1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return 2484; 85 else if (chan < 14) 86 return 2407 + chan * 5; 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return 4000 + chan * 5; 91 else 92 return 5000 + chan * 5; 93 break; 94 case NL80211_BAND_60GHZ: 95 if (chan < 7) 96 return 56160 + chan * 2160; 97 break; 98 default: 99 ; 100 } 101 return 0; /* not supported */ 102 } 103 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 104 105 int ieee80211_frequency_to_channel(int freq) 106 { 107 /* see 802.11 17.3.8.3.2 and Annex J */ 108 if (freq == 2484) 109 return 14; 110 else if (freq < 2484) 111 return (freq - 2407) / 5; 112 else if (freq >= 4910 && freq <= 4980) 113 return (freq - 4000) / 5; 114 else if (freq <= 45000) /* DMG band lower limit */ 115 return (freq - 5000) / 5; 116 else if (freq >= 58320 && freq <= 70200) 117 return (freq - 56160) / 2160; 118 else 119 return 0; 120 } 121 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 122 123 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 124 { 125 enum nl80211_band band; 126 struct ieee80211_supported_band *sband; 127 int i; 128 129 for (band = 0; band < NUM_NL80211_BANDS; band++) { 130 sband = wiphy->bands[band]; 131 132 if (!sband) 133 continue; 134 135 for (i = 0; i < sband->n_channels; i++) { 136 if (sband->channels[i].center_freq == freq) 137 return &sband->channels[i]; 138 } 139 } 140 141 return NULL; 142 } 143 EXPORT_SYMBOL(ieee80211_get_channel); 144 145 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 146 { 147 int i, want; 148 149 switch (sband->band) { 150 case NL80211_BAND_5GHZ: 151 want = 3; 152 for (i = 0; i < sband->n_bitrates; i++) { 153 if (sband->bitrates[i].bitrate == 60 || 154 sband->bitrates[i].bitrate == 120 || 155 sband->bitrates[i].bitrate == 240) { 156 sband->bitrates[i].flags |= 157 IEEE80211_RATE_MANDATORY_A; 158 want--; 159 } 160 } 161 WARN_ON(want); 162 break; 163 case NL80211_BAND_2GHZ: 164 want = 7; 165 for (i = 0; i < sband->n_bitrates; i++) { 166 switch (sband->bitrates[i].bitrate) { 167 case 10: 168 case 20: 169 case 55: 170 case 110: 171 sband->bitrates[i].flags |= 172 IEEE80211_RATE_MANDATORY_B | 173 IEEE80211_RATE_MANDATORY_G; 174 want--; 175 break; 176 case 60: 177 case 120: 178 case 240: 179 sband->bitrates[i].flags |= 180 IEEE80211_RATE_MANDATORY_G; 181 want--; 182 /* fall through */ 183 default: 184 sband->bitrates[i].flags |= 185 IEEE80211_RATE_ERP_G; 186 break; 187 } 188 } 189 WARN_ON(want != 0 && want != 3); 190 break; 191 case NL80211_BAND_60GHZ: 192 /* check for mandatory HT MCS 1..4 */ 193 WARN_ON(!sband->ht_cap.ht_supported); 194 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 195 break; 196 case NUM_NL80211_BANDS: 197 default: 198 WARN_ON(1); 199 break; 200 } 201 } 202 203 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 204 { 205 enum nl80211_band band; 206 207 for (band = 0; band < NUM_NL80211_BANDS; band++) 208 if (wiphy->bands[band]) 209 set_mandatory_flags_band(wiphy->bands[band]); 210 } 211 212 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 213 { 214 int i; 215 for (i = 0; i < wiphy->n_cipher_suites; i++) 216 if (cipher == wiphy->cipher_suites[i]) 217 return true; 218 return false; 219 } 220 221 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 222 struct key_params *params, int key_idx, 223 bool pairwise, const u8 *mac_addr) 224 { 225 if (key_idx < 0 || key_idx > 5) 226 return -EINVAL; 227 228 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 229 return -EINVAL; 230 231 if (pairwise && !mac_addr) 232 return -EINVAL; 233 234 switch (params->cipher) { 235 case WLAN_CIPHER_SUITE_TKIP: 236 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 237 if ((pairwise && key_idx) || 238 params->mode != NL80211_KEY_RX_TX) 239 return -EINVAL; 240 break; 241 case WLAN_CIPHER_SUITE_CCMP: 242 case WLAN_CIPHER_SUITE_CCMP_256: 243 case WLAN_CIPHER_SUITE_GCMP: 244 case WLAN_CIPHER_SUITE_GCMP_256: 245 /* IEEE802.11-2016 allows only 0 and - when supporting 246 * Extended Key ID - 1 as index for pairwise keys. 247 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 248 * the driver supports Extended Key ID. 249 * @NL80211_KEY_SET_TX can't be set when installing and 250 * validating a key. 251 */ 252 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 253 params->mode == NL80211_KEY_SET_TX) 254 return -EINVAL; 255 if (wiphy_ext_feature_isset(&rdev->wiphy, 256 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 257 if (pairwise && (key_idx < 0 || key_idx > 1)) 258 return -EINVAL; 259 } else if (pairwise && key_idx) { 260 return -EINVAL; 261 } 262 break; 263 case WLAN_CIPHER_SUITE_AES_CMAC: 264 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 265 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 266 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 267 /* Disallow BIP (group-only) cipher as pairwise cipher */ 268 if (pairwise) 269 return -EINVAL; 270 if (key_idx < 4) 271 return -EINVAL; 272 break; 273 case WLAN_CIPHER_SUITE_WEP40: 274 case WLAN_CIPHER_SUITE_WEP104: 275 if (key_idx > 3) 276 return -EINVAL; 277 default: 278 break; 279 } 280 281 switch (params->cipher) { 282 case WLAN_CIPHER_SUITE_WEP40: 283 if (params->key_len != WLAN_KEY_LEN_WEP40) 284 return -EINVAL; 285 break; 286 case WLAN_CIPHER_SUITE_TKIP: 287 if (params->key_len != WLAN_KEY_LEN_TKIP) 288 return -EINVAL; 289 break; 290 case WLAN_CIPHER_SUITE_CCMP: 291 if (params->key_len != WLAN_KEY_LEN_CCMP) 292 return -EINVAL; 293 break; 294 case WLAN_CIPHER_SUITE_CCMP_256: 295 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 296 return -EINVAL; 297 break; 298 case WLAN_CIPHER_SUITE_GCMP: 299 if (params->key_len != WLAN_KEY_LEN_GCMP) 300 return -EINVAL; 301 break; 302 case WLAN_CIPHER_SUITE_GCMP_256: 303 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 304 return -EINVAL; 305 break; 306 case WLAN_CIPHER_SUITE_WEP104: 307 if (params->key_len != WLAN_KEY_LEN_WEP104) 308 return -EINVAL; 309 break; 310 case WLAN_CIPHER_SUITE_AES_CMAC: 311 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 312 return -EINVAL; 313 break; 314 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 315 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 316 return -EINVAL; 317 break; 318 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 319 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 320 return -EINVAL; 321 break; 322 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 323 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 324 return -EINVAL; 325 break; 326 default: 327 /* 328 * We don't know anything about this algorithm, 329 * allow using it -- but the driver must check 330 * all parameters! We still check below whether 331 * or not the driver supports this algorithm, 332 * of course. 