1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include "core.h" 14 #include "rdev-ops.h" 15 16 17 struct ieee80211_rate * 18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 19 u32 basic_rates, int bitrate) 20 { 21 struct ieee80211_rate *result = &sband->bitrates[0]; 22 int i; 23 24 for (i = 0; i < sband->n_bitrates; i++) { 25 if (!(basic_rates & BIT(i))) 26 continue; 27 if (sband->bitrates[i].bitrate > bitrate) 28 continue; 29 result = &sband->bitrates[i]; 30 } 31 32 return result; 33 } 34 EXPORT_SYMBOL(ieee80211_get_response_rate); 35 36 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 37 { 38 struct ieee80211_rate *bitrates; 39 u32 mandatory_rates = 0; 40 enum ieee80211_rate_flags mandatory_flag; 41 int i; 42 43 if (WARN_ON(!sband)) 44 return 1; 45 46 if (sband->band == IEEE80211_BAND_2GHZ) 47 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 48 else 49 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 50 51 bitrates = sband->bitrates; 52 for (i = 0; i < sband->n_bitrates; i++) 53 if (bitrates[i].flags & mandatory_flag) 54 mandatory_rates |= BIT(i); 55 return mandatory_rates; 56 } 57 EXPORT_SYMBOL(ieee80211_mandatory_rates); 58 59 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 60 { 61 /* see 802.11 17.3.8.3.2 and Annex J 62 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 63 if (chan <= 0) 64 return 0; /* not supported */ 65 switch (band) { 66 case IEEE80211_BAND_2GHZ: 67 if (chan == 14) 68 return 2484; 69 else if (chan < 14) 70 return 2407 + chan * 5; 71 break; 72 case IEEE80211_BAND_5GHZ: 73 if (chan >= 182 && chan <= 196) 74 return 4000 + chan * 5; 75 else 76 return 5000 + chan * 5; 77 break; 78 case IEEE80211_BAND_60GHZ: 79 if (chan < 5) 80 return 56160 + chan * 2160; 81 break; 82 default: 83 ; 84 } 85 return 0; /* not supported */ 86 } 87 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 88 89 int ieee80211_frequency_to_channel(int freq) 90 { 91 /* see 802.11 17.3.8.3.2 and Annex J */ 92 if (freq == 2484) 93 return 14; 94 else if (freq < 2484) 95 return (freq - 2407) / 5; 96 else if (freq >= 4910 && freq <= 4980) 97 return (freq - 4000) / 5; 98 else if (freq <= 45000) /* DMG band lower limit */ 99 return (freq - 5000) / 5; 100 else if (freq >= 58320 && freq <= 64800) 101 return (freq - 56160) / 2160; 102 else 103 return 0; 104 } 105 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 106 107 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 108 int freq) 109 { 110 enum ieee80211_band band; 111 struct ieee80211_supported_band *sband; 112 int i; 113 114 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 115 sband = wiphy->bands[band]; 116 117 if (!sband) 118 continue; 119 120 for (i = 0; i < sband->n_channels; i++) { 121 if (sband->channels[i].center_freq == freq) 122 return &sband->channels[i]; 123 } 124 } 125 126 return NULL; 127 } 128 EXPORT_SYMBOL(__ieee80211_get_channel); 129 130 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 131 enum ieee80211_band band) 132 { 133 int i, want; 134 135 switch (band) { 136 case IEEE80211_BAND_5GHZ: 137 want = 3; 138 for (i = 0; i < sband->n_bitrates; i++) { 139 if (sband->bitrates[i].bitrate == 60 || 140 sband->bitrates[i].bitrate == 120 || 141 sband->bitrates[i].bitrate == 240) { 142 sband->bitrates[i].flags |= 143 IEEE80211_RATE_MANDATORY_A; 144 want--; 145 } 146 } 147 WARN_ON(want); 148 break; 149 case IEEE80211_BAND_2GHZ: 150 want = 7; 151 for (i = 0; i < sband->n_bitrates; i++) { 152 if (sband->bitrates[i].bitrate == 10) { 153 sband->bitrates[i].flags |= 154 IEEE80211_RATE_MANDATORY_B | 155 IEEE80211_RATE_MANDATORY_G; 156 want--; 157 } 158 159 if (sband->bitrates[i].bitrate == 20 || 160 sband->bitrates[i].bitrate == 55 || 161 sband->bitrates[i].bitrate == 110 || 162 sband->bitrates[i].bitrate == 60 || 163 sband->bitrates[i].bitrate == 120 || 164 sband->bitrates[i].bitrate == 240) { 165 sband->bitrates[i].flags |= 166 IEEE80211_RATE_MANDATORY_G; 167 want--; 168 } 169 170 if (sband->bitrates[i].bitrate != 10 && 171 sband->bitrates[i].bitrate != 20 && 172 sband->bitrates[i].bitrate != 55 && 173 sband->bitrates[i].bitrate != 110) 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_ERP_G; 176 } 177 WARN_ON(want != 0 && want != 3 && want != 6); 178 break; 179 case IEEE80211_BAND_60GHZ: 180 /* check for mandatory HT MCS 1..4 */ 181 WARN_ON(!sband->ht_cap.ht_supported); 182 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 183 break; 184 case IEEE80211_NUM_BANDS: 185 WARN_ON(1); 186 break; 187 } 188 } 189 190 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 191 { 192 enum ieee80211_band band; 193 194 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 195 if (wiphy->bands[band]) 196 set_mandatory_flags_band(wiphy->bands[band], band); 197 } 198 