1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 546 const u8 *addr, enum nl80211_iftype iftype, 547 u8 data_offset, bool is_amsdu) 548 { 549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 550 struct { 551 u8 hdr[ETH_ALEN] __aligned(2); 552 __be16 proto; 553 } payload; 554 struct ethhdr tmp; 555 u16 hdrlen; 556 u8 mesh_flags = 0; 557 558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 559 return -1; 560 561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 562 if (skb->len < hdrlen + 8) 563 return -1; 564 565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 566 * header 567 * IEEE 802.11 address fields: 568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 569 * 0 0 DA SA BSSID n/a 570 * 0 1 DA BSSID SA n/a 571 * 1 0 BSSID SA DA n/a 572 * 1 1 RA TA DA SA 573 */ 574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 576 577 if (iftype == NL80211_IFTYPE_MESH_POINT) 578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 579 580 mesh_flags &= MESH_FLAGS_AE; 581 582 switch (hdr->frame_control & 583 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 584 case cpu_to_le16(IEEE80211_FCTL_TODS): 585 if (unlikely(iftype != NL80211_IFTYPE_AP && 586 iftype != NL80211_IFTYPE_AP_VLAN && 587 iftype != NL80211_IFTYPE_P2P_GO)) 588 return -1; 589 break; 590 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 591 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 592 iftype != NL80211_IFTYPE_AP_VLAN && 593 iftype != NL80211_IFTYPE_STATION)) 594 return -1; 595 if (iftype == NL80211_IFTYPE_MESH_POINT) { 596 if (mesh_flags == MESH_FLAGS_AE_A4) 597 return -1; 598 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 599 skb_copy_bits(skb, hdrlen + 600 offsetof(struct ieee80211s_hdr, eaddr1), 601 tmp.h_dest, 2 * ETH_ALEN); 602 } 603 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 604 } 605 break; 606 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 607 if ((iftype != NL80211_IFTYPE_STATION && 608 iftype != NL80211_IFTYPE_P2P_CLIENT && 609 iftype != NL80211_IFTYPE_MESH_POINT) || 610 (is_multicast_ether_addr(tmp.h_dest) && 611 ether_addr_equal(tmp.h_source, addr))) 612 return -1; 613 if (iftype == NL80211_IFTYPE_MESH_POINT) { 614 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 615 return -1; 616 if (mesh_flags == MESH_FLAGS_AE_A4) 617 skb_copy_bits(skb, hdrlen + 618 offsetof(struct ieee80211s_hdr, eaddr1), 619 tmp.h_source, ETH_ALEN); 620 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 621 } 622 break; 623 case cpu_to_le16(0): 624 if (iftype != NL80211_IFTYPE_ADHOC && 625 iftype != NL80211_IFTYPE_STATION && 626 iftype != NL80211_IFTYPE_OCB) 627 return -1; 628 break; 629 } 630 631 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 632 tmp.h_proto = payload.proto; 633 634 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) && 635 tmp.h_proto != htons(ETH_P_AARP) && 636 tmp.h_proto != htons(ETH_P_IPX)) || 637 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 638 /* remove RFC1042 or Bridge-Tunnel encapsulation and 639 * replace EtherType */ 640 hdrlen += ETH_ALEN + 2; 641 else 642 tmp.h_proto = htons(skb->len - hdrlen); 643 644 pskb_pull(skb, hdrlen); 645 646 if (!ehdr) 647 ehdr = skb_push(skb, sizeof(struct ethhdr)); 648 memcpy(ehdr, &tmp, sizeof(tmp)); 649 650 return 0; 651 } 652 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 653 654 static void 655 __frame_add_frag(struct sk_buff *skb, struct page *page, 656 void *ptr, int len, int size) 657 { 658 struct skb_shared_info *sh = skb_shinfo(skb); 659 int page_offset; 660 661 get_page(page); 662 page_offset = ptr - page_address(page); 663 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 664 } 665 666 static void 667 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 668 int offset, int len) 669 { 670 struct skb_shared_info *sh = skb_shinfo(skb); 671 const skb_frag_t *frag = &sh->frags[0]; 672 struct page *frag_page; 673 void *frag_ptr; 674 int frag_len, frag_size; 675 int head_size = skb->len - skb->data_len; 676 int cur_len; 677 678 frag_page = virt_to_head_page(skb->head); 679 frag_ptr = skb->data; 680 frag_size = head_size; 681 682 while (offset >= frag_size) { 683 offset -= frag_size; 684 frag_page = skb_frag_page(frag); 685 frag_ptr = skb_frag_address(frag); 686 frag_size = skb_frag_size(frag); 687 frag++; 688 } 689 690 frag_ptr += offset; 691 frag_len = frag_size - offset; 692 693 cur_len = min(len, frag_len); 694 695 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 696 len -= cur_len; 697 698 while (len > 0) { 699 frag_len = skb_frag_size(frag); 700 cur_len = min(len, frag_len); 701 __frame_add_frag(frame, skb_frag_page(frag), 702 skb_frag_address(frag), cur_len, frag_len); 703 len -= cur_len; 704 frag++; 705 } 706 } 707 708 static struct sk_buff * 709 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 710 int offset, int len, bool reuse_frag) 711 { 712 struct sk_buff *frame; 713 int cur_len = len; 714 715 if (skb->len - offset < len) 716 return NULL; 717 718 /* 719 * When reusing framents, copy some data to the head to simplify 720 * ethernet header handling and speed up protocol header processing 721 * in the stack later. 722 */ 723 if (reuse_frag) 724 cur_len = min_t(int, len, 32); 725 726 /* 727 * Allocate and reserve two bytes more for payload 728 * alignment since sizeof(struct ethhdr) is 14. 