333 */ 334 break; 335 } 336 337 if (params->seq) { 338 switch (params->cipher) { 339 case WLAN_CIPHER_SUITE_WEP40: 340 case WLAN_CIPHER_SUITE_WEP104: 341 /* These ciphers do not use key sequence */ 342 return -EINVAL; 343 case WLAN_CIPHER_SUITE_TKIP: 344 case WLAN_CIPHER_SUITE_CCMP: 345 case WLAN_CIPHER_SUITE_CCMP_256: 346 case WLAN_CIPHER_SUITE_GCMP: 347 case WLAN_CIPHER_SUITE_GCMP_256: 348 case WLAN_CIPHER_SUITE_AES_CMAC: 349 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 350 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 351 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 352 if (params->seq_len != 6) 353 return -EINVAL; 354 break; 355 } 356 } 357 358 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 359 return -EINVAL; 360 361 return 0; 362 } 363 364 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 365 { 366 unsigned int hdrlen = 24; 367 368 if (ieee80211_is_data(fc)) { 369 if (ieee80211_has_a4(fc)) 370 hdrlen = 30; 371 if (ieee80211_is_data_qos(fc)) { 372 hdrlen += IEEE80211_QOS_CTL_LEN; 373 if (ieee80211_has_order(fc)) 374 hdrlen += IEEE80211_HT_CTL_LEN; 375 } 376 goto out; 377 } 378 379 if (ieee80211_is_mgmt(fc)) { 380 if (ieee80211_has_order(fc)) 381 hdrlen += IEEE80211_HT_CTL_LEN; 382 goto out; 383 } 384 385 if (ieee80211_is_ctl(fc)) { 386 /* 387 * ACK and CTS are 10 bytes, all others 16. To see how 388 * to get this condition consider 389 * subtype mask: 0b0000000011110000 (0x00F0) 390 * ACK subtype: 0b0000000011010000 (0x00D0) 391 * CTS subtype: 0b0000000011000000 (0x00C0) 392 * bits that matter: ^^^ (0x00E0) 393 * value of those: 0b0000000011000000 (0x00C0) 394 */ 395 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 396 hdrlen = 10; 397 else 398 hdrlen = 16; 399 } 400 out: 401 return hdrlen; 402 } 403 EXPORT_SYMBOL(ieee80211_hdrlen); 404 405 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 406 { 407 const struct ieee80211_hdr *hdr = 408 (const struct ieee80211_hdr *)skb->data; 409 unsigned int hdrlen; 410 411 if (unlikely(skb->len < 10)) 412 return 0; 413 hdrlen = ieee80211_hdrlen(hdr->frame_control); 414 if (unlikely(hdrlen > skb->len)) 415 return 0; 416 return hdrlen; 417 } 418 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 419 420 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 421 { 422 int ae = flags & MESH_FLAGS_AE; 423 /* 802.11-2012, 8.2.4.7.3 */ 424 switch (ae) { 425 default: 426 case 0: 427 return 6; 428 case MESH_FLAGS_AE_A4: 429 return 12; 430 case MESH_FLAGS_AE_A5_A6: 431 return 18; 432 } 433 } 434 435 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 436 { 437 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 438 } 439 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 440 441 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 442 const u8 *addr, enum nl80211_iftype iftype, 443 u8 data_offset) 444 { 445 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 446 struct { 447 u8 hdr[ETH_ALEN] __aligned(2); 448 __be16 proto; 449 } payload; 450 struct ethhdr tmp; 451 u16 hdrlen; 452 u8 mesh_flags = 0; 453 454 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 455 return -1; 456 457 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 458 if (skb->len < hdrlen + 8) 459 return -1; 460 461 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 462 * header 463 * IEEE 802.11 address fields: 464 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 465 * 0 0 DA SA BSSID n/a 466 * 0 1 DA BSSID SA n/a 467 * 1 0 BSSID SA DA n/a 468 * 1 1 RA TA DA SA 469 */ 470 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 471 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 472 473 if (iftype == NL80211_IFTYPE_MESH_POINT) 474 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 475 476 mesh_flags &= MESH_FLAGS_AE; 477 478 switch (hdr->frame_control & 479 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 480 case cpu_to_le16(IEEE80211_FCTL_TODS): 481 if (unlikely(iftype != NL80211_IFTYPE_AP && 482 iftype != NL80211_IFTYPE_AP_VLAN && 483 iftype != NL80211_IFTYPE_P2P_GO)) 484 return -1; 485 break; 486 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 487 if (unlikely(iftype != NL80211_IFTYPE_WDS && 488 iftype != NL80211_IFTYPE_MESH_POINT && 489 iftype != NL80211_IFTYPE_AP_VLAN && 490 iftype != NL80211_IFTYPE_STATION)) 491 return -1; 492 if (iftype == NL80211_IFTYPE_MESH_POINT) { 493 if (mesh_flags == MESH_FLAGS_AE_A4) 494 return -1; 495 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 496 skb_copy_bits(skb, hdrlen + 497 offsetof(struct ieee80211s_hdr, eaddr1), 498 tmp.h_dest, 2 * ETH_ALEN); 499 } 500 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 501 } 502 break; 503 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 504 if ((iftype != NL80211_IFTYPE_STATION && 505 iftype != NL80211_IFTYPE_P2P_CLIENT && 506 iftype != NL80211_IFTYPE_MESH_POINT) || 507 (is_multicast_ether_addr(tmp.h_dest) && 508 ether_addr_equal(tmp.h_source, addr))) 509 return -1; 510 if (iftype == NL80211_IFTYPE_MESH_POINT) { 511 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 512 return -1; 513 if (mesh_flags == MESH_FLAGS_AE_A4) 514 skb_copy_bits(skb, hdrlen + 515 offsetof(struct ieee80211s_hdr, eaddr1), 516 tmp.h_source, ETH_ALEN); 517 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 518 } 519 break; 520 case cpu_to_le16(0): 521 if (iftype != NL80211_IFTYPE_ADHOC && 522 iftype != NL80211_IFTYPE_STATION && 523 iftype != NL80211_IFTYPE_OCB) 524 return -1; 525 break; 526 } 527 528 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 529 tmp.h_proto = payload.proto; 530 531 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 532 tmp.h_proto != htons(ETH_P_AARP) && 533 tmp.h_proto != htons(ETH_P_IPX)) || 534 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 535 /* remove RFC1042 or Bridge-Tunnel encapsulation and 536 * replace EtherType */ 537 hdrlen += ETH_ALEN + 2; 538 else 539 tmp.h_proto = htons(skb->len - hdrlen); 540 541 pskb_pull(skb, hdrlen); 542 543 if (!ehdr) 544 ehdr = skb_push(skb, sizeof(struct ethhdr)); 545 memcpy(ehdr, &tmp, sizeof(tmp)); 546 547 return 0; 548 } 549 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 550 551 static void 552 __frame_add_frag(struct sk_buff *skb, struct page *page, 553 void *ptr, int len, int size) 554 { 555 struct skb_shared_info *sh = skb_shinfo(skb); 556 int page_offset; 557 558 page_ref_inc(page); 559 page_offset = ptr - page_address(page); 560 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 561 } 562 563 static void 564 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 565 int offset, int len) 566 { 567 struct