xref: /openbmc/linux/net/wireless/util.c (revision e8e0929d)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <net/cfg80211.h>
9 #include <net/ip.h>
10 #include "core.h"
11 
12 struct ieee80211_rate *
13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
14 			    u32 basic_rates, int bitrate)
15 {
16 	struct ieee80211_rate *result = &sband->bitrates[0];
17 	int i;
18 
19 	for (i = 0; i < sband->n_bitrates; i++) {
20 		if (!(basic_rates & BIT(i)))
21 			continue;
22 		if (sband->bitrates[i].bitrate > bitrate)
23 			continue;
24 		result = &sband->bitrates[i];
25 	}
26 
27 	return result;
28 }
29 EXPORT_SYMBOL(ieee80211_get_response_rate);
30 
31 int ieee80211_channel_to_frequency(int chan)
32 {
33 	if (chan < 14)
34 		return 2407 + chan * 5;
35 
36 	if (chan == 14)
37 		return 2484;
38 
39 	/* FIXME: 802.11j 17.3.8.3.2 */
40 	return (chan + 1000) * 5;
41 }
42 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
43 
44 int ieee80211_frequency_to_channel(int freq)
45 {
46 	if (freq == 2484)
47 		return 14;
48 
49 	if (freq < 2484)
50 		return (freq - 2407) / 5;
51 
52 	/* FIXME: 802.11j 17.3.8.3.2 */
53 	return freq/5 - 1000;
54 }
55 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
56 
57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
58 						  int freq)
59 {
60 	enum ieee80211_band band;
61 	struct ieee80211_supported_band *sband;
62 	int i;
63 
64 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
65 		sband = wiphy->bands[band];
66 
67 		if (!sband)
68 			continue;
69 
70 		for (i = 0; i < sband->n_channels; i++) {
71 			if (sband->channels[i].center_freq == freq)
72 				return &sband->channels[i];
73 		}
74 	}
75 
76 	return NULL;
77 }
78 EXPORT_SYMBOL(__ieee80211_get_channel);
79 
80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
81 				     enum ieee80211_band band)
82 {
83 	int i, want;
84 
85 	switch (band) {
86 	case IEEE80211_BAND_5GHZ:
87 		want = 3;
88 		for (i = 0; i < sband->n_bitrates; i++) {
89 			if (sband->bitrates[i].bitrate == 60 ||
90 			    sband->bitrates[i].bitrate == 120 ||
91 			    sband->bitrates[i].bitrate == 240) {
92 				sband->bitrates[i].flags |=
93 					IEEE80211_RATE_MANDATORY_A;
94 				want--;
95 			}
96 		}
97 		WARN_ON(want);
98 		break;
99 	case IEEE80211_BAND_2GHZ:
100 		want = 7;
101 		for (i = 0; i < sband->n_bitrates; i++) {
102 			if (sband->bitrates[i].bitrate == 10) {
103 				sband->bitrates[i].flags |=
104 					IEEE80211_RATE_MANDATORY_B |
105 					IEEE80211_RATE_MANDATORY_G;
106 				want--;
107 			}
108 
109 			if (sband->bitrates[i].bitrate == 20 ||
110 			    sband->bitrates[i].bitrate == 55 ||
111 			    sband->bitrates[i].bitrate == 110 ||
112 			    sband->bitrates[i].bitrate == 60 ||
113 			    sband->bitrates[i].bitrate == 120 ||
114 			    sband->bitrates[i].bitrate == 240) {
115 				sband->bitrates[i].flags |=
116 					IEEE80211_RATE_MANDATORY_G;
117 				want--;
118 			}
119 
120 			if (sband->bitrates[i].bitrate != 10 &&
121 			    sband->bitrates[i].bitrate != 20 &&
122 			    sband->bitrates[i].bitrate != 55 &&
123 			    sband->bitrates[i].bitrate != 110)
124 				sband->bitrates[i].flags |=
125 					IEEE80211_RATE_ERP_G;
126 		}
127 		WARN_ON(want != 0 && want != 3 && want != 6);
128 		break;
129 	case IEEE80211_NUM_BANDS:
130 		WARN_ON(1);
131 		break;
132 	}
133 }
134 
135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
136 {
137 	enum ieee80211_band band;
138 
139 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
140 		if (wiphy->bands[band])
141 			set_mandatory_flags_band(wiphy->bands[band], band);
142 }
143 
144 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
145 				   struct key_params *params, int key_idx,
146 				   const u8 *mac_addr)
147 {
148 	int i;
149 
150 	if (key_idx > 5)
151 		return -EINVAL;
152 
153 	/*
154 	 * Disallow pairwise keys with non-zero index unless it's WEP
155 	 * (because current deployments use pairwise WEP keys with