729 */ 730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 731 if (!frame) 732 return NULL; 733 734 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 735 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 736 737 len -= cur_len; 738 if (!len) 739 return frame; 740 741 offset += cur_len; 742 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 743 744 return frame; 745 } 746 747 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 748 const u8 *addr, enum nl80211_iftype iftype, 749 const unsigned int extra_headroom, 750 const u8 *check_da, const u8 *check_sa) 751 { 752 unsigned int hlen = ALIGN(extra_headroom, 4); 753 struct sk_buff *frame = NULL; 754 u16 ethertype; 755 u8 *payload; 756 int offset = 0, remaining; 757 struct ethhdr eth; 758 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 759 bool reuse_skb = false; 760 bool last = false; 761 762 while (!last) { 763 unsigned int subframe_len; 764 int len; 765 u8 padding; 766 767 skb_copy_bits(skb, offset, ð, sizeof(eth)); 768 len = ntohs(eth.h_proto); 769 subframe_len = sizeof(struct ethhdr) + len; 770 padding = (4 - subframe_len) & 0x3; 771 772 /* the last MSDU has no padding */ 773 remaining = skb->len - offset; 774 if (subframe_len > remaining) 775 goto purge; 776 /* mitigate A-MSDU aggregation injection attacks */ 777 if (ether_addr_equal(eth.h_dest, rfc1042_header)) 778 goto purge; 779 780 offset += sizeof(struct ethhdr); 781 last = remaining <= subframe_len + padding; 782 783 /* FIXME: should we really accept multicast DA? */ 784 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 785 !ether_addr_equal(check_da, eth.h_dest)) || 786 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 787 offset += len + padding; 788 continue; 789 } 790 791 /* reuse skb for the last subframe */ 792 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 793 skb_pull(skb, offset); 794 frame = skb; 795 reuse_skb = true; 796 } else { 797 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 798 reuse_frag); 799 if (!frame) 800 goto purge; 801 802 offset += len + padding; 803 } 804 805 skb_reset_network_header(frame); 806 frame->dev = skb->dev; 807 frame->priority = skb->priority; 808 809 payload = frame->data; 810 ethertype = (payload[6] << 8) | payload[7]; 811 if (likely((ether_addr_equal(payload, rfc1042_header) && 812 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 813 ether_addr_equal(payload, bridge_tunnel_header))) { 814 eth.h_proto = htons(ethertype); 815 skb_pull(frame, ETH_ALEN + 2); 816 } 817 818 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 819 __skb_queue_tail(list, frame); 820 } 821 822 if (!reuse_skb) 823 dev_kfree_skb(skb); 824 825 return; 826 827 purge: 828 __skb_queue_purge(list); 829 dev_kfree_skb(skb); 830 } 831 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 832 833 /* Given a data frame determine the 802.1p/1d tag to use. */ 834 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 835 struct cfg80211_qos_map *qos_map) 836 { 837 unsigned int dscp; 838 unsigned char vlan_priority; 839 unsigned int ret; 840 841 /* skb->priority values from 256->263 are magic values to 842 * directly indicate a specific 802.1d priority. This is used 843 * to allow 802.1d priority to be passed directly in from VLAN 844 * tags, etc. 845 */ 846 if (skb->priority >= 256 && skb->priority <= 263) { 847 ret = skb->priority - 256; 848 goto out; 849 } 850 851 if (skb_vlan_tag_present(skb)) { 852 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 853 >> VLAN_PRIO_SHIFT; 854 if (vlan_priority > 0) { 855 ret = vlan_priority; 856 goto out; 857 } 858 } 859 860 switch (skb->protocol) { 861 case htons(ETH_P_IP): 862 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 863 break; 864 case htons(ETH_P_IPV6): 865 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 866 break; 867 case htons(ETH_P_MPLS_UC): 868 case htons(ETH_P_MPLS_MC): { 869 struct mpls_label mpls_tmp, *mpls; 870 871 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 872 sizeof(*mpls), &mpls_tmp); 873 if (!mpls) 874 return 0; 875 876 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 877 >> MPLS_LS_TC_SHIFT; 878 goto out; 879 } 880 case htons(ETH_P_80221): 881 /* 802.21 is always network control traffic */ 882 return 7; 883 default: 884 return 0; 885 } 886 887 if (qos_map) { 888 unsigned int i, tmp_dscp = dscp >> 2; 889 890 for (i = 0; i < qos_map->num_des; i++) { 891 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 892 ret = qos_map->dscp_exception[i].up; 893 goto out; 894 } 895 } 896 897 for (i = 0; i < 8; i++) { 898 if (tmp_dscp >= qos_map->up[i].low && 899 tmp_dscp <= qos_map->up[i].high) { 900 ret = i; 901 goto out; 902 } 903 } 904 } 905 906 ret = dscp >> 5; 907 out: 908 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 909 } 910 EXPORT_SYMBOL(cfg80211_classify8021d); 911 912 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 913 { 914 const struct cfg80211_bss_ies *ies; 915 916 ies = rcu_dereference(bss->ies); 917 if (!ies) 918 return NULL; 919 920 return cfg80211_find_elem(id, ies->data, ies->len); 921 } 922 EXPORT_SYMBOL(ieee80211_bss_get_elem); 923 924 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 925 { 926 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 927 struct net_device *dev = wdev->netdev; 928 int i; 929 930 if (!wdev->connect_keys) 931 return; 932 933 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 934 if (!wdev->connect_keys->params[i].cipher) 935 continue; 936 if (rdev_add_key(rdev, dev, i, false, NULL, 937 &wdev->connect_keys->params[i])) { 938 netdev_err(dev, "failed to set key %d\n", i); 939 continue; 940 } 941 if (wdev->connect_keys->def == i && 942 rdev_set_default_key(rdev, dev, i, true, true)) { 943 netdev_err(dev, "failed to set defkey %d\n", i); 944 continue; 945 } 946 } 947 948 kfree_sensitive(wdev->connect_keys); 949 wdev->connect_keys = NULL; 950 } 951 952 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 953 { 954 struct cfg80211_event *ev; 955 unsigned long flags; 956 957 spin_lock_irqsave(&wdev->event_lock, flags); 958 while (!list_empty(&wdev->event_list)) { 959 ev = list_first_entry(&wdev->event_list, 960 struct cfg80211_event, list); 961 list_del(&ev->list); 