skb_shared_info *sh = skb_shinfo(skb); 568 const skb_frag_t *frag = &sh->frags[0]; 569 struct page *frag_page; 570 void *frag_ptr; 571 int frag_len, frag_size; 572 int head_size = skb->len - skb->data_len; 573 int cur_len; 574 575 frag_page = virt_to_head_page(skb->head); 576 frag_ptr = skb->data; 577 frag_size = head_size; 578 579 while (offset >= frag_size) { 580 offset -= frag_size; 581 frag_page = skb_frag_page(frag); 582 frag_ptr = skb_frag_address(frag); 583 frag_size = skb_frag_size(frag); 584 frag++; 585 } 586 587 frag_ptr += offset; 588 frag_len = frag_size - offset; 589 590 cur_len = min(len, frag_len); 591 592 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 593 len -= cur_len; 594 595 while (len > 0) { 596 frag_len = skb_frag_size(frag); 597 cur_len = min(len, frag_len); 598 __frame_add_frag(frame, skb_frag_page(frag), 599 skb_frag_address(frag), cur_len, frag_len); 600 len -= cur_len; 601 frag++; 602 } 603 } 604 605 static struct sk_buff * 606 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 607 int offset, int len, bool reuse_frag) 608 { 609 struct sk_buff *frame; 610 int cur_len = len; 611 612 if (skb->len - offset < len) 613 return NULL; 614 615 /* 616 * When reusing framents, copy some data to the head to simplify 617 * ethernet header handling and speed up protocol header processing 618 * in the stack later. 619 */ 620 if (reuse_frag) 621 cur_len = min_t(int, len, 32); 622 623 /* 624 * Allocate and reserve two bytes more for payload 625 * alignment since sizeof(struct ethhdr) is 14. 626 */ 627 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 628 if (!frame) 629 return NULL; 630 631 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 632 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 633 634 len -= cur_len; 635 if (!len) 636 return frame; 637 638 offset += cur_len; 639 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 640 641 return frame; 642 } 643 644 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 645 const u8 *addr, enum nl80211_iftype iftype, 646 const unsigned int extra_headroom, 647 const u8 *check_da, const u8 *check_sa) 648 { 649 unsigned int hlen = ALIGN(extra_headroom, 4); 650 struct sk_buff *frame = NULL; 651 u16 ethertype; 652 u8 *payload; 653 int offset = 0, remaining; 654 struct ethhdr eth; 655 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 656 bool reuse_skb = false; 657 bool last = false; 658 659 while (!last) { 660 unsigned int subframe_len; 661 int len; 662 u8 padding; 663 664 skb_copy_bits(skb, offset, ð, sizeof(eth)); 665 len = ntohs(eth.h_proto); 666 subframe_len = sizeof(struct ethhdr) + len; 667 padding = (4 - subframe_len) & 0x3; 668 669 /* the last MSDU has no padding */ 670 remaining = skb->len - offset; 671 if (subframe_len > remaining) 672 goto purge; 673 674 offset += sizeof(struct ethhdr); 675 last = remaining <= subframe_len + padding; 676 677 /* FIXME: should we really accept multicast DA? */ 678 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 679 !ether_addr_equal(check_da, eth.h_dest)) || 680 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 681 offset += len + padding; 682 continue; 683 } 684 685 /* reuse skb for the last subframe */ 686 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 687 skb_pull(skb, offset); 688 frame = skb; 689 reuse_skb = true; 690 } else { 691 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 692 reuse_frag); 693 if (!frame) 694 goto purge; 695 696 offset += len + padding; 697 } 698 699 skb_reset_network_header(frame); 700 frame->dev = skb->dev; 701 frame->priority = skb->priority; 702 703 payload = frame->data; 704 ethertype = (payload[6] << 8) | payload[7]; 705 if (likely((ether_addr_equal(payload, rfc1042_header) && 706 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 707 ether_addr_equal(payload, bridge_tunnel_header))) { 708 eth.h_proto = htons(ethertype); 709 skb_pull(frame, ETH_ALEN + 2); 710 } 711 712 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 713 __skb_queue_tail(list, frame); 714 } 715 716 if (!reuse_skb) 717 dev_kfree_skb(skb); 718 719 return; 720 721 purge: 722 __skb_queue_purge(list); 723 dev_kfree_skb(skb); 724 } 725 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 726 727 /* Given a data frame determine the 802.1p/1d tag to use. */ 728 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 729 struct cfg80211_qos_map *qos_map) 730 { 731 unsigned int dscp; 732 unsigned char vlan_priority; 733 unsigned int ret; 734 735 /* skb->priority values from 256->263 are magic values to 736 * directly indicate a specific 802.1d priority. This is used 737 * to allow 802.1d priority to be passed directly in from VLAN 738 * tags, etc. 739 */ 740 if (skb->priority >= 256 && skb->priority <= 263) { 741 ret = skb->priority - 256; 742 goto out; 743 } 744 745 if (skb_vlan_tag_present(skb)) { 746 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 747 >> VLAN_PRIO_SHIFT; 748 if (vlan_priority > 0) { 749 ret = vlan_priority; 750 goto out; 751 } 752 } 753 754 switch (skb->protocol) { 755 case htons(ETH_P_IP): 756 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 757 break; 758 case htons(ETH_P_IPV6): 759 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 760 break; 761 case htons(ETH_P_MPLS_UC): 762 case htons(ETH_P_MPLS_MC): { 763 struct mpls_label mpls_tmp, *mpls; 764 765 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 766 sizeof(*mpls), &mpls_tmp); 767 if (!mpls) 768 return 0; 769 770 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 771 >> MPLS_LS_TC_SHIFT; 772 goto out; 773 } 774 case htons(ETH_P_80221): 775 /* 802.21 is always network control traffic */ 776 return 7; 777 default: 778 return 0; 779 } 780 781 if (qos_map) { 782 unsigned int i, tmp_dscp = dscp >> 2; 783 784 for (i = 0; i < qos_map->num_des; i++) { 785 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 786 ret = qos_map->dscp_exception[i].up; 787 goto out; 788 } 789 } 790 791 for (i = 0; i < 8; i++) { 792 if (tmp_dscp >= qos_map->up[i].low && 793 tmp_dscp <= qos_map->up[i].high) { 794 ret = i; 795 goto out; 796 } 797 } 798 } 799 800 ret = dscp >> 5; 801 out: 802 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 803 } 804 EXPORT_SYMBOL(cfg80211_classify8021d); 805 806 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 807 { 808 const struct cfg80211_bss_ies *ies; 809 810 ies = rcu_dereference(bss->ies); 811 if (!ies) 812 return NULL; 813 814 return cfg80211_find_elem(id, ies->data, ies->len); 815 } 816 EXPORT_SYMBOL(ieee80211_bss_get_elem); 817 818 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 819 { 820 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 821 struct net_device *dev = wdev->netdev; 822 int i; 823 824 if (!wdev->connect_keys) 825 return; 826 827 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 828 if (!wdev->connect_keys->params[i].cipher) 829 continue; 830 if (rdev_add_key(rdev, dev, i, false, NULL, 831 &wdev->connect_keys->params[i])) { 832 netdev_err(dev, "failed to set key %d\n", i); 833 continue; 834 } 835 if (wdev->connect_keys->def == i && 836 rdev_set_default_key(rdev, dev, i, true, true)) { 837 netdev_err(dev, "failed to set defkey %d\n", i); 838 continue; 839 } 840 } 841 842 kzfree(wdev->connect_keys); 843 wdev->connect_keys = NULL; 844 } 845 846 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 847 { 848 struct cfg80211_event *ev; 849 unsigned long flags; 850 851 spin_lock_irqsave(&wdev->event_lock, flags); 852 while (!list_empty(&wdev->event_list)) { 853 ev = list_first_entry(&wdev->event_list, 854 struct cfg80211_event, list); 855 list_del(&ev->list); 856 spin_unlock_irqrestore(&wdev->event_lock, flags); 857 858 wdev_lock(wdev); 859 switch (ev->type) { 860 case EVENT_CONNECT_RESULT: 861 __cfg80211_connect_result( 862 wdev->netdev, 863 &ev->cr, 864 ev->cr.status == WLAN_STATUS_SUCCESS); 865 break; 866 case EVENT_ROAMED: 867 __cfg80211_roamed(wdev, &ev->rm); 868 break; 869 case EVENT_DISCONNECTED: 870 __cfg80211_disconnected(wdev->netdev, 871 ev->dc.ie, ev->dc.ie_len, 872 ev->dc.reason, 873 !ev->dc.locally_generated); 874 break; 875 case EVENT_IBSS_JOINED: 876 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 877 ev->ij.channel); 878 break; 879 case EVENT_STOPPED: 880 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 881 break; 882 case EVENT_PORT_AUTHORIZED: 883 __cfg80211_port_authorized(wdev, ev->pa.bssid); 884 break; 885 } 886 wdev_unlock(wdev); 887 888 kfree(ev); 889 890 spin_lock_irqsave(&wdev->event_lock, flags); 891 } 892 spin_unlock_irqrestore(&wdev->event_lock, flags); 893 } 894 895 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 896 { 897 struct wireless_dev *wdev; 898 899 ASSERT_RTNL(); 900 901 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 902 cfg80211_process_wdev_events(wdev); 903 } 904 905 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 906 struct net_device *dev, enum nl80211_iftype ntype, 907 struct vif_params *params) 908 { 909 int err; 910 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 911 912 ASSERT_RTNL(); 913 914 /* don't support changing VLANs, you just re-create them */ 915 if (otype == NL80211_IFTYPE_AP_VLAN) 916 return -EOPNOTSUPP; 917 918 /* cannot change into P2P device or NAN */ 919 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 920 ntype == NL80211_IFTYPE_NAN) 921 return -EOPNOTSUPP; 922 923 if (!rdev->ops->change_virtual_intf || 924 !(rdev->wiphy.interface_modes & (1 << ntype))) 925 return -EOPNOTSUPP; 926 927 /* if it's part of a bridge, reject changing type to station/ibss */ 928 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 929 (ntype == NL80211_IFTYPE_ADHOC || 930 ntype == NL80211_IFTYPE_STATION || 931 ntype == NL80211_IFTYPE_P2P_CLIENT)) 932 return -EBUSY; 933 934 if (ntype != otype) { 935 dev->ieee80211_ptr->use_4addr = false; 936 dev->ieee80211_ptr->mesh_id_up_len = 0; 937 wdev_lock(dev->ieee80211_ptr); 938 rdev_set_qos_map(rdev, dev, NULL); 939 wdev_unlock(dev->ieee80211_ptr); 940 941 switch (otype) { 942 case NL80211_IFTYPE_AP: 943 cfg80211_stop_ap(rdev, dev, true); 944 break; 945 case NL80211_IFTYPE_ADHOC: 946 cfg80211_leave_ibss(rdev, dev, false); 947 break; 948 case NL80211_IFTYPE_STATION: 949 case NL80211_IFTYPE_P2P_CLIENT: 950 wdev_lock(dev->ieee80211_ptr); 951 cfg80211_disconnect(rdev, dev, 952 WLAN_REASON_DEAUTH_LEAVING, true); 953 wdev_unlock(dev->ieee80211_ptr); 954 break; 955 case NL80211_IFTYPE_MESH_POINT: 956 /* mesh should be handled? */ 957 break; 958 default: 959 break; 960 } 961 962 cfg80211_process_rdev_events(rdev); 963 } 964 965 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 966 967 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 968 969 if (!err && params && params->use_4addr != -1) 970 dev->ieee80211_ptr->use_4addr = params->use_4addr; 971 972 if (!err) { 973 dev->priv_flags &= ~IFF_DONT_BRIDGE; 974 switch (ntype) { 975 case NL80211_IFTYPE_STATION: 976 if (dev->ieee80211_ptr->use_4addr) 977 break; 978 /* fall through */ 979 case NL80211_IFTYPE_OCB: 980 case NL80211_IFTYPE_P2P_CLIENT: 981 case NL80211_IFTYPE_ADHOC: 982 dev->priv_flags |= IFF_DONT_BRIDGE; 983 break; 984 case NL80211_IFTYPE_P2P_GO: 985 case NL80211_IFTYPE_AP: 986 case NL80211_IFTYPE_AP_VLAN: 987 case NL80211_IFTYPE_WDS: 988 case NL80211_IFTYPE_MESH_POINT: 989 /* bridging OK */ 990 break; 991 case NL80211_IFTYPE_MONITOR: 992 /* monitor can't bridge anyway */ 993 break; 994 case NL80211_IFTYPE_UNSPECIFIED: 995 case NUM_NL80211_IFTYPES: 996 /* not happening */ 997 break; 998 case NL80211_IFTYPE_P2P_DEVICE: 999 case NL80211_IFTYPE_NAN: 1000 WARN_ON(1); 1001 break; 1002 } 1003 } 1004 1005 if (!err && ntype != otype && netif_running(dev)) { 1006 cfg80211_update_iface_num(rdev, ntype, 1); 1007 cfg80211_update_iface_num(rdev, otype, -1); 1008 } 1009 1010 return err; 1011 } 1012 1013 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1014 { 1015 int modulation, streams, bitrate; 1016 1017 /* the formula below does only work for MCS values smaller than 32 */ 1018 if (WARN_ON_ONCE(rate->mcs >= 32)) 1019 return 0; 1020 1021 modulation = rate->mcs & 7; 1022 streams = (rate->mcs >> 3) + 1; 1023 1024 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1025 1026 if (modulation < 4) 1027 bitrate *= (modulation + 1); 1028 else if (modulation == 4) 1029 bitrate *= (modulation + 2); 1030 else 1031 bitrate *= (modulation + 3); 1032 1033 bitrate *= streams; 1034 1035 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1036 bitrate = (bitrate / 9) * 10; 1037 1038 /* do NOT round down here */ 1039 return (bitrate + 50000) / 100000; 1040 } 1041 1042 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1043 { 1044 static const u32 __mcs2bitrate[] = { 1045 /* control PHY */ 1046 [0] = 275, 1047 /* SC PHY */ 1048 [1] = 3850, 1049 [2] = 7700, 1050 [3] = 9625, 1051 [4] = 11550, 1052 [5] = 12512, /* 1251.25 mbps */ 1053 [6] = 15400, 1054 [7] = 19250, 1055 [8] = 23100, 1056 [9] = 25025, 1057 [10] = 30800, 1058 [11] = 38500, 1059 [12] = 46200, 1060 /* OFDM PHY */ 1061 [13] = 6930, 1062 [14] = 8662, /* 866.25 mbps */ 1063 [15] = 13860, 1064 [16] = 17325, 1065 [17] = 20790, 1066 [18] = 27720, 1067 [19] = 34650, 1068 [20] = 41580, 1069 [21] = 45045, 1070 [22] = 51975, 1071 [23] = 62370, 1072 [24] = 67568, /* 6756.75 mbps */ 1073 /* LP-SC PHY */ 1074 [25] = 6260, 1075 [26] = 8340, 1076 [27] = 11120, 1077 [28] = 12510, 1078 [29] = 16680, 1079 [30] = 22240, 1080 [31] = 25030, 1081 }; 1082 1083 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1084 return 0; 1085 1086 return __mcs2bitrate[rate->mcs]; 1087 } 1088 1089 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1090 { 1091 static const u32 base[4][10] = { 1092 { 6500000, 1093 13000000, 1094 19500000, 1095 26000000, 1096 39000000, 1097 52000000, 1098 58500000, 1099 65000000, 1100 78000000, 1101 /* not in the spec, but some devices use this: */ 1102 86500000, 1103 }, 1104 { 13500000, 1105 27000000, 1106 40500000, 1107 54000000, 1108 81000000, 1109 108000000, 1110 121500000, 1111 135000000, 1112 162000000, 1113 180000000, 1114 }, 1115 { 29300000, 1116 58500000, 1117 87800000, 1118 117000000, 1119 175500000, 1120 234000000, 1121 263300000, 1122 292500000, 1123 351000000, 1124 390000000, 1125 }, 1126 { 58500000, 1127 117000000, 1128 175500000, 1129 234000000, 1130 351000000, 1131 468000000, 1132 526500000, 1133 585000000, 1134 702000000, 1135 780000000, 1136 }, 1137 }; 1138 u32 bitrate; 1139 int idx; 1140 1141 if (rate->mcs > 9) 1142 goto warn; 1143 1144 switch (rate->bw) { 1145 case RATE_INFO_BW_160: 1146 idx = 3; 1147 break; 1148 case RATE_INFO_BW_80: 1149 idx = 2; 1150 break; 1151 case RATE_INFO_BW_40: 1152 idx = 1; 1153 break; 1154 case RATE_INFO_BW_5: 1155 case RATE_INFO_BW_10: 1156 default: 1157 goto warn; 1158 case RATE_INFO_BW_20: 1159 idx = 0; 1160 } 1161 1162 bitrate = base[idx][rate->mcs]; 1163 bitrate *= rate->nss; 1164 1165 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1166 bitrate = (bitrate / 9) * 10; 1167 1168 /* do NOT round down here */ 1169 return (bitrate + 50000) / 100000; 1170 warn: 1171 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1172 rate->bw, rate->mcs, rate->nss); 1173 return 0; 1174 } 1175 1176 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1177 { 1178 #define SCALE 2048 1179 u16 mcs_divisors[12] = { 1180 34133, /* 16.666666... */ 1181 17067, /* 8.333333... */ 1182 11378, /* 5.555555... */ 1183 8533, /* 4.166666... */ 1184 5689, /* 2.777777... */ 1185 4267, /* 2.083333... */ 1186 3923, /* 1.851851... */ 1187 3413, /* 1.666666... */ 1188 2844, /* 1.388888... */ 1189 2560, /* 1.250000... */ 1190 2276, /* 1.111111... */ 1191 2048, /* 1.000000... */ 1192 }; 1193 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1194 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1195 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1196 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1197 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1198 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1199 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1200 u64 tmp; 1201 u32 result; 1202 1203 if (WARN_ON_ONCE(rate->mcs > 11)) 1204 return 0; 1205 1206 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1207 return 0; 1208 if (WARN_ON_ONCE(rate->he_ru_alloc > 1209 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1210 return 0; 1211 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1212 return 0; 1213 1214 if (rate->bw == RATE_INFO_BW_160) 1215 result = rates_160M[rate->he_gi]; 1216 else if (rate->bw == RATE_INFO_BW_80 || 1217 (rate->bw == RATE_INFO_BW_HE_RU && 1218 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1219 result = rates_969[rate->he_gi]; 1220 else if (rate->bw == RATE_INFO_BW_40 || 1221 (rate->bw == RATE_INFO_BW_HE_RU && 1222 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1223 result = rates_484[rate->he_gi]; 1224 else if (rate->bw == RATE_INFO_BW_20 || 1225 (rate->bw == RATE_INFO_BW_HE_RU && 1226 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1227 result = rates_242[rate->he_gi]; 1228 else if (rate->bw == RATE_INFO_BW_HE_RU && 1229 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1230 result = rates_106[rate->he_gi]; 1231 else if (rate->bw == RATE_INFO_BW_HE_RU && 1232 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1233 result = rates_52[rate->he_gi]; 1234 else if (rate->bw == RATE_INFO_BW_HE_RU && 1235 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1236 result = rates_26[rate->he_gi]; 1237 else { 1238 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1239 rate->bw, rate->he_ru_alloc); 1240 return 0; 1241 } 1242 1243 /* now scale to the appropriate MCS */ 1244 tmp = result; 1245 tmp *= SCALE; 1246 do_div(tmp, mcs_divisors[rate->mcs]); 1247 result = tmp; 1248 1249 /* and take NSS, DCM into account */ 1250 result = (result * rate->nss) / 8; 1251 if (rate->he_dcm) 1252 result /= 2; 1253 1254 return result / 10000; 1255 } 1256 1257 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1258 { 1259 if (rate->flags & RATE_INFO_FLAGS_MCS) 1260 return cfg80211_calculate_bitrate_ht(rate); 1261 if (rate->flags & RATE_INFO_FLAGS_60G) 1262 return cfg80211_calculate_bitrate_60g(rate); 1263 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1264 return cfg80211_calculate_bitrate_vht(rate); 1265 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1266 return cfg80211_calculate_bitrate_he(rate); 1267 1268 return rate->legacy; 1269 } 1270 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1271 1272 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1273 enum ieee80211_p2p_attr_id attr, 1274 u8 *buf, unsigned int bufsize) 1275 { 1276 u8 *out = buf; 1277 u16 attr_remaining = 0; 1278 bool desired_attr = false; 1279 u16 desired_len = 0; 1280 1281 while (len > 0) { 1282 unsigned int iedatalen; 1283 unsigned int copy; 1284 const u8 *iedata; 1285 1286 if (len < 2) 1287 return -EILSEQ; 1288 iedatalen = ies[1]; 1289 if (iedatalen + 2 > len) 1290 return -EILSEQ; 1291 1292 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1293 goto cont; 1294 1295 if (iedatalen < 4) 1296 goto cont; 1297 1298 iedata = ies + 2; 1299 1300 /* check WFA OUI, P2P subtype */ 1301 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1302 iedata[2] != 0x9a || iedata[3] != 0x09) 1303 goto cont; 1304 1305 iedatalen -= 4; 1306 iedata += 4; 1307 1308 /* check attribute continuation into this IE */ 1309 copy = min_t(unsigned int, attr_remaining, iedatalen); 1310 if (copy && desired_attr) { 1311 desired_len += copy; 1312 if (out) { 1313 memcpy(out, iedata, min(bufsize, copy)); 1314 out += min(bufsize, copy); 1315 bufsize -= min(bufsize, copy); 1316 } 1317 1318 1319 if (copy == attr_remaining) 1320 return desired_len; 1321 } 1322 1323 attr_remaining -= copy; 1324 if (attr_remaining) 1325 goto cont; 1326 1327 iedatalen -= copy; 1328 iedata += copy; 1329 1330 while (iedatalen > 0) { 1331 u16 attr_len; 1332 1333 /* P2P attribute ID & size must fit */ 1334 if (iedatalen < 3) 1335 return -EILSEQ; 1336 desired_attr = iedata[0] == attr; 1337 attr_len = get_unaligned_le16(iedata + 1); 1338 iedatalen -= 3; 1339 iedata += 3; 1340 1341 copy = min_t(unsigned int, attr_len, iedatalen); 1342 1343 if (desired_attr) { 1344 desired_len += copy; 1345 if (out) { 1346 memcpy(out, iedata, min(bufsize, copy)); 1347 out += min(bufsize, copy); 1348 bufsize -= min(bufsize, copy); 1349 } 1350 1351 if (copy == attr_len) 1352 return desired_len; 1353 } 1354 1355 iedata += copy; 1356 iedatalen -= copy; 1357 attr_remaining = attr_len - copy; 1358 } 1359 1360 cont: 1361 len -= ies[1] + 2; 1362 ies += ies[1] + 2; 1363 } 1364 1365 if (attr_remaining && desired_attr) 1366 return -EILSEQ; 1367 1368 return -ENOENT; 1369 } 1370 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1371 1372 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1373 { 1374 int i; 1375 1376 /* Make sure array values are legal */ 1377 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1378 return false; 1379 1380 i = 0; 1381 while (i < n_ids) { 1382 if (ids[i] == WLAN_EID_EXTENSION) { 1383 if (id_ext && (ids[i + 1] == id)) 1384 return true; 1385 1386 i += 2; 1387 continue; 1388 } 1389 1390 if (ids[i] == id && !id_ext) 1391 return true; 1392 1393 i++; 1394 } 1395 return false; 1396 } 1397 1398 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1399 { 1400 /* we assume a validly formed IEs buffer */ 1401 u8 len = ies[pos + 1]; 1402 1403 pos += 2 + len; 1404 1405 /* the IE itself must have 255 bytes for fragments to follow */ 1406 if (len < 255) 1407 return pos; 1408 1409 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1410 len = ies[pos + 1]; 1411 pos += 2 + len; 1412 } 1413 1414 return pos; 1415 } 1416 1417 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1418 const u8 *ids, int n_ids, 1419 const u8 *after_ric, int n_after_ric, 1420 size_t offset) 1421 { 1422 size_t pos = offset; 1423 1424 while (pos < ielen) { 1425 u8 ext = 0; 1426 1427 if (ies[pos] == WLAN_EID_EXTENSION) 1428 ext = 2; 1429 if ((pos + ext) >= ielen) 1430 break; 1431 1432 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1433 ies[pos] == WLAN_EID_EXTENSION)) 1434 break; 1435 1436 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1437 pos = skip_ie(ies, ielen, pos); 1438 1439 while (pos < ielen) { 1440 if (ies[pos] == WLAN_EID_EXTENSION) 1441 ext = 2; 1442 else 1443 ext = 0; 1444 1445 if ((pos + ext) >= ielen) 1446 break; 1447 1448 if (!ieee80211_id_in_list(after_ric, 1449 n_after_ric, 1450 ies[pos + ext], 1451 ext == 2)) 1452 pos = skip_ie(ies, ielen, pos); 1453 else 1454 break; 1455 } 1456 } else { 1457 pos = skip_ie(ies, ielen, pos); 1458 } 1459 } 1460 1461 return pos; 1462 } 1463 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1464 1465 bool ieee80211_operating_class_to_band(u8 operating_class, 1466 enum nl80211_band *band) 1467 { 1468 switch (operating_class) { 1469 case 112: 1470 case 115 ... 127: 1471 case 128 ... 130: 1472 *band = NL80211_BAND_5GHZ; 1473 return true; 1474 case 81: 1475 case 82: 1476 case 83: 1477 case 84: 1478 *band = NL80211_BAND_2GHZ; 1479 return true; 1480 case 180: 1481 *band = NL80211_BAND_60GHZ; 1482 return true; 1483 } 1484 1485 return false; 1486 } 1487 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1488 1489 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1490 u8 *op_class) 1491 { 1492 u8 vht_opclass; 1493 u32 freq = chandef->center_freq1; 1494 1495 if (freq >= 2412 && freq <= 2472) { 1496 if (chandef->width > NL80211_CHAN_WIDTH_40) 1497 return false; 1498 1499 /* 2.407 GHz, channels 1..13 */ 1500 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1501 if (freq > chandef->chan->center_freq) 1502 *op_class = 83; /* HT40+ */ 1503 else 1504 *op_class = 84; /* HT40- */ 1505 } else { 1506 *op_class = 81; 1507 } 1508 1509 return true; 1510 } 1511 1512 if (freq == 2484) { 1513 if (chandef->width > NL80211_CHAN_WIDTH_40) 1514 return false; 1515 1516 *op_class = 82; /* channel 14 */ 1517 return true; 1518 } 1519 1520 switch (chandef->width) { 1521 case NL80211_CHAN_WIDTH_80: 1522 vht_opclass = 128; 1523 break; 1524 case NL80211_CHAN_WIDTH_160: 1525 vht_opclass = 129; 1526 break; 1527 case NL80211_CHAN_WIDTH_80P80: 1528 vht_opclass = 130; 1529 break; 1530 case NL80211_CHAN_WIDTH_10: 1531 case NL80211_CHAN_WIDTH_5: 1532 return false; /* unsupported for now */ 1533 default: 1534 vht_opclass = 0; 1535 break; 1536 } 1537 1538 /* 5 GHz, channels 36..48 */ 1539 if (freq >= 5180 && freq <= 5240) { 1540 if (vht_opclass) { 1541 *op_class = vht_opclass; 1542 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1543 if (freq > chandef->chan->center_freq) 1544 *op_class = 116; 1545 else 1546 *op_class = 117; 1547 } else { 1548 *op_class = 115; 1549 } 1550 1551 return true; 1552 } 1553 1554 /* 5 GHz, channels 52..64 */ 1555 if (freq >= 5260 && freq <= 5320) { 1556 if (vht_opclass) { 1557 *op_class = vht_opclass; 1558 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1559 if (freq > chandef->chan->center_freq) 1560 *op_class = 119; 1561 else 1562 *op_class = 120; 1563 } else { 1564 *op_class = 118; 1565 } 1566 1567 return true; 1568 } 1569 1570 /* 5 GHz, channels 100..144 */ 1571 if (freq >= 5500 && freq <= 5720) { 1572 if (vht_opclass) { 1573 *op_class = vht_opclass; 1574 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1575 if (freq > chandef->chan->center_freq) 1576 *op_class = 122; 1577 else 1578 *op_class = 123; 1579 } else { 1580 *op_class = 121; 1581 } 1582 1583 return true; 1584 } 1585 1586 /* 5 GHz, channels 149..169 */ 1587 if (freq >= 5745 && freq <= 5845) { 1588 if (vht_opclass) { 1589 *op_class = vht_opclass; 1590 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1591 if (freq > chandef->chan->center_freq) 1592 *op_class = 126; 1593 else 1594 *op_class = 127; 1595 } else if (freq <= 5805) { 1596 *op_class = 124; 1597 } else { 1598 *op_class = 125; 1599 } 1600 1601 return true; 1602 } 1603 1604 /* 56.16 GHz, channel 1..4 */ 1605 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1606 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1607 return false; 1608 1609 *op_class = 180; 1610 return true; 1611 } 1612 1613 /* not supported yet */ 1614 return false; 1615 } 1616 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1617 1618 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1619 u32 *beacon_int_gcd, 1620 bool *beacon_int_different) 1621 { 1622 struct wireless_dev *wdev; 1623 1624 *beacon_int_gcd = 0; 1625 *beacon_int_different = false; 1626 1627 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1628 if (!wdev->beacon_interval) 1629 continue; 1630 1631 if (!