 2539 2540 switch (wdev->iftype) { 2541 case NL80211_IFTYPE_AP: 2542 case NL80211_IFTYPE_P2P_GO: 2543 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2544 break; 2545 default: 2546 /* per-link not relevant */ 2547 break; 2548 } 2549 2550 wdev->valid_links &= ~BIT(link_id); 2551 2552 rdev_del_intf_link(rdev, wdev, link_id); 2553 2554 eth_zero_addr(wdev->links[link_id].addr); 2555 } 2556 2557 void cfg80211_remove_links(struct wireless_dev *wdev) 2558 { 2559 unsigned int link_id; 2560 2561 /* 2562 * links are controlled by upper layers (userspace/cfg) 2563 * only for AP mode, so only remove them here for AP 2564 */ 2565 if (wdev->iftype != NL80211_IFTYPE_AP) 2566 return; 2567 2568 wdev_lock(wdev); 2569 if (wdev->valid_links) { 2570 for_each_valid_link(wdev, link_id) 2571 cfg80211_remove_link(wdev, link_id); 2572 } 2573 wdev_unlock(wdev); 2574 } 2575 2576 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2577 struct wireless_dev *wdev) 2578 { 2579 cfg80211_remove_links(wdev); 2580 2581 return rdev_del_virtual_intf(rdev, wdev); 2582 } 2583 2584 const struct wiphy_iftype_ext_capab * 2585 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2586 { 2587 int i; 2588 2589 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2590 if (wiphy->iftype_ext_capab[i].iftype == type) 2591 return &wiphy->iftype_ext_capab[i]; 2592 } 2593 2594 return NULL; 2595 } 2596 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2597