199 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 200 { 201 int i; 202 for (i = 0; i < wiphy->n_cipher_suites; i++) 203 if (cipher == wiphy->cipher_suites[i]) 204 return true; 205 return false; 206 } 207 208 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 209 struct key_params *params, int key_idx, 210 bool pairwise, const u8 *mac_addr) 211 { 212 if (key_idx > 5) 213 return -EINVAL; 214 215 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 216 return -EINVAL; 217 218 if (pairwise && !mac_addr) 219 return -EINVAL; 220 221 /* 222 * Disallow pairwise keys with non-zero index unless it's WEP 223 * or a vendor specific cipher (because current deployments use 224 * pairwise WEP keys with non-zero indices and for vendor specific 225 * ciphers this should be validated in the driver or hardware level 226 * - but 802.11i clearly specifies to use zero) 227 */ 228 if (pairwise && key_idx && 229 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 230 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 231 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 232 return -EINVAL; 233 234 switch (params->cipher) { 235 case WLAN_CIPHER_SUITE_WEP40: 236 if (params->key_len != WLAN_KEY_LEN_WEP40) 237 return -EINVAL; 238 break; 239 case WLAN_CIPHER_SUITE_TKIP: 240 if (params->key_len != WLAN_KEY_LEN_TKIP) 241 return -EINVAL; 242 break; 243 case WLAN_CIPHER_SUITE_CCMP: 244 if (params->key_len != WLAN_KEY_LEN_CCMP) 245 return -EINVAL; 246 break; 247 case WLAN_CIPHER_SUITE_WEP104: 248 if (params->key_len != WLAN_KEY_LEN_WEP104) 249 return -EINVAL; 250 break; 251 case WLAN_CIPHER_SUITE_AES_CMAC: 252 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 253 return -EINVAL; 254 break; 255 default: 256 /* 257 * We don't know anything about this algorithm, 258 * allow using it -- but the driver must check 259 * all parameters! We still check below whether 260 * or not the driver supports this algorithm, 261 * of course. 262 */ 263 break; 264 } 265 266 if (params->seq) { 267 switch (params->cipher) { 268 case WLAN_CIPHER_SUITE_WEP40: 269 case WLAN_CIPHER_SUITE_WEP104: 270 /* These ciphers do not use key sequence */ 271 return -EINVAL; 272 case WLAN_CIPHER_SUITE_TKIP: 273 case WLAN_CIPHER_SUITE_CCMP: 274 case WLAN_CIPHER_SUITE_AES_CMAC: 275 if (params->seq_len != 6) 276 return -EINVAL; 277 break; 278 } 279 } 280 281 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 282 return -EINVAL; 283 284 return 0; 285 } 286 287 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 288 { 289 unsigned int hdrlen = 24; 290 291 if (ieee80211_is_data(fc)) { 292 if (ieee80211_has_a4(fc)) 293 hdrlen = 30; 294 if (ieee80211_is_data_qos(fc)) { 295 hdrlen += IEEE80211_QOS_CTL_LEN; 296 if (ieee80211_has_order(fc)) 297 hdrlen += IEEE80211_HT_CTL_LEN; 298 } 299 goto out; 300 } 301 302 if (ieee80211_is_ctl(fc)) { 303 /* 304 * ACK and CTS are 10 bytes, all others 16. To see how 305 * to get this condition consider 306 * subtype mask: 0b0000000011110000 (0x00F0) 307 * ACK subtype: 0b0000000011010000 (0x00D0) 308 * CTS subtype: 0b0000000011000000 (0x00C0) 309 * bits that matter: ^^^ (0x00E0) 310 * value of those: 0b0000000011000000 (0x00C0) 311 */ 312 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 313 hdrlen = 10; 314 else 315 hdrlen = 16; 316 } 317 out: 318 return hdrlen; 319 } 320 EXPORT_SYMBOL(ieee80211_hdrlen); 321 322 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 323 { 324 const struct ieee80211_hdr *hdr = 325 (const struct ieee80211_hdr *)skb->data; 326 unsigned int hdrlen; 327 328 if (unlikely(skb->len < 10)) 329 return 0; 330 hdrlen = ieee80211_hdrlen(hdr->frame_control); 331 if (unlikely(hdrlen > skb->len)) 332 return 0; 333 return hdrlen; 334 } 335 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 336 337 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 338 { 339 int ae = meshhdr->flags & MESH_FLAGS_AE; 340 /* 802.11-2012, 8.2.4.7.3 */ 341 switch (ae) { 342 default: 343 case 0: 344 return 6; 345 case MESH_FLAGS_AE_A4: 346 return 12; 347 case MESH_FLAGS_AE_A5_A6: 348 return 18; 349 } 350 } 351 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 352 353 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 354 enum nl80211_iftype iftype) 355 { 356 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 357 u16 hdrlen, ethertype; 358 u8 *payload; 359 u8 dst[ETH_ALEN]; 360 u8 src[ETH_ALEN] __aligned(2); 361 362 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 363 return -1; 364 365 hdrlen = ieee80211_hdrlen(hdr->frame_control); 366 367 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 368 * header 369 * IEEE 802.11 address fields: 370 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 371 * 0 0 DA SA BSSID n/a 372 * 0 1 DA BSSID SA n/a 373 * 