962 spin_unlock_irqrestore(&wdev->event_lock, flags); 963 964 wdev_lock(wdev); 965 switch (ev->type) { 966 case EVENT_CONNECT_RESULT: 967 __cfg80211_connect_result( 968 wdev->netdev, 969 &ev->cr, 970 ev->cr.status == WLAN_STATUS_SUCCESS); 971 break; 972 case EVENT_ROAMED: 973 __cfg80211_roamed(wdev, &ev->rm); 974 break; 975 case EVENT_DISCONNECTED: 976 __cfg80211_disconnected(wdev->netdev, 977 ev->dc.ie, ev->dc.ie_len, 978 ev->dc.reason, 979 !ev->dc.locally_generated); 980 break; 981 case EVENT_IBSS_JOINED: 982 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 983 ev->ij.channel); 984 break; 985 case EVENT_STOPPED: 986 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 987 break; 988 case EVENT_PORT_AUTHORIZED: 989 __cfg80211_port_authorized(wdev, ev->pa.bssid); 990 break; 991 } 992 wdev_unlock(wdev); 993 994 kfree(ev); 995 996 spin_lock_irqsave(&wdev->event_lock, flags); 997 } 998 spin_unlock_irqrestore(&wdev->event_lock, flags); 999 } 1000 1001 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1002 { 1003 struct wireless_dev *wdev; 1004 1005 lockdep_assert_held(&rdev->wiphy.mtx); 1006 1007 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1008 cfg80211_process_wdev_events(wdev); 1009 } 1010 1011 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1012 struct net_device *dev, enum nl80211_iftype ntype, 1013 struct vif_params *params) 1014 { 1015 int err; 1016 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1017 1018 lockdep_assert_held(&rdev->wiphy.mtx); 1019 1020 /* don't support changing VLANs, you just re-create them */ 1021 if (otype == NL80211_IFTYPE_AP_VLAN) 1022 return -EOPNOTSUPP; 1023 1024 /* cannot change into P2P device or NAN */ 1025 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1026 ntype == NL80211_IFTYPE_NAN) 1027 return -EOPNOTSUPP; 1028 1029 if (!rdev->ops->change_virtual_intf || 1030 !(rdev->wiphy.interface_modes & (1 << ntype))) 1031 return -EOPNOTSUPP; 1032 1033 if (ntype != otype) { 1034 /* if it's part of a bridge, reject changing type to station/ibss */ 1035 if (netif_is_bridge_port(dev) && 1036 (ntype == NL80211_IFTYPE_ADHOC || 1037 ntype == NL80211_IFTYPE_STATION || 1038 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1039 return -EBUSY; 1040 1041 dev->ieee80211_ptr->use_4addr = false; 1042 dev->ieee80211_ptr->mesh_id_up_len = 0; 1043 wdev_lock(dev->ieee80211_ptr); 1044 rdev_set_qos_map(rdev, dev, NULL); 1045 wdev_unlock(dev->ieee80211_ptr); 1046 1047 switch (otype) { 1048 case NL80211_IFTYPE_AP: 1049 cfg80211_stop_ap(rdev, dev, true); 1050 break; 1051 case NL80211_IFTYPE_ADHOC: 1052 cfg80211_leave_ibss(rdev, dev, false); 1053 break; 1054 case NL80211_IFTYPE_STATION: 1055 case NL80211_IFTYPE_P2P_CLIENT: 1056 wdev_lock(dev->ieee80211_ptr); 1057 cfg80211_disconnect(rdev, dev, 1058 WLAN_REASON_DEAUTH_LEAVING, true); 1059 wdev_unlock(dev->ieee80211_ptr); 1060 break; 1061 case NL80211_IFTYPE_MESH_POINT: 1062 /* mesh should be handled? */ 1063 break; 1064 case NL80211_IFTYPE_OCB: 1065 cfg80211_leave_ocb(rdev, dev); 1066 break; 1067 default: 1068 break; 1069 } 1070 1071 cfg80211_process_rdev_events(rdev); 1072 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1073 } 1074 1075 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1076 1077 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1078 1079 if (!err && params && params->use_4addr != -1) 1080 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1081 1082 if (!err) { 1083 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1084 switch (ntype) { 1085 case NL80211_IFTYPE_STATION: 1086 if (dev->ieee80211_ptr->use_4addr) 1087 break; 1088 fallthrough; 1089 case NL80211_IFTYPE_OCB: 1090 case NL80211_IFTYPE_P2P_CLIENT: 1091 case NL80211_IFTYPE_ADHOC: 1092 dev->priv_flags |= IFF_DONT_BRIDGE; 1093 break; 1094 case NL80211_IFTYPE_P2P_GO: 1095 case NL80211_IFTYPE_AP: 1096 case NL80211_IFTYPE_AP_VLAN: 1097 case NL80211_IFTYPE_MESH_POINT: 1098 /* bridging OK */ 1099 break; 1100 case NL80211_IFTYPE_MONITOR: 1101 /* monitor can't bridge anyway */ 1102 break; 1103 case NL80211_IFTYPE_UNSPECIFIED: 1104 case NUM_NL80211_IFTYPES: 1105 /* not happening */ 1106 break; 1107 case NL80211_IFTYPE_P2P_DEVICE: 1108 case NL80211_IFTYPE_WDS: 1109 case NL80211_IFTYPE_NAN: 1110 WARN_ON(1); 1111 break; 1112 } 1113 } 1114 1115 if (!err && ntype != otype && netif_running(dev)) { 1116 cfg80211_update_iface_num(rdev, ntype, 1); 1117 cfg80211_update_iface_num(rdev, otype, -1); 1118 } 1119 1120 return err; 1121 } 1122 1123 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1124 { 1125 int modulation, streams, bitrate; 1126 1127 /* the formula below does only work for MCS values smaller than 32 */ 1128 if (WARN_ON_ONCE(rate->mcs >= 32)) 1129 return 0; 1130 1131 modulation = rate->mcs & 7; 1132 streams = (rate->mcs >> 3) + 1; 1133 1134 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1135 1136 if (modulation < 4) 1137 bitrate *= (modulation + 1); 1138 else if (modulation == 4) 1139 bitrate *= (modulation + 2); 1140 else 1141 bitrate *= (modulation + 3); 1142 1143 bitrate *= streams; 1144 1145 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1146 bitrate = (bitrate / 9) * 10; 1147 1148 /* do NOT round down here */ 1149 return (bitrate + 50000) / 100000; 1150 } 1151 1152 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1153 { 1154 static const u32 __mcs2bitrate[] = { 1155 /* control PHY */ 1156 [0] = 275, 1157 /* SC PHY */ 1158 [1] = 3850, 1159 [2] = 7700, 1160 [3] = 9625, 1161 [4] = 11550, 1162 [5] = 12512, /* 1251.25 mbps */ 1163 [6] = 15400, 1164 [7] = 19250, 1165 [8] = 23100, 1166 [9] = 25025, 1167 [10] = 30800, 1168 [11] = 38500, 1169 [12] = 46200, 1170 /* OFDM PHY */ 1171 [13] = 6930, 1172 [14] = 8662, /* 866.25 mbps */ 1173 [15] = 13860, 1174 [16] = 17325, 1175 [17] = 20790, 1176 [18] = 27720, 1177 [19] = 34650, 1178 [20] = 41580, 1179 [21] = 45045, 1180 [22] = 51975, 1181 [23] = 62370, 1182 [24] = 67568, /* 6756.75 mbps */ 1183 /* LP-SC PHY */ 1184 [25] = 6260, 1185 [26] = 8340, 1186 [27] = 11120, 1187 [28] = 12510, 1188 [29] = 16680, 1189 [30] = 22240, 1190 [31] = 25030, 1191 }; 1192 1193 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1194 return 0; 1195 1196 return __mcs2bitrate[rate->mcs]; 1197 } 1198 1199 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1200 { 1201 static const u32 __mcs2bitrate[] = { 1202 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1203 [7 - 6] = 50050, /* MCS 12.1 */ 1204 [8 - 6] = 53900, 1205 [9 - 6] = 57750, 1206 [10 - 6] = 63900, 1207 [11 - 6] = 75075, 1208 [12 - 6] = 80850, 1209 }; 1210 1211 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1212 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1213 return 0; 1214 1215 return __mcs2bitrate[rate->mcs - 6]; 1216 } 1217 1218 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1219 { 1220 static const u32 __mcs2bitrate[] = { 1221 /* control PHY */ 1222 [0] = 275, 1223 /* SC PHY */ 1224 [1] = 3850, 1225 [2] = 7700, 1226 [3] = 9625, 1227 [4] = 11550, 1228 [5] = 12512, /* 1251.25 mbps */ 1229 [6] = 13475, 1230 [7] = 15400, 1231 [8] = 19250, 1232 [9] = 23100, 1233 [10] = 25025, 1234 [11] = 26950, 1235 [12] = 30800, 1236 [13] = 38500, 1237 [14] = 46200, 1238 [15] = 50050, 1239 [16] = 53900, 1240 [17] = 57750, 1241 [18] = 69300, 1242 [19] = 75075, 1243 [20] = 80850, 1244 }; 1245 1246 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1247 return 0; 1248 1249 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1250 } 1251 1252 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1253 { 1254 static const u32 base[4][12] = { 1255 { 6500000, 1256 13000000, 1257 19500000, 1258 26000000, 1259 39000000, 1260 52000000, 1261 58500000, 1262 65000000, 1263 78000000, 1264 /* not in the spec, but some devices use this: */ 1265 86700000, 1266 97500000, 1267 108300000, 1268 }, 1269 { 13500000, 1270 27000000, 1271 40500000, 1272 54000000, 1273 81000000, 1274 108000000, 1275 121500000, 1276 135000000, 1277 162000000, 1278 180000000, 1279 202500000, 1280 225000000, 1281 }, 1282 { 29300000, 1283 58500000, 1284 87800000, 1285 117000000, 1286 175500000, 1287 234000000, 1288 263300000, 1289 292500000, 1290 351000000, 1291 390000000, 1292 438800000, 1293 487500000, 1294 }, 1295 { 58500000, 1296 117000000, 1297 175500000, 1298 234000000, 1299 351000000, 1300 468000000, 1301 526500000, 1302 585000000, 1303 702000000, 1304 780000000, 1305 877500000, 1306 975000000, 1307 }, 1308 }; 1309 u32 bitrate; 1310 int idx; 1311 1312 if (rate->mcs > 11) 1313 goto warn; 1314 1315 switch (rate->bw) { 1316 case RATE_INFO_BW_160: 1317 idx = 3; 1318 break; 1319 case RATE_INFO_BW_80: 1320 idx = 2; 1321 break; 1322 case RATE_INFO_BW_40: 1323 idx = 1; 1324 break; 1325 case RATE_INFO_BW_5: 1326 case RATE_INFO_BW_10: 1327 default: 1328 goto warn; 1329 case RATE_INFO_BW_20: 1330 idx = 0; 1331 } 1332 1333 bitrate = base[idx][rate->mcs]; 1334 bitrate *= rate->nss; 1335 1336 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1337 bitrate = (bitrate / 9) * 10; 1338 1339 /* do NOT round down here */ 1340 return (bitrate + 50000) / 100000; 1341 warn: 1342 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1343 rate->bw, rate->mcs, rate->nss); 1344 return 0; 1345 } 1346 1347 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1348 { 1349 #define SCALE 6144 1350 u32 mcs_divisors[14] = { 1351 102399, /* 16.666666... */ 1352 51201, /* 8.333333... */ 1353 34134, /* 5.555555... */ 1354 25599, /* 4.166666... */ 1355 17067, /* 2.777777... */ 1356 12801, /* 2.083333... */ 1357 11769, /* 1.851851... */ 1358 10239, /* 1.666666... */ 1359 8532, /* 1.388888... */ 1360 7680, /* 1.250000... */ 1361 6828, /* 1.111111... */ 1362 6144, /* 1.000000... */ 1363 5690, /* 0.926106... */ 1364 5120, /* 0.833333... */ 1365 }; 1366 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1367 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1368 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1369 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1370 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1371 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1372 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1373 u64 tmp; 1374 u32 result; 1375 1376 if (WARN_ON_ONCE(rate->mcs > 13)) 1377 return 0; 1378 1379 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1380 return 0; 1381 if (WARN_ON_ONCE(rate->he_ru_alloc > 1382 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1383 return 0; 1384 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1385 return 0; 1386 1387 if (rate->bw == RATE_INFO_BW_160) 1388 result = rates_160M[rate->he_gi]; 1389 else if (rate->bw == RATE_INFO_BW_80 || 1390 (rate->bw == RATE_INFO_BW_HE_RU && 1391 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1392 result = rates_969[rate->he_gi]; 1393 else if (rate->bw == RATE_INFO_BW_40 || 1394 (rate->bw == RATE_INFO_BW_HE_RU && 1395 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1396 result = rates_484[rate->he_gi]; 1397 else if (rate->bw == RATE_INFO_BW_20 || 1398 (rate->bw == RATE_INFO_BW_HE_RU && 1399 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1400 result = rates_242[rate->he_gi]; 1401 else if (rate->bw == RATE_INFO_BW_HE_RU && 1402 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1403 result = rates_106[rate->he_gi]; 1404 else if (rate->bw == RATE_INFO_BW_HE_RU && 1405 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1406 result = rates_52[rate->he_gi]; 1407 else if (rate->bw == RATE_INFO_BW_HE_RU && 1408 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1409 