*beacon_int_gcd) { 1632 *beacon_int_gcd = wdev->beacon_interval; 1633 continue; 1634 } 1635 1636 if (wdev->beacon_interval == *beacon_int_gcd) 1637 continue; 1638 1639 *beacon_int_different = true; 1640 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1641 } 1642 1643 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1644 if (*beacon_int_gcd) 1645 *beacon_int_different = true; 1646 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1647 } 1648 } 1649 1650 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1651 enum nl80211_iftype iftype, u32 beacon_int) 1652 { 1653 /* 1654 * This is just a basic pre-condition check; if interface combinations 1655 * are possible the driver must already be checking those with a call 1656 * to cfg80211_check_combinations(), in which case we'll validate more 1657 * through the cfg80211_calculate_bi_data() call and code in 1658 * cfg80211_iter_combinations(). 1659 */ 1660 1661 if (beacon_int < 10 || beacon_int > 10000) 1662 return -EINVAL; 1663 1664 return 0; 1665 } 1666 1667 int cfg80211_iter_combinations(struct wiphy *wiphy, 1668 struct iface_combination_params *params, 1669 void (*iter)(const struct ieee80211_iface_combination *c, 1670 void *data), 1671 void *data) 1672 { 1673 const struct ieee80211_regdomain *regdom; 1674 enum nl80211_dfs_regions region = 0; 1675 int i, j, iftype; 1676 int num_interfaces = 0; 1677 u32 used_iftypes = 0; 1678 u32 beacon_int_gcd; 1679 bool beacon_int_different; 1680 1681 /* 1682 * This is a bit strange, since the iteration used to rely only on 1683 * the data given by the driver, but here it now relies on context, 1684 * in form of the currently operating interfaces. 1685 * This is OK for all current users, and saves us from having to 1686 * push the GCD calculations into all the drivers. 1687 * In the future, this should probably rely more on data that's in 1688 * cfg80211 already - the only thing not would appear to be any new 1689 * interfaces (while being brought up) and channel/radar data. 1690 */ 1691 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1692 &beacon_int_gcd, &beacon_int_different); 1693 1694 if (params->radar_detect) { 1695 rcu_read_lock(); 1696 regdom = rcu_dereference(cfg80211_regdomain); 1697 if (regdom) 1698 region = regdom->dfs_region; 1699 rcu_read_unlock(); 1700 } 1701 1702 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1703 num_interfaces += params->iftype_num[iftype]; 1704 if (params->iftype_num[iftype] > 0 && 1705 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1706 used_iftypes |= BIT(iftype); 1707 } 1708 1709 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1710 const struct ieee80211_iface_combination *c; 1711 struct ieee80211_iface_limit *limits; 1712 u32 all_iftypes = 0; 1713 1714 c = &wiphy->iface_combinations[i]; 1715 1716 if (num_interfaces > c->max_interfaces) 1717 continue; 1718 if (params->num_different_channels > c->num_different_channels) 1719 continue; 1720 1721 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1722 GFP_KERNEL); 1723 if (!limits) 1724 return -ENOMEM; 1725 1726 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1727 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1728 continue; 1729 for (j = 0; j < c->n_limits; j++) { 1730 all_iftypes |= limits[j].types; 1731 if (!(limits[j].types & BIT(iftype))) 1732 continue; 1733 if (limits[j].max < params->iftype_num[iftype]) 1734 goto cont; 1735 limits[j].max -= params->iftype_num[iftype]; 1736 } 1737 } 1738 1739 if (params->radar_detect != 1740 (c->radar_detect_widths & params->radar_detect)) 1741 goto cont; 1742 1743 if (params->radar_detect && c->radar_detect_regions && 1744 !(c->radar_detect_regions & BIT(region))) 1745 goto cont; 1746 1747 /* Finally check that all iftypes that we're currently 1748 * using are actually part of this combination. If they 1749 * aren't then we can't use this combination and have 1750 * to continue to the next. 1751 */ 1752 if ((all_iftypes & used_iftypes) != used_iftypes) 1753 goto cont; 1754 1755 if (beacon_int_gcd) { 1756 if (c->beacon_int_min_gcd && 1757 beacon_int_gcd < c->beacon_int_min_gcd) 1758 goto cont; 1759 if (!c->beacon_int_min_gcd && beacon_int_different) 1760 goto cont; 1761 } 1762 1763 /* This combination covered all interface types and 1764 * supported the requested numbers, so we're good. 1765 */ 1766 1767 (*iter)(c, data); 1768 cont: 1769 kfree(limits); 1770 } 1771 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(cfg80211_iter_combinations); 1775 1776 static void 1777 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1778 void *data) 1779 { 1780 int *num = data; 1781 (*num)++; 1782 } 1783 1784 int cfg80211_check_combinations(struct wiphy *wiphy, 1785 struct iface_combination_params *params) 1786 { 1787 int err, num = 0; 1788 1789 err = cfg80211_iter_combinations(wiphy, params, 1790 cfg80211_iter_sum_ifcombs, &num); 1791 if (err) 1792 return err; 1793 if (num == 0) 1794 return -EBUSY; 1795 1796 return 0; 1797 } 1798 EXPORT_SYMBOL(cfg80211_check_combinations); 1799 1800 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1801 const u8 *rates, unsigned int n_rates, 1802 u32 *mask) 1803 { 1804 int i, j; 1805 1806 if (!sband) 1807 return -EINVAL; 1808 1809 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1810 return -EINVAL; 1811 1812 *mask = 0; 1813 1814 for (i = 0; i < n_rates; i++) { 1815 int rate = (rates[i] & 0x7f) * 5; 1816 bool found = false; 1817 1818 for (j = 0; j < sband->n_bitrates; j++) { 1819 if (sband->bitrates[j].bitrate == rate) { 1820 found = true; 1821 *mask |= BIT(j); 1822 break; 1823 } 1824 } 1825 if (!found) 1826 return -EINVAL; 1827 } 1828 1829 /* 1830 * mask must have at least one bit set here since we 1831 * didn't accept a 0-length rates array nor allowed 1832 * entries in the array that didn't exist 1833 */ 1834 1835 return 0; 1836 } 1837 1838 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1839 { 1840 enum nl80211_band band; 1841 unsigned int n_channels = 0; 1842 1843 for (band = 0; band < NUM_NL80211_BANDS; band++) 1844 if (wiphy->bands[band]) 1845 n_channels += wiphy->bands[band]->n_channels; 1846 1847 return n_channels; 1848 } 1849 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1850 1851 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1852 struct station_info *sinfo) 1853 { 1854 struct cfg80211_registered_device *rdev; 1855 struct wireless_dev *wdev; 1856 1857 wdev = dev->ieee80211_ptr; 1858 if (!wdev) 1859 return -EOPNOTSUPP; 1860 1861 rdev = wiphy_to_rdev(wdev->wiphy); 1862 if (!rdev->ops->get_station) 1863 return -EOPNOTSUPP; 1864 1865 memset(sinfo, 0, sizeof(*sinfo)); 1866 1867 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1868 } 1869 EXPORT_SYMBOL(cfg80211_get_station); 1870 1871 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1872 { 