1 0 BSSID SA DA n/a 374 * 1 1 RA TA DA SA 375 */ 376 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 377 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 378 379 switch (hdr->frame_control & 380 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 381 case cpu_to_le16(IEEE80211_FCTL_TODS): 382 if (unlikely(iftype != NL80211_IFTYPE_AP && 383 iftype != NL80211_IFTYPE_AP_VLAN && 384 iftype != NL80211_IFTYPE_P2P_GO)) 385 return -1; 386 break; 387 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 388 if (unlikely(iftype != NL80211_IFTYPE_WDS && 389 iftype != NL80211_IFTYPE_MESH_POINT && 390 iftype != NL80211_IFTYPE_AP_VLAN && 391 iftype != NL80211_IFTYPE_STATION)) 392 return -1; 393 if (iftype == NL80211_IFTYPE_MESH_POINT) { 394 struct ieee80211s_hdr *meshdr = 395 (struct ieee80211s_hdr *) (skb->data + hdrlen); 396 /* make sure meshdr->flags is on the linear part */ 397 if (!pskb_may_pull(skb, hdrlen + 1)) 398 return -1; 399 if (meshdr->flags & MESH_FLAGS_AE_A4) 400 return -1; 401 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 402 skb_copy_bits(skb, hdrlen + 403 offsetof(struct ieee80211s_hdr, eaddr1), 404 dst, ETH_ALEN); 405 skb_copy_bits(skb, hdrlen + 406 offsetof(struct ieee80211s_hdr, eaddr2), 407 src, ETH_ALEN); 408 } 409 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 410 } 411 break; 412 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 413 if ((iftype != NL80211_IFTYPE_STATION && 414 iftype != NL80211_IFTYPE_P2P_CLIENT && 415 iftype != NL80211_IFTYPE_MESH_POINT) || 416 (is_multicast_ether_addr(dst) && 417 ether_addr_equal(src, addr))) 418 return -1; 419 if (iftype == NL80211_IFTYPE_MESH_POINT) { 420 struct ieee80211s_hdr *meshdr = 421 (struct ieee80211s_hdr *) (skb->data + hdrlen); 422 /* make sure meshdr->flags is on the linear part */ 423 if (!pskb_may_pull(skb, hdrlen + 1)) 424 return -1; 425 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 426 return -1; 427 if (meshdr->flags & MESH_FLAGS_AE_A4) 428 skb_copy_bits(skb, hdrlen + 429 offsetof(struct ieee80211s_hdr, eaddr1), 430 src, ETH_ALEN); 431 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 432 } 433 break; 434 case cpu_to_le16(0): 435 if (iftype != NL80211_IFTYPE_ADHOC && 436 iftype != NL80211_IFTYPE_STATION) 437 return -1; 438 break; 439 } 440 441 if (!pskb_may_pull(skb, hdrlen + 8)) 442 return -1; 443 444 payload = skb->data + hdrlen; 445 ethertype = (payload[6] << 8) | payload[7]; 446 447 if (likely((ether_addr_equal(payload, rfc1042_header) && 448 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 449 ether_addr_equal(payload, bridge_tunnel_header))) { 450 /* remove RFC1042 or Bridge-Tunnel encapsulation and 451 * replace EtherType */ 452 skb_pull(skb, hdrlen + 6); 453 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 454 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 455 } else { 456 struct ethhdr *ehdr; 457 __be16 len; 458 459 skb_pull(skb, hdrlen); 460 len = htons(skb->len); 461 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 462 memcpy(ehdr->h_dest, dst, ETH_ALEN); 463 memcpy(ehdr->h_source, src, ETH_ALEN); 464 ehdr->h_proto = len; 465 } 466 return 0; 467 } 468 EXPORT_SYMBOL(ieee80211_data_to_8023); 469 470 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 471 enum nl80211_iftype iftype, u8 *bssid, bool qos) 472 { 473 struct ieee80211_hdr hdr; 474 u16 hdrlen, ethertype; 475 __le16 fc; 476 const u8 *encaps_data; 477 int encaps_len, skip_header_bytes; 478 int nh_pos, h_pos; 479 int head_need; 480 481 if (unlikely(skb->len < ETH_HLEN)) 482 return -EINVAL; 483 484 nh_pos = skb_network_header(skb) - skb->data; 485 h_pos = skb_transport_header(skb) - skb->data; 486 487 /* convert Ethernet header to proper 802.11 header (based on 488 * operation mode) */ 489 ethertype = (skb->data[12] << 8) | skb->data[13]; 490 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 491 492 switch (iftype) { 493 case NL80211_IFTYPE_AP: 494 case NL80211_IFTYPE_AP_VLAN: 495 case NL80211_IFTYPE_P2P_GO: 496 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 497 /* DA BSSID SA */ 498 memcpy(hdr.addr1, skb->data, ETH_ALEN); 499 memcpy(hdr.addr2, addr, ETH_ALEN); 500 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 501 hdrlen = 24; 502 break; 503 case NL80211_IFTYPE_STATION: 504 case NL80211_IFTYPE_P2P_CLIENT: 505 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 506 /* BSSID SA DA */ 507 memcpy(hdr.addr1, bssid, ETH_ALEN); 508 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 509 memcpy(hdr.addr3, skb->data, ETH_ALEN); 510 hdrlen = 24; 511 break; 512 case NL80211_IFTYPE_ADHOC: 513 /* DA SA BSSID */ 514 memcpy(hdr.addr1, skb->data, ETH_ALEN); 515 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 516 memcpy(hdr.addr3, bssid, ETH_ALEN); 