result = rates_26[rate->he_gi]; 1410 else { 1411 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1412 rate->bw, rate->he_ru_alloc); 1413 return 0; 1414 } 1415 1416 /* now scale to the appropriate MCS */ 1417 tmp = result; 1418 tmp *= SCALE; 1419 do_div(tmp, mcs_divisors[rate->mcs]); 1420 result = tmp; 1421 1422 /* and take NSS, DCM into account */ 1423 result = (result * rate->nss) / 8; 1424 if (rate->he_dcm) 1425 result /= 2; 1426 1427 return result / 10000; 1428 } 1429 1430 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1431 { 1432 if (rate->flags & RATE_INFO_FLAGS_MCS) 1433 return cfg80211_calculate_bitrate_ht(rate); 1434 if (rate->flags & RATE_INFO_FLAGS_DMG) 1435 return cfg80211_calculate_bitrate_dmg(rate); 1436 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1437 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1438 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1439 return cfg80211_calculate_bitrate_edmg(rate); 1440 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1441 return cfg80211_calculate_bitrate_vht(rate); 1442 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1443 return cfg80211_calculate_bitrate_he(rate); 1444 1445 return rate->legacy; 1446 } 1447 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1448 1449 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1450 enum ieee80211_p2p_attr_id attr, 1451 u8 *buf, unsigned int bufsize) 1452 { 1453 u8 *out = buf; 1454 u16 attr_remaining = 0; 1455 bool desired_attr = false; 1456 u16 desired_len = 0; 1457 1458 while (len > 0) { 1459 unsigned int iedatalen; 1460 unsigned int copy; 1461 const u8 *iedata; 1462 1463 if (len < 2) 1464 return -EILSEQ; 1465 iedatalen = ies[1]; 1466 if (iedatalen + 2 > len) 1467 return -EILSEQ; 1468 1469 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1470 goto cont; 1471 1472 if (iedatalen < 4) 1473 goto cont; 1474 1475 iedata = ies + 2; 1476 1477 /* check WFA OUI, P2P subtype */ 1478 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1479 iedata[2] != 0x9a || iedata[3] != 0x09) 1480 goto cont; 1481 1482 iedatalen -= 4; 1483 iedata += 4; 1484 1485 /* check attribute continuation into this IE */ 1486 copy = min_t(unsigned int, attr_remaining, iedatalen); 1487 if (copy && desired_attr) { 1488 desired_len += copy; 1489 if (out) { 1490 memcpy(out, iedata, min(bufsize, copy)); 1491 out += min(bufsize, copy); 1492 bufsize -= min(bufsize, copy); 1493 } 1494 1495 1496 if (copy == attr_remaining) 1497 return desired_len; 1498 } 1499 1500 attr_remaining -= copy; 1501 if (attr_remaining) 1502 goto cont; 1503 1504 iedatalen -= copy; 1505 iedata += copy; 1506 1507 while (iedatalen > 0) { 1508 u16 attr_len; 1509 1510 /* P2P attribute ID & size must fit */ 1511 if (iedatalen < 3) 1512 return -EILSEQ; 1513 desired_attr = iedata[0] == attr; 1514 attr_len = get_unaligned_le16(iedata + 1); 1515 iedatalen -= 3; 1516 iedata += 3; 1517 1518 copy = min_t(unsigned int, attr_len, iedatalen); 1519 1520 if (desired_attr) { 1521 desired_len += copy; 1522 if (out) { 1523 memcpy(out, iedata, min(bufsize, copy)); 1524 out += min(bufsize, copy); 1525 bufsize -= min(bufsize, copy); 1526 } 1527 1528 if (copy == attr_len) 1529 return desired_len; 1530 } 1531 1532 iedata += copy; 1533 iedatalen -= copy; 1534 attr_remaining = attr_len - copy; 1535 } 1536 1537 cont: 1538 len -= ies[1] + 2; 1539 ies += ies[1] + 2; 1540 } 1541 1542 if (attr_remaining && desired_attr) 1543 return -EILSEQ; 1544 1545 return -ENOENT; 1546 } 1547 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1548 1549 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1550 { 1551 int i; 1552 1553 /* Make sure array values are legal */ 1554 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1555 return false; 1556 1557 i = 0; 1558 while (i < n_ids) { 1559 if (ids[i] == WLAN_EID_EXTENSION) { 1560 if (id_ext && (ids[i + 1] == id)) 1561 return true; 1562 1563 i += 2; 1564 continue; 1565 } 1566 1567 if (ids[i] == id && !id_ext) 1568 return true; 1569 1570 i++; 1571 } 1572 return false; 1573 } 1574 1575 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1576 { 1577 /* we assume a validly formed IEs buffer */ 1578 u8 len = ies[pos + 1]; 1579 1580 pos += 2 + len; 1581 1582 /* the IE itself must have 255 bytes for fragments to follow */ 1583 if (len < 255) 1584 return pos; 1585 1586 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1587 len = ies[pos + 1]; 1588 pos += 2 + len; 1589 } 1590 1591 return pos; 1592 } 1593 1594 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1595 const u8 *ids, int n_ids, 1596 const u8 *after_ric, int n_after_ric, 1597 size_t offset) 1598 { 1599 size_t pos = offset; 1600 1601 while (pos < ielen) { 1602 u8 ext = 0; 1603 1604 if (ies[pos] == WLAN_EID_EXTENSION) 1605 ext = 2; 1606 if ((pos + ext) >= ielen) 1607 break; 1608 1609 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1610 ies[pos] == WLAN_EID_EXTENSION)) 1611 break; 1612 1613 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1614 pos = skip_ie(ies, ielen, pos); 1615 1616 while (pos < ielen) { 1617 if (ies[pos] == WLAN_EID_EXTENSION) 1618 ext = 2; 1619 else 1620 ext = 0; 1621 1622 if ((pos + ext) >= ielen) 1623 break; 1624 1625 if (!ieee80211_id_in_list(after_ric, 1626 n_after_ric, 1627 ies[pos + ext], 1628 ext == 2)) 1629 pos = skip_ie(ies, ielen, pos); 1630 else 1631 break; 1632 } 1633 } else { 1634 pos = skip_ie(ies, ielen, pos); 1635 } 1636 } 1637 1638 return pos; 1639 } 1640 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1641 1642 bool ieee80211_operating_class_to_band(u8 operating_class, 1643 enum nl80211_band *band) 1644 { 1645 switch (operating_class) { 1646 case 112: 1647 case 115 ... 127: 1648 case 128 ... 130: 1649 *band = NL80211_BAND_5GHZ; 1650 return true; 1651 case 131 ... 