156 	 * non-zero indizes but 802.11i clearly specifies to use zero)
157 	 */
158 	if (mac_addr && key_idx &&
159 	    params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
160 	    params->cipher != WLAN_CIPHER_SUITE_WEP104)
161 		return -EINVAL;
162 
163 	switch (params->cipher) {
164 	case WLAN_CIPHER_SUITE_WEP40:
165 		if (params->key_len != WLAN_KEY_LEN_WEP40)
166 			return -EINVAL;
167 		break;
168 	case WLAN_CIPHER_SUITE_TKIP:
169 		if (params->key_len != WLAN_KEY_LEN_TKIP)
170 			return -EINVAL;
171 		break;
172 	case WLAN_CIPHER_SUITE_CCMP:
173 		if (params->key_len != WLAN_KEY_LEN_CCMP)
174 			return -EINVAL;
175 		break;
176 	case WLAN_CIPHER_SUITE_WEP104:
177 		if (params->key_len != WLAN_KEY_LEN_WEP104)
178 			return -EINVAL;
179 		break;
180 	case WLAN_CIPHER_SUITE_AES_CMAC:
181 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
182 			return -EINVAL;
183 		break;
184 	default:
185 		return -EINVAL;
186 	}
187 
188 	if (params->seq) {
189 		switch (params->cipher) {
190 		case WLAN_CIPHER_SUITE_WEP40:
191 		case WLAN_CIPHER_SUITE_WEP104:
192 			/* These ciphers do not use key sequence */
193 			return -EINVAL;
194 		case WLAN_CIPHER_SUITE_TKIP:
195 		case WLAN_CIPHER_SUITE_CCMP:
196 		case WLAN_CIPHER_SUITE_AES_CMAC:
197 			if (params->seq_len != 6)
198 				return -EINVAL;
199 			break;
200 		}
201 	}
202 
203 	for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
204 		if (params->cipher == rdev->wiphy.cipher_suites[i])
205 			break;
206 	if (i == rdev->wiphy.n_cipher_suites)
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
213 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
214 const unsigned char rfc1042_header[] __aligned(2) =
215 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
216 EXPORT_SYMBOL(rfc1042_header);
217 
218 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
219 const unsigned char bridge_tunnel_header[] __aligned(2) =
220 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
221 EXPORT_SYMBOL(bridge_tunnel_header);
222 
223 unsigned int ieee80211_hdrlen(__le16 fc)
224 {
225 	unsigned int hdrlen = 24;
226 
227 	if (ieee80211_is_data(fc)) {
228 		if (ieee80211_has_a4(fc))
229 			hdrlen = 30;
230 		if (ieee80211_is_data_qos(fc))
231 			hdrlen += IEEE80211_QOS_CTL_LEN;
232 		goto out;
233 	}
234 
235 	if (ieee80211_is_ctl(fc)) {
236 		/*
237 		 * ACK and CTS are 10 bytes, all others 16. To see how
238 		 * to get this condition consider
239 		 *   subtype mask:   0b0000000011110000 (0x00F0)
240 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
241 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
242 		 *   bits that matter:         ^^^      (0x00E0)
243 		 *   value of those: 0b0000000011000000 (0x00C0)
244 		 */
245 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
246 			hdrlen = 10;
247 		else
248 			hdrlen = 16;
249 	}
250 out:
251 	return hdrlen;
252 }
253 EXPORT_SYMBOL(ieee80211_hdrlen);
254 
255 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
256 {
257 	const struct ieee80211_hdr *hdr =
258 			(const struct ieee80211_hdr *)skb->data;
259 	unsigned int hdrlen;
260 
261 	if (unlikely(skb->len < 10))
262 		return 0;
263 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
264 	if (unlikely(hdrlen > skb->len))
265 		return 0;
266 	return hdrlen;
267 }
268 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
269 
270 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
271 {
272 	int ae = meshhdr->flags & MESH_FLAGS_AE;
273 	/* 7.1.3.5a.2 */
274 	switch (ae) {
275 	case 0:
276 		return 6;
277 	case MESH_FLAGS_AE_A4:
278 		return 12;
279 	case MESH_FLAGS_AE_A5_A6:
280 		return 18;
281 	case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
282 		return 24;
283 	default:
284 		return 6;
285 	}
286 }
287 
288 int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
289 			   enum nl80211_iftype iftype)
290 {
291 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
292 	u16 hdrlen, ethertype;
293 	u8 *payload;