517 hdrlen = 24; 518 break; 519 default: 520 return -EOPNOTSUPP; 521 } 522 523 if (qos) { 524 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 525 hdrlen += 2; 526 } 527 528 hdr.frame_control = fc; 529 hdr.duration_id = 0; 530 hdr.seq_ctrl = 0; 531 532 skip_header_bytes = ETH_HLEN; 533 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 534 encaps_data = bridge_tunnel_header; 535 encaps_len = sizeof(bridge_tunnel_header); 536 skip_header_bytes -= 2; 537 } else if (ethertype >= ETH_P_802_3_MIN) { 538 encaps_data = rfc1042_header; 539 encaps_len = sizeof(rfc1042_header); 540 skip_header_bytes -= 2; 541 } else { 542 encaps_data = NULL; 543 encaps_len = 0; 544 } 545 546 skb_pull(skb, skip_header_bytes); 547 nh_pos -= skip_header_bytes; 548 h_pos -= skip_header_bytes; 549 550 head_need = hdrlen + encaps_len - skb_headroom(skb); 551 552 if (head_need > 0 || skb_cloned(skb)) { 553 head_need = max(head_need, 0); 554 if (head_need) 555 skb_orphan(skb); 556 557 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 558 return -ENOMEM; 559 560 skb->truesize += head_need; 561 } 562 563 if (encaps_data) { 564 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 565 nh_pos += encaps_len; 566 h_pos += encaps_len; 567 } 568 569 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 570 571 nh_pos += hdrlen; 572 h_pos += hdrlen; 573 574 /* Update skb pointers to various headers since this modified frame 575 * is going to go through Linux networking code that may potentially 576 * need things like pointer to IP header. */ 577 skb_set_mac_header(skb, 0); 578 skb_set_network_header(skb, nh_pos); 579 skb_set_transport_header(skb, h_pos); 580 581 return 0; 582 } 583 EXPORT_SYMBOL(ieee80211_data_from_8023); 584 585 586 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 587 const u8 *addr, enum nl80211_iftype iftype, 588 const unsigned int extra_headroom, 589 bool has_80211_header) 590 { 591 struct sk_buff *frame = NULL; 592 u16 ethertype; 593 u8 *payload; 594 const struct ethhdr *eth; 595 int remaining, err; 596 u8 dst[ETH_ALEN], src[ETH_ALEN]; 597 598 if (has_80211_header) { 599 err = ieee80211_data_to_8023(skb, addr, iftype); 600 if (err) 601 goto out; 602 603 /* skip the wrapping header */ 604 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 605 if (!eth) 606 goto out; 607 } else { 608 eth = (struct ethhdr *) skb->data; 609 } 610 611 while (skb != frame) { 612 u8 padding; 613 __be16 len = eth->h_proto; 614 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 615 616 remaining = skb->len; 617 memcpy(dst, eth->h_dest, ETH_ALEN); 618 memcpy(src, eth->h_source, ETH_ALEN); 619 620 padding = (4 - subframe_len) & 0x3; 621 /* the last MSDU has no padding */ 622 if (subframe_len > remaining) 623 goto purge; 624 625 skb_pull(skb, sizeof(struct ethhdr)); 626 /* reuse skb for the last subframe */ 627 if (remaining <= subframe_len + padding) 628 frame = skb; 629 else { 630 unsigned int hlen = ALIGN(extra_headroom, 4); 631 /* 632 * Allocate and reserve two bytes more for payload 633 * alignment since sizeof(struct ethhdr) is 14. 634 */ 635 frame = dev_alloc_skb(hlen + subframe_len + 2); 636 if (!frame) 637 goto purge; 638 639 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 640 memcpy(skb_put(frame, ntohs(len)), skb->data, 641 ntohs(len)); 642 643 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 644 padding); 645 if (!eth) { 646 dev_kfree_skb(frame); 647 goto purge; 648 } 649 } 650 651 skb_reset_network_header(frame); 652 frame->dev = skb->dev; 653 frame->priority = skb->priority; 654 655 payload = frame->data; 656 ethertype = (payload[6] << 8) | payload[7]; 657 658 if (likely((ether_addr_equal(payload, rfc1042_header) && 659 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 660 ether_addr_equal(payload, bridge_tunnel_header))) { 661 /* remove RFC1042 or Bridge-Tunnel 662 * encapsulation and replace EtherType */ 663 skb_pull(frame, 6); 664 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 665 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 666 } else { 667 memcpy(skb_push(frame, sizeof(__be16)), &len, 668 sizeof(__be16)); 669 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 670 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 671 } 672 __skb_queue_tail(list, frame); 673 } 674 675 return; 676 677 purge: 678 __skb_queue_purge(list); 679 out: 680 dev_kfree_skb(skb); 681 } 682 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 683 684 /* Given a data frame determine the 802.1p/1d tag to use. */ 685 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 686 { 687 unsigned int dscp; 688 689 /* skb->priority values from 256->263 are magic values to 690 * directly indicate a specific 802.1d priority. This is used 691 * to allow 802.1d