135: 1652 *band = NL80211_BAND_6GHZ; 1653 return true; 1654 case 81: 1655 case 82: 1656 case 83: 1657 case 84: 1658 *band = NL80211_BAND_2GHZ; 1659 return true; 1660 case 180: 1661 *band = NL80211_BAND_60GHZ; 1662 return true; 1663 } 1664 1665 return false; 1666 } 1667 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1668 1669 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1670 u8 *op_class) 1671 { 1672 u8 vht_opclass; 1673 u32 freq = chandef->center_freq1; 1674 1675 if (freq >= 2412 && freq <= 2472) { 1676 if (chandef->width > NL80211_CHAN_WIDTH_40) 1677 return false; 1678 1679 /* 2.407 GHz, channels 1..13 */ 1680 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1681 if (freq > chandef->chan->center_freq) 1682 *op_class = 83; /* HT40+ */ 1683 else 1684 *op_class = 84; /* HT40- */ 1685 } else { 1686 *op_class = 81; 1687 } 1688 1689 return true; 1690 } 1691 1692 if (freq == 2484) { 1693 /* channel 14 is only for IEEE 802.11b */ 1694 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1695 return false; 1696 1697 *op_class = 82; /* channel 14 */ 1698 return true; 1699 } 1700 1701 switch (chandef->width) { 1702 case NL80211_CHAN_WIDTH_80: 1703 vht_opclass = 128; 1704 break; 1705 case NL80211_CHAN_WIDTH_160: 1706 vht_opclass = 129; 1707 break; 1708 case NL80211_CHAN_WIDTH_80P80: 1709 vht_opclass = 130; 1710 break; 1711 case NL80211_CHAN_WIDTH_10: 1712 case NL80211_CHAN_WIDTH_5: 1713 return false; /* unsupported for now */ 1714 default: 1715 vht_opclass = 0; 1716 break; 1717 } 1718 1719 /* 5 GHz, channels 36..48 */ 1720 if (freq >= 5180 && freq <= 5240) { 1721 if (vht_opclass) { 1722 *op_class = vht_opclass; 1723 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1724 if (freq > chandef->chan->center_freq) 1725 *op_class = 116; 1726 else 1727 *op_class = 117; 1728 } else { 1729 *op_class = 115; 1730 } 1731 1732 return true; 1733 } 1734 1735 /* 5 GHz, channels 52..64 */ 1736 if (freq >= 5260 && freq <= 5320) { 1737 if (vht_opclass) { 1738 *op_class = vht_opclass; 1739 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1740 if (freq > chandef->chan->center_freq) 1741 *op_class = 119; 1742 else 1743 *op_class = 120; 1744 } else { 1745 *op_class = 118; 1746 } 1747 1748 return true; 1749 } 1750 1751 /* 5 GHz, channels 100..144 */ 1752 if (freq >= 5500 && freq <= 5720) { 1753 if (vht_opclass) { 1754 *op_class = vht_opclass; 1755 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1756 if (freq > chandef->chan->center_freq) 1757 *op_class = 122; 1758 else 1759 *op_class = 123; 1760 } else { 1761 *op_class = 121; 1762 } 1763 1764 return true; 1765 } 1766 1767 /* 5 GHz, channels 149..169 */ 1768 if (freq >= 5745 && freq <= 5845) { 1769 if (vht_opclass) { 1770 *op_class = vht_opclass; 1771 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1772 if (freq > chandef->chan->center_freq) 1773 *op_class = 126; 1774 else 1775 *op_class = 127; 1776 } else if (freq <= 5805) { 1777 *op_class = 124; 1778 } else { 1779 *op_class = 125; 1780 } 1781 1782 return true; 1783 } 1784 1785 /* 56.16 GHz, channel 1..4 */ 1786 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1787 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1788 return false; 1789 1790 *op_class = 180; 1791 return true; 1792 } 1793 1794 /* not supported yet */ 1795 return false; 1796 } 1797 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1798 1799 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1800 u32 *beacon_int_gcd, 1801 bool *beacon_int_different) 1802 { 1803 struct wireless_dev *wdev; 1804 1805 *beacon_int_gcd = 0; 1806 *beacon_int_different = false; 1807 1808 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1809 if (!wdev->beacon_interval) 1810 continue; 1811 1812 if (!*beacon_int_gcd) { 1813 *beacon_int_gcd = wdev->beacon_interval; 1814 continue; 1815 } 1816 1817 if (wdev->beacon_interval == *beacon_int_gcd) 1818 continue; 1819 1820 *beacon_int_different = true; 1821 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1822 } 1823 1824 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1825 if (*beacon_int_gcd) 1826 *beacon_int_different = true; 1827 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1828 } 1829 } 1830 1831 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1832 enum nl80211_iftype iftype, u32 beacon_int) 1833 { 1834 /* 1835 * This is just a basic pre-condition check; if interface combinations 1836 * are possible the driver must already be checking those with a call 1837 * to cfg80211_check_combinations(), in which case we'll validate more 1838 * through the cfg80211_calculate_bi_data() call and code in 1839 * cfg80211_iter_combinations(). 1840 */ 1841 1842 if (beacon_int < 10 || beacon_int > 10000) 1843 return -EINVAL; 1844 1845 return 0; 1846 } 1847 1848 int cfg80211_iter_combinations(struct wiphy *wiphy, 1849 struct iface_combination_params *params, 1850 void (*iter)(const struct ieee80211_iface_combination *c, 1851 void *data), 1852 void *data) 1853 { 1854 const struct ieee80211_regdomain *regdom; 1855 enum nl80211_dfs_regions region = 0; 1856 int i, j, iftype; 1857 int num_interfaces = 0; 1858 u32 used_iftypes = 0; 1859 u32 beacon_int_gcd; 1860 bool beacon_int_different; 1861 1862 /* 1863 * This is a bit strange, since the iteration used to rely only on 1864 * the data given by the driver, but here it now relies on context, 1865 * in form of the currently operating interfaces. 1866 * This is OK for all current users, and saves us from having to 1867 * push the GCD calculations into all the drivers. 