294 	u8 dst[ETH_ALEN];
295 	u8 src[ETH_ALEN] __aligned(2);
296 
297 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
298 		return -1;
299 
300 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
301 
302 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
303 	 * header
304 	 * IEEE 802.11 address fields:
305 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
306 	 *   0     0   DA    SA    BSSID n/a
307 	 *   0     1   DA    BSSID SA    n/a
308 	 *   1     0   BSSID SA    DA    n/a
309 	 *   1     1   RA    TA    DA    SA
310 	 */
311 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
312 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
313 
314 	switch (hdr->frame_control &
315 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
316 	case cpu_to_le16(IEEE80211_FCTL_TODS):
317 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
318 			     iftype != NL80211_IFTYPE_AP_VLAN))
319 			return -1;
320 		break;
321 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
322 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
323 			     iftype != NL80211_IFTYPE_MESH_POINT))
324 			return -1;
325 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
326 			struct ieee80211s_hdr *meshdr =
327 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
328 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
329 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
330 				memcpy(dst, meshdr->eaddr1, ETH_ALEN);
331 				memcpy(src, meshdr->eaddr2, ETH_ALEN);
332 			}
333 		}
334 		break;
335 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
336 		if ((iftype != NL80211_IFTYPE_STATION &&
337 		    iftype != NL80211_IFTYPE_MESH_POINT) ||
338 		    (is_multicast_ether_addr(dst) &&
339 		     !compare_ether_addr(src, addr)))
340 			return -1;
341 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
342 			struct ieee80211s_hdr *meshdr =
343 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
344 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
345 			if (meshdr->flags & MESH_FLAGS_AE_A4)
346 				memcpy(src, meshdr->eaddr1, ETH_ALEN);
347 		}
348 		break;
349 	case cpu_to_le16(0):
350 		if (iftype != NL80211_IFTYPE_ADHOC)
351 			return -1;
352 		break;
353 	}
354 
355 	if (unlikely(skb->len - hdrlen < 8))
356 		return -1;
357 
358 	payload = skb->data + hdrlen;
359 	ethertype = (payload[6] << 8) | payload[7];
360 
361 	if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
362 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
363 		   compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
364 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
365 		 * replace EtherType */
366 		skb_pull(skb, hdrlen + 6);
367 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
368 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
369 	} else {
370 		struct ethhdr *ehdr;
371 		__be16 len;
372 
373 		skb_pull(skb, hdrlen);
374 		len = htons(skb->len);
375 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
376 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
377 		memcpy(ehdr->h_source, src, ETH_ALEN);
378 		ehdr->h_proto = len;
379 	}
380 	return 0;
381 }
382 EXPORT_SYMBOL(ieee80211_data_to_8023);
383 
384 int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
385 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
386 {
387 	struct ieee80211_hdr hdr;
388 	u16 hdrlen, ethertype;
389 	__le16 fc;
390 	const u8 *encaps_data;
391 	int encaps_len, skip_header_bytes;
392 	int nh_pos, h_pos;
393 	int head_need;
394 
395 	if (unlikely(skb->len < ETH_HLEN))
396 		return -EINVAL;
397 
398 	nh_pos = skb_network_header(skb) - skb->data;
399 	h_pos = skb_transport_header(skb) - skb->data;
400 
401 	/* convert Ethernet header to proper 802.11 header (based on
402 	 * operation mode) */
403 	ethertype = (skb->data[12] << 8) | skb->data[13];
404 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
405 
406 	switch (iftype) {
407 	case NL80211_IFTYPE_AP:
408 	case NL80211_IFTYPE_AP_VLAN:
409 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
410 		/* DA BSSID SA */
411 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
412 		memcpy(hdr.addr2, addr, ETH_ALEN);
413 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
414 		hdrlen = 24;
415 		break;
416 	case NL80211_IFTYPE_STATION:
417 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
418 		/* BSSID SA DA */
419 		memcpy(hdr.addr1, bssid, ETH_ALEN);
420 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
421 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
422 		hdrlen = 24;
423 		break;
424 	case NL80211_IFTYPE_ADHOC:
425 		/* DA SA BSSID */
426 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
427 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
428 		memcpy(hdr.addr3, bssid, ETH_ALEN);
429 		hdrlen = 24;
430 		break;
431 	default:
432 		return -EOPNOTSUPP;
433 	}
434 
435 	if (qos) {
436 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
437 		hdrlen += 2;
438 	}
439 
440 	hdr.frame_control = fc;
441 	hdr.duration_id = 0;
442 	hdr.seq_ctrl = 0;
443 
444 	skip_header_bytes = ETH_HLEN;
445 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
446 		encaps_data = bridge_tunnel_header;
447 		encaps_len = sizeof(bridge_tunnel_header);
448 		skip_header_bytes -= 2;
449 	} else if (ethertype > 0x600) {
450 		encaps_data = rfc1042_header;
451 		encaps_len = sizeof(rfc1042_header);
452 		skip_header_bytes -= 2;
453 	} else {
454 		encaps_data = NULL;
455 		encaps_len = 0;
456 	}
457 
458 	skb_pull(skb, skip_header_bytes);
459 	nh_pos -= skip_header_bytes;
460 	h_pos -= skip_header_bytes;
461 
462 	head_need = hdrlen + encaps_len - skb_headroom(skb);
463 
464 	if (head_need > 0 || skb_cloned(skb)) {
465 		head_need = max(head_need, 0);
466 		if (head_need)
467 			skb_orphan(skb);
468 
469 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
470 			printk(KERN_ERR "failed to reallocate Tx buffer\n");
471 			return -ENOMEM;
472 		}
473 		skb->truesize += head_need;
474 	}
475 
476 	if (encaps_data) {
477 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
478 		nh_pos += encaps_len;
479 		h_pos += encaps_len;
480 	}
481 
482 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
483 
484 	nh_pos += hdrlen;
485 	h_pos += hdrlen;
486 
487 	/* Update skb pointers to various headers since this modified frame
488 	 * is going to go through Linux networking code that may potentially
489 	 * need things like pointer to IP header. */
490 	skb_set_mac_header(skb, 0);
491 	skb_set_network_header(skb, nh_pos);
492 	skb_set_transport_header(skb, h_pos);
493 
494 	return 0;
495 }
496 EXPORT_SYMBOL(ieee80211_data_from_8023);
497 
498 /* Given a data frame determine the 802.1p/1d tag to use. */
499 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
500 {
501 	unsigned int dscp;
502 
503 	/* skb->priority values from 256->263 are magic values to
504 	 * directly indicate a specific 802.1d priority.  This is used
505 	 * to allow 802.1d priority to be passed directly in from VLAN
506 	 * tags, etc.
507 	 */
508 	if (skb->priority >= 256 && skb->priority <= 263)
509 		return skb->priority - 256;
510 
511 	switch (skb->protocol) {
512 	case htons(ETH_P_IP):
513 		dscp = ip_hdr(skb)->tos & 0xfc;
514 		break;
515 	default:
516 		return 0;
517 	}
518 
519 	return dscp >> 5;
520 }
521 EXPORT_SYMBOL(cfg80211_classify8021d);
522 
523 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
524 {
525 	u8 *end, *pos;
526 
527 	pos = bss->information_elements;
528 	if (pos == NULL)
529 		return NULL;
530 	end = pos + bss->len_information_elements;
531 
532 	while (pos + 1 < end) {
533 		if (pos + 2 + pos[1] > end)
534 			break;
535 		if (pos[0] == ie)
536 			return pos;
537 		pos += 2 + pos[1];
538 	}
539 
540 	return NULL;
541 }
542 EXPORT_SYMBOL(ieee80211_bss_get_ie);
543 
544 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
545 {
546 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