priority to be passed directly in from VLAN 692 * tags, etc. 693 */ 694 if (skb->priority >= 256 && skb->priority <= 263) 695 return skb->priority - 256; 696 697 switch (skb->protocol) { 698 case htons(ETH_P_IP): 699 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 700 break; 701 case htons(ETH_P_IPV6): 702 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 703 break; 704 default: 705 return 0; 706 } 707 708 return dscp >> 5; 709 } 710 EXPORT_SYMBOL(cfg80211_classify8021d); 711 712 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 713 { 714 const struct cfg80211_bss_ies *ies; 715 716 ies = rcu_dereference(bss->ies); 717 if (!ies) 718 return NULL; 719 720 return cfg80211_find_ie(ie, ies->data, ies->len); 721 } 722 EXPORT_SYMBOL(ieee80211_bss_get_ie); 723 724 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 725 { 726 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 727 struct net_device *dev = wdev->netdev; 728 int i; 729 730 if (!wdev->connect_keys) 731 return; 732 733 for (i = 0; i < 6; i++) { 734 if (!wdev->connect_keys->params[i].cipher) 735 continue; 736 if (rdev_add_key(rdev, dev, i, false, NULL, 737 &wdev->connect_keys->params[i])) { 738 netdev_err(dev, "failed to set key %d\n", i); 739 continue; 740 } 741 if (wdev->connect_keys->def == i) 742 if (rdev_set_default_key(rdev, dev, i, true, true)) { 743 netdev_err(dev, "failed to set defkey %d\n", i); 744 continue; 745 } 746 if (wdev->connect_keys->defmgmt == i) 747 if (rdev_set_default_mgmt_key(rdev, dev, i)) 748 netdev_err(dev, "failed to set mgtdef %d\n", i); 749 } 750 751 kfree(wdev->connect_keys); 752 wdev->connect_keys = NULL; 753 } 754 755 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 756 { 757 struct cfg80211_event *ev; 758 unsigned long flags; 759 const u8 *bssid = NULL; 760 761 spin_lock_irqsave(&wdev->event_lock, flags); 762 while (!list_empty(&wdev->event_list)) { 763 ev = list_first_entry(&wdev->event_list, 764 struct cfg80211_event, list); 765 list_del(&ev->list); 766 spin_unlock_irqrestore(&wdev->event_lock, flags); 767 768 wdev_lock(wdev); 769 switch (ev->type) { 770 case EVENT_CONNECT_RESULT: 771 if (!is_zero_ether_addr(ev->cr.bssid)) 772 bssid = ev->cr.bssid; 773 __cfg80211_connect_result( 774 wdev->netdev, bssid, 775 ev->cr.req_ie, ev->cr.req_ie_len, 776 ev->cr.resp_ie, ev->cr.resp_ie_len, 777 ev->cr.status, 778 ev->cr.status == WLAN_STATUS_SUCCESS, 779 NULL); 780 break; 781 case EVENT_ROAMED: 782 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 783 ev->rm.req_ie_len, ev->rm.resp_ie, 784 ev->rm.resp_ie_len); 785 break; 786 case EVENT_DISCONNECTED: 787 __cfg80211_disconnected(wdev->netdev, 788 ev->dc.ie, ev->dc.ie_len, 789 ev->dc.reason, true); 790 break; 791 case EVENT_IBSS_JOINED: 792 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 793 break; 794 } 795 wdev_unlock(wdev); 796 797 kfree(ev); 798 799 spin_lock_irqsave(&wdev->event_lock, flags); 800 } 801 spin_unlock_irqrestore(&wdev->event_lock, flags); 802 } 803 804 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 805 { 806 struct wireless_dev *wdev; 807 808 ASSERT_RTNL(); 809 ASSERT_RDEV_LOCK(rdev); 810 811 list_for_each_entry(wdev, &rdev->wdev_list, list) 812 cfg80211_process_wdev_events(wdev); 813 } 814 815 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 816 struct net_device *dev, enum nl80211_iftype ntype, 817 u32 *flags, struct vif_params *params) 818 { 819 int err; 820 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 821 822 ASSERT_RDEV_LOCK(rdev); 823 824 /* don't support changing VLANs, you just re-create them */ 825 if (otype == NL80211_IFTYPE_AP_VLAN) 826 return -EOPNOTSUPP; 827 828 /* cannot change into P2P device type */ 829 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 830 return -EOPNOTSUPP; 831 832 if (!rdev->ops->change_virtual_intf || 833 !(rdev->wiphy.interface_modes & (1 << ntype))) 834 return -EOPNOTSUPP; 835 836 /* if it's part of a bridge, reject changing type to station/ibss */ 837 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 838 (ntype == NL80211_IFTYPE_ADHOC || 839 ntype == NL80211_IFTYPE_STATION || 840 ntype == NL80211_IFTYPE_P2P_CLIENT)) 841 return -EBUSY; 842 843 if (ntype != otype && netif_running(dev)) { 844 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 845 ntype); 846 if (err) 847 return err; 848 849 dev->ieee80211_ptr->use_4addr = false; 850 dev->ieee80211_ptr->mesh_id_up_len = 0; 851 852 switch (otype) { 853 case NL80211_IFTYPE_AP: 854 cfg80211_stop_ap(rdev, dev); 855 break; 856 case NL80211_IFTYPE_ADHOC: 857 cfg80211_leave_ibss(rdev, dev, false); 858 break; 859 case NL80211_IFTYPE_STATION: 860 case NL80211_IFTYPE_P2P_CLIENT: 861 wdev_lock(dev->ieee80211_ptr); 862 cfg80211_disconnect(rdev, dev, 863 WLAN_REASON_DEAUTH_LEAVING, true); 