1868 * In the future, this should probably rely more on data that's in 1869 * cfg80211 already - the only thing not would appear to be any new 1870 * interfaces (while being brought up) and channel/radar data. 1871 */ 1872 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1873 &beacon_int_gcd, &beacon_int_different); 1874 1875 if (params->radar_detect) { 1876 rcu_read_lock(); 1877 regdom = rcu_dereference(cfg80211_regdomain); 1878 if (regdom) 1879 region = regdom->dfs_region; 1880 rcu_read_unlock(); 1881 } 1882 1883 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1884 num_interfaces += params->iftype_num[iftype]; 1885 if (params->iftype_num[iftype] > 0 && 1886 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1887 used_iftypes |= BIT(iftype); 1888 } 1889 1890 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1891 const struct ieee80211_iface_combination *c; 1892 struct ieee80211_iface_limit *limits; 1893 u32 all_iftypes = 0; 1894 1895 c = &wiphy->iface_combinations[i]; 1896 1897 if (num_interfaces > c->max_interfaces) 1898 continue; 1899 if (params->num_different_channels > c->num_different_channels) 1900 continue; 1901 1902 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1903 GFP_KERNEL); 1904 if (!limits) 1905 return -ENOMEM; 1906 1907 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1908 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1909 continue; 1910 for (j = 0; j < c->n_limits; j++) { 1911 all_iftypes |= limits[j].types; 1912 if (!(limits[j].types & BIT(iftype))) 1913 continue; 1914 if (limits[j].max < params->iftype_num[iftype]) 1915 goto cont; 1916 limits[j].max -= params->iftype_num[iftype]; 1917 } 1918 } 1919 1920 if (params->radar_detect != 1921 (c->radar_detect_widths & params->radar_detect)) 1922 goto cont; 1923 1924 if (params->radar_detect && c->radar_detect_regions && 1925 !(c->radar_detect_regions & BIT(region))) 1926 goto cont; 1927 1928 /* Finally check that all iftypes that we're currently 1929 * using are actually part of this combination. If they 1930 * aren't then we can't use this combination and have 1931 * to continue to the next. 1932 */ 1933 if ((all_iftypes & used_iftypes) != used_iftypes) 1934 goto cont; 1935 1936 if (beacon_int_gcd) { 1937 if (c->beacon_int_min_gcd && 1938 beacon_int_gcd < c->beacon_int_min_gcd) 1939 goto cont; 1940 if (!c->beacon_int_min_gcd && beacon_int_different) 1941 goto cont; 1942 } 1943 1944 /* This combination covered all interface types and 1945 * supported the requested numbers, so we're good. 1946 */ 1947 1948 (*iter)(c, data); 1949 cont: 1950 kfree(limits); 1951 } 1952 1953 return 0; 1954 } 1955 EXPORT_SYMBOL(cfg80211_iter_combinations); 1956 1957 static void 1958 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1959 void *data) 1960 { 1961 int *num = data; 1962 (*num)++; 1963 } 1964 1965 int cfg80211_check_combinations(struct wiphy *wiphy, 1966 struct iface_combination_params *params) 1967 { 1968 int err, num = 0; 1969 1970 err = cfg80211_iter_combinations(wiphy, params, 1971 cfg80211_iter_sum_ifcombs, &num); 1972 if (err) 1973 return err; 1974 if (num == 0) 1975 return -EBUSY; 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL(cfg80211_check_combinations); 1980 1981 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1982 const u8 *rates, unsigned int n_rates, 1983 u32 *mask) 1984 { 1985 int i, j; 1986 1987 if (!sband) 1988 return -EINVAL; 1989 1990 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1991 return -EINVAL; 1992 1993 *mask = 0; 1994 1995 for (i = 0; i < n_rates; i++) { 1996 int rate = (rates[i] & 0x7f) * 5; 1997 bool found = false; 1998 1999 for (j = 0; j < sband->n_bitrates; j++) { 2000 if (sband->bitrates[j].bitrate == rate) { 2001 found = true; 2002 *mask |= BIT(j); 2003 break; 2004 } 2005 } 2006 if (!found) 2007 return -EINVAL; 2008 } 2009 2010 /* 2011 * mask must have at least one bit set here since we 2012 * didn't accept a 0-length rates array nor allowed 2013 * entries in the array that didn't exist 2014 */ 2015 2016 return 0; 2017 } 2018 2019 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2020 { 2021 enum nl80211_band band; 2022 unsigned int n_channels = 0; 2023 2024 for (band = 0; band < NUM_NL80211_BANDS; band++) 2025 if (wiphy->bands[band]) 2026 n_channels += wiphy->bands[band]->n_channels; 2027 2028 return n_channels; 2029 } 2030 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2031 2032 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2033 struct station_info *sinfo) 2034 { 2035 struct cfg80211_registered_device *rdev; 2036 struct wireless_dev *wdev; 2037 2038 wdev = dev->ieee80211_ptr; 2039 if (!wdev) 2040 return -EOPNOTSUPP; 2041 2042 rdev = wiphy_to_rdev(wdev->wiphy); 2043 if (!rdev->ops->get_station) 2044 return -EOPNOTSUPP; 2045 2046 memset(sinfo, 0, sizeof(*sinfo)); 2047 2048 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2049 } 2050 EXPORT_SYMBOL(cfg80211_get_station); 2051 2052 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2053 { 2054 int i; 2055 2056 if (!f) 2057 return; 2058 2059 kfree(f->serv_spec_info); 2060 kfree(f->srf_bf); 2061 kfree(f->srf_macs); 2062 for (i = 0; i < f->num_rx_filters; i++) 2063 kfree(f->rx_filters[i].filter); 2064 2065 for (i = 0; i < f->num_tx_filters; i++) 2066 kfree(f->tx_filters[i].filter); 2067 2068 kfree(f->rx_filters); 2069 kfree(f->tx_filters); 2070 kfree(f); 2071 } 2072 EXPORT_SYMBOL(cfg80211_free_nan_func); 2073 2074 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2075 u32 center_freq_khz, u32 bw_khz) 2076 { 2077 u32 start_freq_khz, end_freq_khz; 2078 2079 start_freq_khz = center_freq_khz - (bw_khz / 2); 2080 end_freq_khz = center_freq_khz + (bw_khz / 2); 2081 2082 if (start_freq_khz >= freq_range->start_freq_khz && 2083 end_freq_khz <= freq_range->end_freq_khz) 2084 return true; 2085 2086 return false; 2087 } 2088 2089 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2090 { 2091 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2092 