1873 int i; 1874 1875 if (!f) 1876 return; 1877 1878 kfree(f->serv_spec_info); 1879 kfree(f->srf_bf); 1880 kfree(f->srf_macs); 1881 for (i = 0; i < f->num_rx_filters; i++) 1882 kfree(f->rx_filters[i].filter); 1883 1884 for (i = 0; i < f->num_tx_filters; i++) 1885 kfree(f->tx_filters[i].filter); 1886 1887 kfree(f->rx_filters); 1888 kfree(f->tx_filters); 1889 kfree(f); 1890 } 1891 EXPORT_SYMBOL(cfg80211_free_nan_func); 1892 1893 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1894 u32 center_freq_khz, u32 bw_khz) 1895 { 1896 u32 start_freq_khz, end_freq_khz; 1897 1898 start_freq_khz = center_freq_khz - (bw_khz / 2); 1899 end_freq_khz = center_freq_khz + (bw_khz / 2); 1900 1901 if (start_freq_khz >= freq_range->start_freq_khz && 1902 end_freq_khz <= freq_range->end_freq_khz) 1903 return true; 1904 1905 return false; 1906 } 1907 1908 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1909 { 1910 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1911 sizeof(*(sinfo->pertid)), 1912 gfp); 1913 if (!sinfo->pertid) 1914 return -ENOMEM; 1915 1916 return 0; 1917 } 1918 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1919 1920 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1921 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1922 const unsigned char rfc1042_header[] __aligned(2) = 1923 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1924 EXPORT_SYMBOL(rfc1042_header); 1925 1926 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1927 const unsigned char bridge_tunnel_header[] __aligned(2) = 1928 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1929 EXPORT_SYMBOL(bridge_tunnel_header); 1930 1931 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1932 struct iapp_layer2_update { 1933 u8 da[ETH_ALEN]; /* broadcast */ 1934 u8 sa[ETH_ALEN]; /* STA addr */ 1935 __be16 len; /* 6 */ 1936 u8 dsap; /* 0 */ 1937 u8 ssap; /* 0 */ 1938 u8 control; 1939 u8 xid_info[3]; 1940 } __packed; 1941 1942 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1943 { 1944 struct iapp_layer2_update *msg; 1945 struct sk_buff *skb; 1946 1947 /* Send Level 2 Update Frame to update forwarding tables in layer 2 1948 * bridge devices */ 1949 1950 skb = dev_alloc_skb(sizeof(*msg)); 1951 if (!skb) 1952 return; 1953 msg = skb_put(skb, sizeof(*msg)); 1954 1955 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 1956 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 1957 1958 eth_broadcast_addr(msg->da); 1959 ether_addr_copy(msg->sa, addr); 1960 msg->len = htons(6); 1961 msg->dsap = 0; 1962 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 1963 msg->control = 0xaf; /* XID response lsb.1111F101. 1964 * F=0 (no poll command; unsolicited frame) */ 1965 msg->xid_info[0] = 0x81; /* XID format identifier */ 1966 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 1967 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 1968 1969 skb->dev = dev; 1970 skb->protocol = eth_type_trans(skb, dev); 1971 memset(skb->cb, 0, sizeof(skb->cb)); 1972 netif_rx_ni(skb); 1973 } 1974 EXPORT_SYMBOL(cfg80211_send_layer2_update); 1975 1976 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 1977 enum ieee80211_vht_chanwidth bw, 1978 int mcs, bool ext_nss_bw_capable) 1979 { 1980 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 1981 int max_vht_nss = 0; 1982 int ext_nss_bw; 1983 int supp_width; 1984 int i, mcs_encoding; 1985 1986 if (map == 0xffff) 1987 return 0; 1988 1989 if (WARN_ON(mcs > 9)) 1990 return 0; 1991 if (mcs <= 7) 1992 mcs_encoding = 0; 1993 else if (mcs == 8) 1994 mcs_encoding = 1; 1995 else 1996 mcs_encoding = 2; 1997 1998 /* find max_vht_nss for the given MCS */ 1999 for (i = 7; i >= 0; i--) { 2000 int supp = (map >> (2 * i)) & 3; 2001 2002 if (supp == 3) 2003 continue; 2004 2005 if (supp >= mcs_encoding) { 2006 max_vht_nss = i + 1; 2007 break; 2008 } 2009 } 2010 2011 if (!(cap->supp_mcs.tx_mcs_map & 2012 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2013 return max_vht_nss; 2014 2015 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2016 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2017 supp_width = le32_get_bits(cap->vht_cap_info, 2018 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2019 2020 /* if not capable, treat ext_nss_bw as 0 */ 2021 if (!ext_nss_bw_capable) 2022 ext_nss_bw = 0; 2023 2024 /* This is invalid */ 2025 if (supp_width == 3) 2026 return 0; 2027 2028 /* This is an invalid combination so pretend nothing is supported */ 2029 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2030 return 0; 2031 2032 /* 2033 * Cover all the special cases according to IEEE 802.11-2016 2034 * Table 9-250. All other cases are either factor of 1 or not 2035 * valid/supported. 2036 */ 2037 switch (bw) { 2038 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2039 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2040 if ((supp_width == 1 || supp_width == 2) && 2041 ext_nss_bw == 3) 2042 return 2 * max_vht_nss; 2043 break; 2044 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2045 if (supp_width == 0 && 2046 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2047 return max_vht_nss / 2; 2048 if (supp_width == 0 && 2049 ext_nss_bw == 3) 2050 return (3 * max_vht_nss) / 4; 2051 if (supp_width == 1 && 2052 ext_nss_bw == 3) 2053 return 2 * max_vht_nss; 2054 break; 2055 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2056 if (supp_width == 0 && ext_nss_bw == 1) 2057 return 0; /* not possible */ 2058 if (supp_width == 0 && 2059 ext_nss_bw == 2) 2060 return max_vht_nss / 2; 2061 if (supp_width == 0 && 2062 ext_nss_bw == 3) 2063 return (3 * max_vht_nss) / 4; 2064 if (supp_width == 1 && 2065 ext_nss_bw == 0) 2066 return 0; /* not possible */ 2067 if (supp_width == 1 && 2068 ext_nss_bw == 1) 2069 return max_vht_nss / 2; 2070 if (supp_width == 1 && 2071 ext_nss_bw == 2) 2072 return (3 * max_vht_nss) / 4; 2073 break; 2074 } 2075 2076 /* not covered or invalid combination received */ 2077 return max_vht_nss; 2078 } 2079 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2080 2081 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2082 bool is_4addr, u8 check_swif) 2083 2084 { 2085 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2086 2087 switch (check_swif) { 2088 case 0: 2089 if (is_vlan && is_4addr) 2090 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2091 return wiphy->interface_modes & BIT(iftype); 2092 case 1: 2093 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2094 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2095 return wiphy->software_iftypes & BIT(iftype); 2096 default: 2097 break; 2098 } 2099 2100 return false; 2101 } 2102 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2103