864 wdev_unlock(dev->ieee80211_ptr); 865 break; 866 case NL80211_IFTYPE_MESH_POINT: 867 /* mesh should be handled? */ 868 break; 869 default: 870 break; 871 } 872 873 cfg80211_process_rdev_events(rdev); 874 } 875 876 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 877 878 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 879 880 if (!err && params && params->use_4addr != -1) 881 dev->ieee80211_ptr->use_4addr = params->use_4addr; 882 883 if (!err) { 884 dev->priv_flags &= ~IFF_DONT_BRIDGE; 885 switch (ntype) { 886 case NL80211_IFTYPE_STATION: 887 if (dev->ieee80211_ptr->use_4addr) 888 break; 889 /* fall through */ 890 case NL80211_IFTYPE_P2P_CLIENT: 891 case NL80211_IFTYPE_ADHOC: 892 dev->priv_flags |= IFF_DONT_BRIDGE; 893 break; 894 case NL80211_IFTYPE_P2P_GO: 895 case NL80211_IFTYPE_AP: 896 case NL80211_IFTYPE_AP_VLAN: 897 case NL80211_IFTYPE_WDS: 898 case NL80211_IFTYPE_MESH_POINT: 899 /* bridging OK */ 900 break; 901 case NL80211_IFTYPE_MONITOR: 902 /* monitor can't bridge anyway */ 903 break; 904 case NL80211_IFTYPE_UNSPECIFIED: 905 case NUM_NL80211_IFTYPES: 906 /* not happening */ 907 break; 908 case NL80211_IFTYPE_P2P_DEVICE: 909 WARN_ON(1); 910 break; 911 } 912 } 913 914 if (!err && ntype != otype && netif_running(dev)) { 915 cfg80211_update_iface_num(rdev, ntype, 1); 916 cfg80211_update_iface_num(rdev, otype, -1); 917 } 918 919 return err; 920 } 921 922 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 923 { 924 static const u32 __mcs2bitrate[] = { 925 /* control PHY */ 926 [0] = 275, 927 /* SC PHY */ 928 [1] = 3850, 929 [2] = 7700, 930 [3] = 9625, 931 [4] = 11550, 932 [5] = 12512, /* 1251.25 mbps */ 933 [6] = 15400, 934 [7] = 19250, 935 [8] = 23100, 936 [9] = 25025, 937 [10] = 30800, 938 [11] = 38500, 939 [12] = 46200, 940 /* OFDM PHY */ 941 [13] = 6930, 942 [14] = 8662, /* 866.25 mbps */ 943 [15] = 13860, 944 [16] = 17325, 945 [17] = 20790, 946 [18] = 27720, 947 [19] = 34650, 948 [20] = 41580, 949 [21] = 45045, 950 [22] = 51975, 951 [23] = 62370, 952 [24] = 67568, /* 6756.75 mbps */ 953 /* LP-SC PHY */ 954 [25] = 6260, 955 [26] = 8340, 956 [27] = 11120, 957 [28] = 12510, 958 [29] = 16680, 959 [30] = 22240, 960 [31] = 25030, 961 }; 962 963 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 964 return 0; 965 966 return __mcs2bitrate[rate->mcs]; 967 } 968 969 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 970 { 971 static const u32 base[4][10] = { 972 { 6500000, 973 13000000, 974 19500000, 975 26000000, 976 39000000, 977 52000000, 978 58500000, 979 65000000, 980 78000000, 981 0, 982 }, 983 { 13500000, 984 27000000, 985 40500000, 986 54000000, 987 81000000, 988 108000000, 989 121500000, 990 135000000, 991 162000000, 992 180000000, 993 }, 994 { 29300000, 995 58500000, 996 87800000, 997 117000000, 998 175500000, 999 234000000, 1000 263300000, 1001 292500000, 1002 351000000, 1003 390000000, 1004 }, 1005 { 58500000, 1006 117000000, 1007 175500000, 1008 234000000, 1009 351000000, 1010 468000000, 1011 526500000, 1012 585000000, 1013 702000000, 1014 780000000, 1015 }, 1016 }; 1017 u32 bitrate; 1018 int idx; 1019 1020 if (WARN_ON_ONCE(rate->mcs > 9)) 1021 return 0; 1022 1023 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH | 1024 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 : 1025 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 : 1026 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0; 1027 1028 bitrate = base[idx][rate->mcs]; 1029 bitrate *= rate->nss; 1030 1031 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1032 bitrate = (bitrate / 9) * 10; 1033 1034 /* do NOT round down here */ 1035 return (bitrate + 50000) / 100000; 1036 } 1037 1038 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1039 { 1040 int modulation, streams, bitrate; 1041 1042 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1043 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1044 return rate->legacy; 1045 if (rate->flags & RATE_INFO_FLAGS_60G) 1046 return cfg80211_calculate_bitrate_60g(rate); 1047 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1048 return cfg80211_calculate_bitrate_vht(rate); 1049 1050 /* the formula below does only work for MCS values smaller than 32 */ 1051 if (WARN_ON_ONCE(rate->mcs >= 32)) 1052 return 0; 1053 1054 modulation = rate->mcs & 7; 1055 streams = (rate->mcs >> 3) + 1; 1056 1057 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 1058 13500000 : 6500000; 1059 1060 if (modulation < 4) 1061 bitrate *= (modulation + 1); 1062 else if (modulation == 4) 1063 bitrate *= (modulation + 2); 1064 else 1065 bitrate *= (modulation + 3); 1066 1067 bitrate *= streams; 1068 1069 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1070 bitrate = (bitrate / 9) * 10; 1071 1072 /* do NOT round