sizeof(*(sinfo->pertid)), 2093 gfp); 2094 if (!sinfo->pertid) 2095 return -ENOMEM; 2096 2097 return 0; 2098 } 2099 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2100 2101 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2102 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2103 const unsigned char rfc1042_header[] __aligned(2) = 2104 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2105 EXPORT_SYMBOL(rfc1042_header); 2106 2107 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2108 const unsigned char bridge_tunnel_header[] __aligned(2) = 2109 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2110 EXPORT_SYMBOL(bridge_tunnel_header); 2111 2112 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2113 struct iapp_layer2_update { 2114 u8 da[ETH_ALEN]; /* broadcast */ 2115 u8 sa[ETH_ALEN]; /* STA addr */ 2116 __be16 len; /* 6 */ 2117 u8 dsap; /* 0 */ 2118 u8 ssap; /* 0 */ 2119 u8 control; 2120 u8 xid_info[3]; 2121 } __packed; 2122 2123 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2124 { 2125 struct iapp_layer2_update *msg; 2126 struct sk_buff *skb; 2127 2128 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2129 * bridge devices */ 2130 2131 skb = dev_alloc_skb(sizeof(*msg)); 2132 if (!skb) 2133 return; 2134 msg = skb_put(skb, sizeof(*msg)); 2135 2136 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2137 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2138 2139 eth_broadcast_addr(msg->da); 2140 ether_addr_copy(msg->sa, addr); 2141 msg->len = htons(6); 2142 msg->dsap = 0; 2143 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2144 msg->control = 0xaf; /* XID response lsb.1111F101. 2145 * F=0 (no poll command; unsolicited frame) */ 2146 msg->xid_info[0] = 0x81; /* XID format identifier */ 2147 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2148 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2149 2150 skb->dev = dev; 2151 skb->protocol = eth_type_trans(skb, dev); 2152 memset(skb->cb, 0, sizeof(skb->cb)); 2153 netif_rx_ni(skb); 2154 } 2155 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2156 2157 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2158 enum ieee80211_vht_chanwidth bw, 2159 int mcs, bool ext_nss_bw_capable, 2160 unsigned int max_vht_nss) 2161 { 2162 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2163 int ext_nss_bw; 2164 int supp_width; 2165 int i, mcs_encoding; 2166 2167 if (map == 0xffff) 2168 return 0; 2169 2170 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2171 return 0; 2172 if (mcs <= 7) 2173 mcs_encoding = 0; 2174 else if (mcs == 8) 2175 mcs_encoding = 1; 2176 else 2177 mcs_encoding = 2; 2178 2179 if (!max_vht_nss) { 2180 /* find max_vht_nss for the given MCS */ 2181 for (i = 7; i >= 0; i--) { 2182 int supp = (map >> (2 * i)) & 3; 2183 2184 if (supp == 3) 2185 continue; 2186 2187 if (supp >= mcs_encoding) { 2188 max_vht_nss = i + 1; 2189 break; 2190 } 2191 } 2192 } 2193 2194 if (!(cap->supp_mcs.tx_mcs_map & 2195 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2196 return max_vht_nss; 2197 2198 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2199 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2200 supp_width = le32_get_bits(cap->vht_cap_info, 2201 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2202 2203 /* if not capable, treat ext_nss_bw as 0 */ 2204 if (!ext_nss_bw_capable) 2205 ext_nss_bw = 0; 2206 2207 /* This is invalid */ 2208 if (supp_width == 3) 2209 return 0; 2210 2211 /* This is an invalid combination so pretend nothing is supported */ 2212 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2213 return 0; 2214 2215 /* 2216 * Cover all the special cases according to IEEE 802.11-2016 2217 * Table 9-250. All other cases are either factor of 1 or not 2218 * valid/supported. 2219 */ 2220 switch (bw) { 2221 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2222 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2223 if ((supp_width == 1 || supp_width == 2) && 2224 ext_nss_bw == 3) 2225 return 2 * max_vht_nss; 2226 break; 2227 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2228 if (supp_width == 0 && 2229 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2230 return max_vht_nss / 2; 2231 if (supp_width == 0 && 2232 ext_nss_bw == 3) 2233 return (3 * max_vht_nss) / 4; 2234 if (supp_width == 1 && 2235 ext_nss_bw == 3) 2236 return 2 * max_vht_nss; 2237 break; 2238 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2239 if (supp_width == 0 && ext_nss_bw == 1) 2240 return 0; /* not possible */ 2241 if (supp_width == 0 && 2242 ext_nss_bw == 2) 2243 return max_vht_nss / 2; 2244 if (supp_width == 0 && 2245 ext_nss_bw == 3) 2246 return (3 * max_vht_nss) / 4; 2247 if (supp_width == 1 && 2248 ext_nss_bw == 0) 2249 return 0; /* not possible */ 2250 if (supp_width == 1 && 2251 ext_nss_bw == 1) 2252 return max_vht_nss / 2; 2253 if (supp_width == 1 && 2254 ext_nss_bw == 2) 2255 return (3 * max_vht_nss) / 4; 2256 break; 2257 } 2258 2259 /* not covered or invalid combination received */ 2260 return max_vht_nss; 2261 } 2262 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2263 2264 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2265 bool is_4addr, u8 check_swif) 2266 2267 { 2268 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2269 2270 switch (check_swif) { 2271 case 0: 2272 if (is_vlan && is_4addr) 2273 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2274 return wiphy->interface_modes & BIT(iftype); 2275 case 1: 2276 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2277 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2278 return wiphy->software_iftypes & BIT(iftype); 2279 default: 2280 break; 2281 } 2282 2283 return false; 2284 } 2285 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2286