547 	struct net_device *dev = wdev->netdev;
548 	int i;
549 
550 	if (!wdev->connect_keys)
551 		return;
552 
553 	for (i = 0; i < 6; i++) {
554 		if (!wdev->connect_keys->params[i].cipher)
555 			continue;
556 		if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
557 					&wdev->connect_keys->params[i])) {
558 			printk(KERN_ERR "%s: failed to set key %d\n",
559 				dev->name, i);
560 			continue;
561 		}
562 		if (wdev->connect_keys->def == i)
563 			if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
564 				printk(KERN_ERR "%s: failed to set defkey %d\n",
565 					dev->name, i);
566 				continue;
567 			}
568 		if (wdev->connect_keys->defmgmt == i)
569 			if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
570 				printk(KERN_ERR "%s: failed to set mgtdef %d\n",
571 					dev->name, i);
572 	}
573 
574 	kfree(wdev->connect_keys);
575 	wdev->connect_keys = NULL;
576 }
577 
578 static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
579 {
580 	struct cfg80211_event *ev;
581 	unsigned long flags;
582 	const u8 *bssid = NULL;
583 
584 	spin_lock_irqsave(&wdev->event_lock, flags);
585 	while (!list_empty(&wdev->event_list)) {
586 		ev = list_first_entry(&wdev->event_list,
587 				      struct cfg80211_event, list);
588 		list_del(&ev->list);
589 		spin_unlock_irqrestore(&wdev->event_lock, flags);
590 
591 		wdev_lock(wdev);
592 		switch (ev->type) {
593 		case EVENT_CONNECT_RESULT:
594 			if (!is_zero_ether_addr(ev->cr.bssid))
595 				bssid = ev->cr.bssid;
596 			__cfg80211_connect_result(
597 				wdev->netdev, bssid,
598 				ev->cr.req_ie, ev->cr.req_ie_len,
599 				ev->cr.resp_ie, ev->cr.resp_ie_len,
600 				ev->cr.status,
601 				ev->cr.status == WLAN_STATUS_SUCCESS,
602 				NULL);
603 			break;
604 		case EVENT_ROAMED:
605 			__cfg80211_roamed(wdev, ev->rm.bssid,
606 					  ev->rm.req_ie, ev->rm.req_ie_len,
607 					  ev->rm.resp_ie, ev->rm.resp_ie_len);
608 			break;
609 		case EVENT_DISCONNECTED:
610 			__cfg80211_disconnected(wdev->netdev,
611 						ev->dc.ie, ev->dc.ie_len,
612 						ev->dc.reason, true);
613 			break;
614 		case EVENT_IBSS_JOINED:
615 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
616 			break;
617 		}
618 		wdev_unlock(wdev);
619 
620 		kfree(ev);
621 
622 		spin_lock_irqsave(&wdev->event_lock, flags);
623 	}
624 	spin_unlock_irqrestore(&wdev->event_lock, flags);
625 }
626 
627 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
628 {
629 	struct wireless_dev *wdev;
630 
631 	ASSERT_RTNL();
632 	ASSERT_RDEV_LOCK(rdev);
633 
634 	mutex_lock(&rdev->devlist_mtx);
635 
636 	list_for_each_entry(wdev, &rdev->netdev_list, list)
637 		cfg80211_process_wdev_events(wdev);
638 
639 	mutex_unlock(&rdev->devlist_mtx);
640 }
641 
642 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
643 			  struct net_device *dev, enum nl80211_iftype ntype,
644 			  u32 *flags, struct vif_params *params)
645 {
646 	int err;
647 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
648 
649 	ASSERT_RDEV_LOCK(rdev);
650 
651 	/* don't support changing VLANs, you just re-create them */
652 	if (otype == NL80211_IFTYPE_AP_VLAN)
653 		return -EOPNOTSUPP;
654 
655 	if (!rdev->ops->change_virtual_intf ||
656 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
657 		return -EOPNOTSUPP;
658 
659 	if (ntype != otype) {
660 		switch (otype) {
661 		case NL80211_IFTYPE_ADHOC:
662 			cfg80211_leave_ibss(rdev, dev, false);
663 			break;
664 		case NL80211_IFTYPE_STATION:
665 			cfg80211_disconnect(rdev, dev,
666 					    WLAN_REASON_DEAUTH_LEAVING, true);
667 			break;
668 		case NL80211_IFTYPE_MESH_POINT:
669 			/* mesh should be handled? */
670 			break;
671 		default:
672 			break;
673 		}
674 
675 		cfg80211_process_rdev_events(rdev);
676 	}
677 
678 	err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
679 					     ntype, flags, params);
680 
681 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
682 
683 	return err;
684 }
685