down here */ 1073 return (bitrate + 50000) / 100000; 1074 } 1075 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1076 1077 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1078 enum ieee80211_p2p_attr_id attr, 1079 u8 *buf, unsigned int bufsize) 1080 { 1081 u8 *out = buf; 1082 u16 attr_remaining = 0; 1083 bool desired_attr = false; 1084 u16 desired_len = 0; 1085 1086 while (len > 0) { 1087 unsigned int iedatalen; 1088 unsigned int copy; 1089 const u8 *iedata; 1090 1091 if (len < 2) 1092 return -EILSEQ; 1093 iedatalen = ies[1]; 1094 if (iedatalen + 2 > len) 1095 return -EILSEQ; 1096 1097 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1098 goto cont; 1099 1100 if (iedatalen < 4) 1101 goto cont; 1102 1103 iedata = ies + 2; 1104 1105 /* check WFA OUI, P2P subtype */ 1106 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1107 iedata[2] != 0x9a || iedata[3] != 0x09) 1108 goto cont; 1109 1110 iedatalen -= 4; 1111 iedata += 4; 1112 1113 /* check attribute continuation into this IE */ 1114 copy = min_t(unsigned int, attr_remaining, iedatalen); 1115 if (copy && desired_attr) { 1116 desired_len += copy; 1117 if (out) { 1118 memcpy(out, iedata, min(bufsize, copy)); 1119 out += min(bufsize, copy); 1120 bufsize -= min(bufsize, copy); 1121 } 1122 1123 1124 if (copy == attr_remaining) 1125 return desired_len; 1126 } 1127 1128 attr_remaining -= copy; 1129 if (attr_remaining) 1130 goto cont; 1131 1132 iedatalen -= copy; 1133 iedata += copy; 1134 1135 while (iedatalen > 0) { 1136 u16 attr_len; 1137 1138 /* P2P attribute ID & size must fit */ 1139 if (iedatalen < 3) 1140 return -EILSEQ; 1141 desired_attr = iedata[0] == attr; 1142 attr_len = get_unaligned_le16(iedata + 1); 1143 iedatalen -= 3; 1144 iedata += 3; 1145 1146 copy = min_t(unsigned int, attr_len, iedatalen); 1147 1148 if (desired_attr) { 1149 desired_len += copy; 1150 if (out) { 1151 memcpy(out, iedata, min(bufsize, copy)); 1152 out += min(bufsize, copy); 1153 bufsize -= min(bufsize, copy); 1154 } 1155 1156 if (copy == attr_len) 1157 return desired_len; 1158 } 1159 1160 iedata += copy; 1161 iedatalen -= copy; 1162 attr_remaining = attr_len - copy; 1163 } 1164 1165 cont: 1166 len -= ies[1] + 2; 1167 ies += ies[1] + 2; 1168 } 1169 1170 if (attr_remaining && desired_attr) 1171 return -EILSEQ; 1172 1173 return -ENOENT; 1174 } 1175 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1176 1177 bool ieee80211_operating_class_to_band(u8 operating_class, 1178 enum ieee80211_band *band) 1179 { 1180 switch (operating_class) { 1181 case 112: 1182 case 115 ... 127: 1183 *band = IEEE80211_BAND_5GHZ; 1184 return true; 1185 case 81: 1186 case 82: 1187 case 83: 1188 case 84: 1189 *band = IEEE80211_BAND_2GHZ; 1190 return true; 1191 case 180: 1192 *band = IEEE80211_BAND_60GHZ; 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1199 1200 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1201 u32 beacon_int) 1202 { 1203 struct wireless_dev *wdev; 1204 int res = 0; 1205 1206 if (!beacon_int) 1207 return -EINVAL; 1208 1209 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1210 if (!wdev->beacon_interval) 1211 continue; 1212 if (wdev->beacon_interval != beacon_int) { 1213 res = -EINVAL; 1214 break; 1215 } 1216 } 1217 1218 return res; 1219 } 1220 1221 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1222 struct wireless_dev *wdev, 1223 enum nl80211_iftype iftype, 1224 struct ieee80211_channel *chan, 1225 enum cfg80211_chan_mode chanmode, 1226 u8 radar_detect) 1227 { 1228 struct wireless_dev *wdev_iter; 1229 u32 used_iftypes = BIT(iftype); 1230 int num[NUM_NL80211_IFTYPES]; 1231 struct ieee80211_channel 1232 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1233 struct ieee80211_channel *ch; 1234 enum cfg80211_chan_mode chmode; 1235 int num_different_channels = 0; 1236 int total = 1; 1237 bool radar_required; 1238 int i, j; 1239 1240 ASSERT_RTNL(); 1241 1242 if (WARN_ON(hweight32(radar_detect) > 1)) 1243 return -EINVAL; 1244 1245 switch (iftype) { 1246 case NL80211_IFTYPE_ADHOC: 1247 case NL80211_IFTYPE_AP: 1248 case NL80211_IFTYPE_AP_VLAN: 1249 case NL80211_IFTYPE_MESH_POINT: 1250 case NL80211_IFTYPE_P2P_GO: 1251 case NL80211_IFTYPE_WDS: 1252 radar_required = !!(chan && 1253 (chan->flags & IEEE80211_CHAN_RADAR)); 1254 break; 1255 case NL80211_IFTYPE_P2P_CLIENT: 1256 case NL80211_IFTYPE_STATION: 1257 case NL80211_IFTYPE_P2P_DEVICE: 1258 case NL80211_IFTYPE_MONITOR: 1259 radar_required = false; 1260 break; 1261 case NUM_NL80211_IFTYPES: 1262 case NL80211_IFTYPE_UNSPECIFIED: 1263 default: 1264 return -EINVAL; 1265 } 1266 1267 if (radar_required && !radar_detect) 1268 return -EINVAL; 1269 1270 /* Always allow software iftypes */ 1271 if (rdev->wiphy.software_iftypes & BIT(iftype)) { 1272 if (radar_detect) 1273 return -EINVAL; 1274 return 0; 1275 } 1276 1277 memset(num, 0, sizeof(num)); 1278 memset(used_channels, 0, sizeof(used_channels)); 1279 1280 num[iftype] = 1; 1281 1282 switch (chanmode) { 1283 case CHAN_MODE_UNDEFINED: 1284 break; 1285 case CHAN_MODE_SHARED: 1286 WARN_ON(!chan); 1287 used_channels[0] = chan; 1288 num_different_channels++; 1289 break; 1290 case CHAN_MODE_EXCLUSIVE: 1291 num_different_channels++; 1292 break; 1293 } 1294 1295 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1296 if (wdev_iter == wdev) 1297 continue; 1298 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1299 if (!wdev_iter->p2p_started) 1300 continue; 1301 } else if (wdev_iter->netdev) { 1302 if (!netif_running(wdev_iter->netdev)) 1303 continue; 1304 } else { 1305 WARN_ON(1); 1306 } 1307 1308 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1309 continue; 1310 1311 /* 1312 * We may be holding the "wdev" mutex, but now need to lock 1313 * wdev_iter. This is OK because once we get here wdev_iter 1314 * is not wdev (tested above), but we need to use the nested 1315 * locking for lockdep. 1316 */ 1317 mutex_lock_nested(&wdev_iter->mtx, 1); 1318 __acquire(wdev_iter->mtx); 1319 cfg80211_get_chan_state(wdev_iter, &ch, &chmode); 1320 wdev_unlock(wdev_iter); 1321 1322 switch (chmode) { 1323 case CHAN_MODE_UNDEFINED: 1324 break; 1325 case CHAN_MODE_SHARED: 1326 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1327 if (!used_channels[i] || used_channels[i] == ch) 1328 break; 1329 1330 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1331 return -EBUSY; 1332 1333 if (used_channels[i] == NULL) { 1334 used_channels[i] = ch; 1335 num_different_channels++; 1336 } 1337 break; 1338 case CHAN_MODE_EXCLUSIVE: 1339 num_different_channels++; 1340 break; 1341 } 1342 1343 num[wdev_iter->iftype]++; 1344 total++; 1345 used_iftypes |= BIT(wdev_iter->iftype); 1346 } 1347 1348 if (total == 1 && !radar_detect) 1349 return 0; 1350 1351 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 1352 const struct ieee80211_iface_combination *c; 1353 struct ieee80211_iface_limit *limits; 1354 u32 all_iftypes = 0; 1355 1356 c = &rdev->wiphy.iface_combinations[i]; 1357 1358 if (total > c->max_interfaces) 1359 continue; 1360 if (num_different_channels > c->num_different_channels) 1361 continue; 1362 1363 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1364 GFP_KERNEL); 1365 if (!limits) 1366 return -ENOMEM; 1367 1368 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1369 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1370 continue; 1371 for (j = 0; j < c->n_limits; j++) { 1372 all_iftypes |= limits[j].types; 1373 if (!(limits[j].types & BIT(iftype))) 1374 continue; 1375 if (limits[j].max < num[iftype]) 1376 goto cont; 1377 limits[j].max -= num[iftype]; 1378 } 1379 } 1380 1381 if (radar_detect && !(c->radar_detect_widths & radar_detect)) 1382 goto cont; 1383 1384 /* 1385 * Finally check that all iftypes that we're currently 1386 * using are actually part of this combination. If they 1387 * aren't then we can't use this combination and have 1388 * to continue to the next. 1389 */ 1390 if ((all_iftypes & used_iftypes) != used_iftypes) 1391 goto cont; 1392 1393 /* 1394 * This combination covered all interface types and 1395 * supported the requested numbers, so we're good. 1396 */ 1397 kfree(limits); 1398 return 0; 1399 cont: 1400 kfree(limits); 1401 } 1402 1403 return -EBUSY; 1404 } 1405 1406 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1407 const u8 *rates, unsigned int n_rates, 1408 u32 *mask) 1409 { 1410 int i, j; 1411 1412 if (!sband) 1413 return -EINVAL; 1414 1415 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1416 return -EINVAL; 1417 1418 *mask = 0; 1419 1420 for (i = 0; i < n_rates; i++) { 1421 int rate = (rates[i] & 0x7f) * 5; 1422 bool found = false; 1423 1424 for (j = 0; j < sband->n_bitrates; j++) { 1425 if (sband->bitrates[j].bitrate == rate) { 1426 found = true; 1427 *mask |= BIT(j); 1428 break; 1429 } 1430 } 1431 if (!found) 1432 return -EINVAL; 1433 } 1434 1435 /* 1436 * mask must have at least one bit set here since we 1437 * didn't accept a 0-length rates array nor allowed 1438 * entries in the array that didn't exist 1439 */ 1440 1441 return 0; 1442 } 1443 1444 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1445 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1446 const unsigned char rfc1042_header[] __aligned(2) = 1447 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1448 EXPORT_SYMBOL(rfc1042_header); 1449 1450 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1451 const unsigned char bridge_tunnel_header[] __aligned(2) = 1452 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1453 EXPORT_SYMBOL(bridge_tunnel_header); 1454